Optimizing Transactions for Captured Memory

*
Aleksandar Dragojevi¢ Yang Ni Ali-Reza Adl-Tabatabai
EPFL, Lausanne Intel Labs Intel Labs
Switzerland Santa Clara, CA 95054 Santa Clara, CA 95054
aleksandar.dragojevic@epfl.ch yang.ni@intel.com ali-reza.adl-

ABSTRACT

In this paper, we identify transaction-local memory as a major
source of overhead from compiler instrumentation in software
transactional memory (STM). Transaction-local memory is mem-
ory allocated inside a transaction, which cannot escape (i.e., is cap-
tured by) the allocating transaction. Accesses to such memory do
not require calls to STM memory access functions (i.e., STM barri-
ers). A compiler unaware of that may translate accesses to captured
memory into expensive STM barriers. This presents us opportu-
nities to improve STM performance. Our measurements with the
STAMP benchmark suite (version 0.9.9) revealed that as many as
60% of the STM barriers generated by our baseline compiler access
captured memory, including 90% of the write barriers and 45% of
the read barriers. We propose runtime and compiler optimizations
to elide STM barriers to captured memory. These techniques can
also elide barriers for accesses to thread-local and read-only data.
We implemented those optimizations in the Intel C++ STM com-
piler. Our experiments with the STAMP benchmark suite on a Intel
Dunnington system (with 24 cores in a 4-node SMP system) show
that these optimizations can improve performance by to 18% at 16
threads.

Categories and Subject Descriptors

D.1.3 [Programming Techniques]: Concurrent Programming—
Parallel programming; D.3.3 [Language Constructs and Fea-
tures]: Concurrent programming structures

General Terms

Algorithms, Languages, Performance

Keywords

Software Transactional Memory, Runtime Optimizations, Com-
piler Optimizations.

*Work done during his internship at Intel.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SPAA’09, August 11-13, 2009, Calgary, Alberta, Canada.

Copyright 2009 ACM 978-1-60558-606-9/09/08 ...$10.00.

tabatabai@intel.com

1. INTRODUCTION

Transactional Memory (TM) [10] is an important technology
with potential to simplify programming of proliferating multi-core
processors. TM avoids or alleviates issues associated with locks,
such as deadlocks and poor composition of software modules. Soft-
ware Transactional Memory (STM) [9] implements TM purely in
software. It allows smooth transition from lock-based program-
ming to TM before hardware support becomes available, and it pro-
vides backward compatibility and a fallback mechanism [13, 17]
once hardware support becomes available. Language and compiler
support are necessary to deliver on TM’s promise of improved pro-
grammability [5], so a full STM system consists of both a compiler
and a runtime.

An STM compiler translates programs written using transac-
tional language constructs into executables that run with the STM
runtime. The compiler inserts runtime calls for starting and com-
mitting transactions, and it converts memory accesses inside a
transaction into runtime calls for transactional memory reads and
writes (called read and write barriers). We refer to the conversion
of adding barriers as compiler instrumentation.

In our previous work [19], we identified overheads of transac-
tional barriers as a major performance bottleneck in our STM sys-
tem. There are two reasons for this: (1) STM barriers require about
10 or more instructions each, much more costly than simple mem-
ory load and store instructions. (2) STM barriers can hurt scala-
bility. Write barriers typically acquire locks and may increase the
probability of false conflicts. Read barriers either perform expen-
sive lock instructions (for visible readers) or incur costs due to the
overheads of read-set validation and privatization-safety (for invis-
ible readers). To make the situation worse, a compiler often adds
unnecessary STM barriers, which are pure overhead without any
benefit; we call this problem compiler over-instrumentation [19].

STM compilers may add unnecessary barriers for three reasons:
(1) Static compiler analysis is often imprecise and conservative,
and thus cannot remove all unnecessary barriers. Whole-program
information is often missing because program modules are dynam-
ically loaded, for example, and it is impossible to perform whole-
program compiler analysis. (2) The compiler lacks knowledge
about application semantics available to programmers. (3) Lastly,
and most interestingly, as we note in this paper, traditional compiler
optimizations do not fully exploit transaction semantics, and they
miss some opportunities to optimize away unnecessary barriers.

Inside STM barriers, the runtime detects conflicts in order to
guarantee atomicity and isolation of transactions. Interestingly, the
isolation of a transaction in turn makes some barriers unnecessary.
In an in-place update STM system, for example, a write barrier
on an address makes barriers on succeeding accesses to that same
address in the same transaction unnecessary. Common subexpres-

sion elimination and partial redundancy elimination can optimize a
transaction with such accesses [1]. As a more complicated exam-
ple, a write barrier on a pointer that points to some data allocated
inside the current transaction makes barriers on dereferences of the
pointer in the same transaction unnecessary. No traditional com-
piler optimization targets cases like this.

In this paper, we identify transaction-local memory as a major
source of compiler over-instrumentation. Transaction-local mem-
ory is allocated inside a transaction (either on the stack or on
the heap). The compiler often generates barriers for accesses to
such memory even though these barriers are not needed. Be-
cause a transaction is guaranteed to be isolated from other transac-
tions, newly allocated memory cannot escape its allocating trans-
action. (Or more precisely, it cannot escape the current thread un-
til the allocating transaction commits.) For this reason, we say
that transaction-local memory is captured by the allocating trans-
action. We propose optimizations using runtime and compiler tech-
niques to determine whether a read or write barrier accesses cap-
tured memory. This allows us to elide certain STM overheads.

The same runtime techniques for eliding barriers for captured
memory can also elide barriers for thread-local or read-only ac-
cesses to memory. We propose user APIs (which could be trans-
formed into language extensions in a straightforward manner) that
programmers can use to annotate certain address ranges as thread-
local or read-only. These data annotations allow the runtime to
elide STM barriers when accessing memory in the annotated ad-
dress ranges. We chose manual annotations because automatic
optimizations are impossible due to the lack of application-level
knowledge by the compiler and the runtime. Previously, this prob-
lem was solved using escape actions [19]. Data annotations solve
the same problems with cleaner semantics, and therefore make the
program more readable and less error-prone. It should be noted
that, similarly to escape actions, incorrect use of data annotations
can introduce data races.

In the rest of paper, we describe the performance problems
associated with compiler instrumentation (Section 2); we present
our solutions based on runtime and compiler techniques (Sec-
tion 3); we then evaluate our compiler and runtime optimizations
(Section 4); and finally we present related work and conclude
(Sections 5 and 6).

2. BACKGROUND

In this section, we present a brief overview of the Intel C++ STM
used in our study, followed by a description of the compiler over-
instrumentation problem. (For more information about Intel’s STM
and STM in general see [14, 1, 16, 11].) We then identify three
categories of data, for which an STM compiler may generate un-
necessary instrumentation code.

2.1 Software Transactional Memory (STM)

A transaction in Intel C++ STM is represented as an atomic
statement, i.e., a statement with a leading __ tm_atomic key-
word. The STM guarantees that transactions are executed atom-
ically and that they are isolated from effects of other concurrent
transactions. In other words, single lock atomicity (SLA) seman-
tics is provided—transactions execute as if they were protected by
a single program-wide lock. (Note that speculative concurrent exe-
cution of transactions is allowed by SLA as long as the illusion of
serial execution is preserved.)

When the STM compiler generates code for an atomic block,
it instruments the code region with calls to the underlying STM
runtime. STM runtime exposes an interface—the application bi-
nary interface (ABI)—to the compiler that includes functions for

starting and ending transactions and for performing transactional
reads and writes of memory locations (STM barriers). Internally,
the runtime also implements contention managers of various poli-
cies to resolve conflicts. The STM runtime maps each memory
address to a piece of metadata—called transaction record—using
a hash function. Such mapping is from a cache-line, a word, or a
C++ object. Our system is cache-line-based. A system-wide trans-
action record table is maintained. Each entry of the table tracks
ownership of the corresponding memory location. Ownership is
usually claimed by locking the transaction record. An STM can be
eager-locking or lazy-locking, i.e., locking the transaction record
upon memory access or upon transaction commit. An STM can ei-
ther do in-place updates or write buffering, i.e., directly writing to
memory (with eager-locking) or writing to a buffer before flushing
it to global memory on commit (with either eager-locking or lazy-
locking). Finally, an STM can either be an optimistic-reader or
pessimistic-reader, i.e., not locking for reads or locking for reads.
Intel C++ STM does optimistic-reading and in-place updates, but
may do pessimistic reads in certain cases.

2.2 Compiler Over-Instrumentation

A naive STM compiler translates every memory access inside
a transaction into a read or a write barrier. While this does not
influence correctness of generated code, it does degrade its perfor-
mance. STM read/write barriers are expensive and they slow down
single-threaded execution because they perform checking, locking,
and write buffering or restoring of memory locations. More impor-
tantly, excessive use of STM barriers hurts scalability because they
access (read or write) shared memory locations (e.g. shared trans-
action records). In some cases, excessive barriers can introduce
false data conflicts—data conflicts that should not exist according
to application semantics, but occurs because different addresses are
mapped to the same transaction record, either due to a suboptimal
hash function or the limited size of the transaction record table.
False conflicts degrade system performance by causing unneces-
sary aborts.

Read/write barriers are necessary only in two cases: 1) Read
and write barriers are necessary for memory accesses to locations
that are shared and can therefore conflict with other memory ac-
cesses;' 2) Write barriers (more precisely, undo logs) are necessary
for memory accesses to locations that hold live values when the
transaction begins (even if the locations are not shared). In other
cases, read/write barriers are not necessary and can be omitted by
the STM compiler. It is the goal of this paper to identify cases in
which STM barriers are not needed and to develop optimizations
that would elide read/write barriers in those cases.

2.2.1 Transaction-Local Memory

Memory allocated inside a transaction is not accessible to other
transactions and this is why we call it transaction-local memory.
Both local variables defined inside an atomic block and memory
blocks dynamically allocated (using malloc or new) inside an
atomic block are transaction-local. Because transaction-local mem-
ory is private, accesses to it cannot cause conflicts with other trans-
actions and they do not require STM barriers. Instead, regular CPU
load/store instructions can be used.

Conventional wisdom tells us that if the address A of a mem-
ory location M is written to a shared pointer PsuaRED , it “es-
capes” the current thread 7 (i.e., it becomes shared) because other
threads 7 can access it through Psuarep and thus mutual exclu-

"Two memory accesses, executed by concurrent transactions, con-
flict when they access the same memory location and at least one
of them is a write operation.

sion is required to access M [4]. However, this is not the case in
a transactional system when Psuargep is updated by a transaction
t in T" using a write barrier. Because transactions are isolated, the
new value of Psparep does not become accessible to any other
transaction ¢; in thread 7T; until current transaction ¢ in thread T
commits and, therefore, any newly allocated memory pointed to by
Psaarep is also not accessible to any ¢; until £ commits. In sum-
mary, the isolation for pointers indirectly guarantees the isolation
for newly allocated memory that they point to. It is interesting to
note that, since the isolation is a fundamental property of a trans-
actional system, memory allocated inside transaction ¢ is private to
t regardless of any particular STM implementation. For example,
this observation holds for both in-place-update and write-buffering
STMs regardless of whether they perform eager or lazy locking.

Because transaction-local memory can not escape the transaction
that allocates it, we say it is captured by the transaction. We use
the term capture analysis (similar to escape analysis) to refer to a
compile- or runtime-time algorithm that determines if a memory
location is captured by a transaction or not.

The code snippet in Figure 1(a) (from STAMP bench-
mark bayes) is a typical example of transactions accessing
transactional-local stack. In this example, a list iterator it is al-
located on stack and then used to navigate a shared list inside a
transaction.

Memory location M local to a transaction ¢, might be live-in for
its child transaction ¢’ (i.e., ¢’ is nested inside the dynamic scope of
t). If that is the case, and if STM supports partial abort of nested
transactions (e.g., through user abort in our system), undo logging
for M is necessary in the nested transaction ¢’ although it is not
needed for the outer transaction. In systems that support nested
parallelism—allowing threads to be created inside a transaction,
memory locations local to the parent transaction become shared
among transactions in child threads and require full STM barriers.

2.2.2 Thread-Local Memory

Obviously, no read/write barrier is needed for accessing mem-
ory local to a thread, including variables on stack and static or
global variables in thread-local storage (TLS). These accesses re-
quire undo logging if the memory locations hold live values on
transaction begin.

Even if TLS is clearly declared in a program, there are still cases
where a compiler can not determine whether a memory access is to
thread-local memory unless it performs whole-program analysis.
For example, the address of thread-local memory could be passed
to an external function through a pointer-type argument. In addi-
tion, thread-local memory may escape [4] and stop being thread-
local. A compiler that does not perform the whole-program anal-
ysis has to make conservative decisions if a thread-local memory
location is address-taken and has to generate STM barriers for ac-
cesses to it.

What is worth noting is that the memory region can dynamically
change from being thread-local to being shared and vice versa. For
example, some large piece of data could be split among different
threads and processed in parallel, where each thread would work on
its own part of the data, and later, after the processing is finished, it
could be freely accessed by all threads.

We show a piece of code (from STAMP benchmark bayes) that
accesses thread-local data in Figure 1(b). The code first allocates
a thread-local vector queryVectorPtr and subsequently uses
it to pass arguments to functions TMpopulateQueryVectors
and computeLocalLogLikelihood. The same vector is used
in different transactions and does not get accessed outside the allo-
cating thread.

list_iter_t it;
TMLIST_ITER_RESET(&it, taskListPtr);

if(TMLIST_ITER_HASNEXT(&it, taskListPtr)) {
taskPtr = (learner_task_t+)TMLIST_ITER_NEXT(
&it, taskListPtr);
bool_t status = TMLIST_REMOVE(taskListPtr,
(voidx)taskPtr);

}

(a) Transaction-Local Stack

vector_t* query VectorPtr = PVECTOR_ALLOC(1);

TMpopulateQuery Vectors(..., query VectorPtr, ...);
newBaseLogLikelihood = computeLocalLogLikelihood(
..., query VectorPtr, ...);

(b) Thread-Local Data

nodePtr = (list_node_tx)TM_SHARED_READ_P(
prevPtr—>nextPtr);

if((listPtr—>compare(nodePtr—>dataPtr, dataPtr) != 0)
Il (nodePtr == NULL)) {

return NULL;
}

return (nodePtr—>dataPtr);

(c) Read-Only Data

Figure 1: Examples of where certain memory accesses do not
require STM barreris. Each code snippet above is part of a
transaction, the beginning and ending of which is not shown
here.

2.2.3 Read-Only Memory

Accesses to read-only memory do not require read barriers, even
if the memory is shared among threads. As with thread-local
data, a memory region can dynamically change between being
read-only and read-write. For example, some data may be up-
dated at the beginning of a program during initialization, but never
changed afterwards. Declaring read-only variables constant using
C/C++ keyword const does not fully solve the problem of over-
instrumentation for read-only data, for reasons similar to thread-
local data. Furthermore, the const qualifier could simply be cast
away when the data is accessed.

If not for these cases, a const qualifier could be used for global
variables to inform the STM compiler that the variable is read-only
and that barriers are not required when accessing it. However, it is
hard for the compiler to tell if a pointer really points to some read-
only memory. For example, if the address of a const global is
passed to a function as a pointer argument, it is impossible for the
compiler compiling that function to know that the pointer points to
read-only memory, unless a complicated whole-program analysis
is performed. In C++, defining an argument p to function foo
as const <type> *p only guarantees that function foo does
not change the memory pointed to by p, but not that p points to
immutable data. And there is no way to express that in C++.

A function in Figure 1(c) (from STAMP implementation of a
linked list) searches for a particular element in the linked list. It can
access both 1istPtr->compare and nodePtr->dataPtr
directly as both of these fields do not change after the data structure
is created.

type_t read_barrier(transaction_t xtd, type_t xaddress) {
if(is_captured(td, address))
return xaddress;

return full_read_barrier(td, address);

Figure 2: Pseudo-code for read barrier that uses runtime cap-
ture analysis

3. RUNTIME AND COMPILER
OPTIMIZATIONS

In this section we describe runtime and compile-time techniques
that determine whether memory locations being accessed are cap-
tured (transaction-local) or not. Runtime capture analysis tech-
niques are described in Section 3.1. We describe how the same
techniques used for runtime capture analysis can be used to elide
barriers for accesses to thread-local and read-only memory. We
describe several implementations of runtime optimizations and dis-
cuss their respective tradeoffs. Compiler capture analysis is pre-
sented in Section 3.2.

3.1 Runtime Optimizations

Runtime capture analysis cannot fully elide barriers—instead it
aims to reduce their cost. Figure 2 shows the pseudo-code for the
read barrier that performs runtime capture analysis. It first checks
whether the data being accessed is captured by the current trans-
action. If so, the data is read from memory directly and returned.
In this way, costs of logging, locking and maintaining read and
write sets are eliminated for unnecessary barriers. If the memory
locations are not captured, the standard read barrier algorithm is
invoked and the resulting value is returned. The pseudo-code for
write barriers is similar and is omitted.

If runtime capture analysis is faster than a regular STM barrier
and it succeeds often enough to elide a sufficient number of barri-
ers, the average cost of a barrier in an application will be reduced.
How often the regular STM barrier can be elided (i.e., how of-
ten the accessed memory location is captured) mainly depends on
the application itself. The main implementation problem to solve
is how to efficiently implement the runtime capture analysis (the
is_captured () function in Figure 2).

Transaction-local memory can be either a part of the stack or the
heap. Due to the different natures of these two allocation mecha-
nisms, runtime capture analysis also differs.

3.1.1 Capture Analysis for Transaction-Local Stack

A stack is a very simple and fast last-in-first-out allocation mech-
anism. The transaction-local stack (Figure 3) is a contiguous range
of memory locations between (1) the top of the stack at the begin-
ning of the transaction and (2) the current top of the stack. The
transaction descriptor contains a pointer to the beginning of trans-
action’s stack and the CPU stack pointer register points to the cur-
rent stack top. Runtime capture analysis for transaction-local stack
is relatively simple and fast—it requires a single range check (Fig-
ure 4.)

3.1.2 Capture Analysis for Transaction-Local Heap

Allocating data on the heap is much more flexible than allocat-
ing it on the stack, as memory blocks can be allocated and deal-
located in an arbitrary order. This, however, introduces additional
complexity to memory allocation/deallocation algorithms [12, 2,
11]. As the data allocated on the heap does not occupy a contigu-

OxFF...FF

start_sp

sp

0x00...00

Figure 3: A transaction-local stack (stack grows downwards).
Shaded memory represents stack used by a single thread.
Darker shaded memory is transaction-local stack. Its begin-
ning is pointed to by a field from transaction descriptor and its
end by processor stack pointer register.

int is_captured_on_stack(void *xaddr) {
return (start_sp<addr && addr <= sp);
}

Figure 4: Pseudo-code for runtime checking for transaction-
local data on stack

(1000, 2000)

(1000, 1200) (1980, 2000)

(1000, 1100)

(1150, 1200)

Figure 5: A search tree that logs memory blocks allocated
inside a transaction, populated with three memory ranges:
(1000,1100), (1150,1200) and 1980,2000).

ous range of memory locations, our runtime capture analysis for
transaction-local heap is more complex than the one used for the
transaction-local stack.

In order to perform capture analysis for transaction-local heap,
all transactional allocations are logged in a transaction-local alloca-
tion log. We extended the existing transactional memory allocator
in our STM runtime to keep a log of all memory blocks allocated
in a transaction. The runtime searches the allocation log for the
address being accessed. If the address belongs to the log, it means
that memory starting at the address was allocated (and is captured)
by the current transaction.

Efficiency of the data structure used to implement allocation log
is crucial for fast transaction-local heap capture analysis. We im-
plemented the allocation log using three different data structures: a
search tree, an array, and a filter of memory ranges.

Search tree.

The search tree (Figure 5) allows insertions and removals of
memory ranges and search operations to determine if a data item
(described as the starting address and the data size) belongs to a

memory range stored in the tree. The tree has the following struc-
ture:

e Each leaf represents the range of an allocated memory block.

e Each internal node represents a range with the lower bound
as the minimum of those of its child nodes, and the upper
bound as the maximum.

This way, searches that result in misses are relatively fast, be-
cause they usually terminate at an internal node at higher levels of
the tree. This satisfies the design principle of optimizing for com-
mon cases, which aims at lowering the performance cost suffered
by barriers that do not benefit from runtime capture analysis.

Array.

The array implementation of the log simply keeps all memory
ranges allocated inside a transaction as an unsorted array. The array
is of cache-line size, so that logged memory ranges can be brought
into cache all at once. On a 32-bit CPU that has 64-byte cache-lines
the array has the layout depicted in Figure 6. In the figure, start;
is the starting address of a memory range, and end; is its ending
address. The runtime capture analysis simply traverses the array
and checks whether the address of the memory location belongs
to any of the ranges stored in the array. If the accessed memory
falls into any of those ranges, the regular barrier can be elided.
Otherwise, the full STM barrier has to be used.

| starty | end, | starty | endy | startg | endg | start, | end4 |

Figure 6: An array of memory ranges implementation of allo-
cation log on a 32-bit CPU.

Our array-based capture analysis takes advantage of the fact that
capture analysis does not have to be accurate as long as it is conser-
vative. Inaccurate capture analysis misses some opportunities for
barrier elision and is, therefore, less effective, but it does not cause
any correctness issues. While capture analysis can be arbitrarily
inaccurate for direct update STMs (such as our STM) it must pro-
vide consistent results for deferred update STMs (such as e.g. [6]).
(In a deferred-update (or write-buffering) STM, if an STM barrier
is used to buffer writes to a location, then STM barriers have to be
used to read that same location.) We also assume that most trans-
actions do not perform many memory allocations, so the limited
size of our array does not pose a problem. Results presented in
Section 4 show that this approximation is good enough as the per-
formance results of array-based capture analysis compare well to
the results obtained using tree-based technique.

Filtering.

Our third implementation uses a hash table as a filter, a approach
similar to the runtime filtering technique described in [8], but ex-
tended to handle memory ranges larger than a single data item.
In this scheme, the allocation log is implemented as a hash table.
When a block of memory gets allocated, all memory locations be-
longing to the block are hashed and the corresponding hash table
entries are marked with the exact addresses of the corresponding
memory locations (unless they have already been marked by a pre-
vious allocation in the same transaction). Upon deallocation, all
hash table entries belonging to the being-deallocated memory block
are cleared. To perform capture analysis, the system hashes the
address of the accessed memory location and checks whether the
corresponding hash table entry contains it. Our filtering scheme

void addPrivateMemoryBlock(void *addr, size_t size);
void removePrivateMemoryBlock(void *addr, size_t size);

Figure 7: APIs to annotate data safe for direct accesses

allows false negatives, but is conservative (similarly to the array
implementation) in the sense that it never generates falso positives.
The check on memory accesses using the filter is fast, as it re-
quires only a hash and a compare. However, allocation and deallo-
cation is more expensive especially with large allocation sizes.

Simplifying Heap Checks.

It might look as if it would be possible to simplify and speed up
the heap checks by structuring the heap similar to the stack with
a special memory allocator. For example, every thread could have
its own memory pool for transaction-local heap allocation, and use
an allocation algorithm similar to a stack, in which a pointer to
available memory monotonically increases and allocated memory
stays in a continuous range. Capture analysis would be simple and
fast as using a stack. Unfortunately, this approach is not going to
work well, as it may lead to severe memory fragmentation after
memory is freed inside a transaction, and requires extra copy out
operations from the thread-local memory pool to shared memory
when the tranaction commits and allocated data becomes shared.

3.1.3 Capture Analysis for Thread-Local and Read-
Only Memory

It is impossible to decide whether certain data is thread-local
or read-only at runtime without help from the programmer, as
this relies on the application-level knowledge. Instead of trying
to automatically detect which locations are thread-local or read-
only, we expose new API calls to the programmer (Figure 7).
Using these API calls, the programmer can annotate memory re-
gions to be (or stop being) safe for accessing without STM bar-
riers. When a memory block becomes private (via a call to
addPrivateMemoryBlock ()), itis inserted into the log track-
ing thread-local data, which uses the same data structure and gen-
eral algorithms as the allocation log. The main difference between
these two logs is that allocation log gets emptied on every trans-
action end (commit or abort), while the thread-local data log does
not. This is why we did not reuse the allocation log to track thread-
local data. When a memory block becomes shared again (via a call
to removePrivateMemoryBlock ()), it is removed from the
log. The read/write barrier code (depicted in Figure 2) stays the
same as before.

An alternative approach that would use dedicated memory pools
for read-only and thread-local data to speed up the runtime checks
would suffer from similar issues as the memory allocation based
scheme for the transaction-local heap. In particular, it could not
efficiently cope with data that is read-only (thread-local) in some
parts of the program’s lifetime and read-write (shared) in others,
because it would require moving data between different pools.

3.2 Compiler Optimization

While runtime optimizations may reduce average cost of barriers
by avoiding full barriers (see Section 4), additional runtime checks
introduce new costs. In some cases, these additional costs could
even lead to performance degradation if the cost of runtime capture
analysis outweighs the potential savings from barrier elision. An
alternative to performing capture analysis at runtime is to do it at
compile-time, and completely elide (some of) those unnecessary
STM barriers, without paying additional runtime costs.

We implemented our compiler capture analysis using pointer
analysis, which determines whether a pointer points to memory al-
located inside the current transaction. If it does, dereferences of
the pointer do not require STM barriers. Similarly to runtime tech-
niques, the compiler capture analysis can tolerate false negatives,
and thus can use pointer analysis that is not completely accurate, as
long as it is conservative.

Our compiler capture analysis is based on the standard pointer
analysis implemented in the Intel C++ compiler. It only uses intra-
procedural pointer analysis, and relies on function inlining to ex-
tend the analysis results across function calls. We opted for not us-
ing inter-procedural pointer analysis (which is also supported by In-
tel C++ compiler) as it would increase compilation time and would
not be fully applicable when dynamically linked libraries are used.
Experimental measurements from Section 4 show that, even though
we use a simple compiler technique, the capture analysis is still
quite effective.

Instead of detecting data that is safe to access directly, the com-
piler could detect which accesses are to shared data. When access-
ing shared data, STM barriers have to be used, but runtime filtering
need not be used in these cases. This would improve the speed of
runtime techniques, by avoiding runtime checks when the compiler
can detect that they are not beneficial. We have not explored this
approach and left it as future work.

4. EVALUATION

We use the STAMP 0.9.9 [3] benchmark suite to evaluate our
runtime and compiler optimizations. All the measurements were
performed on a Dunnington machine with four Intel processors—
six cores each at 2.66GHz—and 16GB of RAM running Red Hat
Linux version 7. However, since STAMP only allows executions
with a power-of-two number of threads, we were limited to using
at most 16 threads in our experiments.

4.1 Barrier Elision Opportunities

In order to estimate opportunities for optimization, we ran the
benchmarks at a single thread and counted the numbers of STM
barriers that are (1) accessing transaction-local heap, (2) access-
ing transaction-local stack, (3) not required for other reasons, and
(4) required. To estimate the number of required barriers, we
counted manually instrumented accesses in the original STAMP
benchmark programs. Although this might not be the absolutely
minimal number of barriers that are required for correct code—as
the manual instrumentation may have added unnecessary barriers
too, it is a good basis to estimate of the number of barriers that
the STM compiler added. We used our tree-based runtime algo-
rithm to count the total number of transaction-local heap and stack
accesses. Because the tree-based runtime algorithm is precise, it
detects all accesses to transaction-local heap and stack. The rest
of the STM barriers generated by the compiler are not required,
but are not transaction-local either. They might be, for example,
accesses to read-only or thread-local data. These barriers cannot
be elided without the help of the programmer and we did not elide
those barriers in the following experiments.

Figure 8 depicts a breakdown of compiler-inserted STM bar-
riers for all STAMP programs, for reads, writes, and all mem-
ory accesses (reads and writes combined). The numbers in Fig-
ure 8 suggest significant opportunities with most STAMP pro-
grams to improve the performance of our STM by eliding barriers.
The only program where we did not see any redundant barrier is
labyrinth. Also, the number of barriers that can be elided au-
tomatically (accesses to transaction-local stack and heap) is much
higher for write than for read barriers. This is encouraging as write

Txn-Local Heap N Txn-Local Stack B Other O Required

100%
90%
80%
70%
60%
50%
40%
30%
20%
10%

0%

(a) Read breakdown

Txn-Local Heap N Txn-Local Stack

100%
90%
80%
70%
60%
50%
40%
30%
20%
10%

0%

N

2

(b) Write breakdown

Txn-Local Heap N Txn-Local Stack # Other O Required

100%
90%
80%
70%
60%
50%
40%
30%
20%
10%

0%

(c) Breakdown of all accesses

Figure 8: Memory access breakdown

barriers are more expensive than read barriers. Finally, the figure
conveys that the number of reads is typically much higher than the

Tree N Array A Filter N Compiler

_40.00%
$ 35.00%
T 30.00%
5 25.00%
£ 20.00%
£ 15.00%
£ 10.00%
g 0 N
S QSN X DO Q&
ST
¢ S & &
& &

(a) Read barriers

Tree N Array AFilter N Compiler

90.00%
80.00%
70.00%
60.00%
50.00%
40.00%
30.00%
20.00%
10.00%
0.00%

7

%

Werite Barriers Elided (%)

7
7
7
%
%
?
?
?
Z
?
7
%
%
?
%

(7P 17777777777 777
NN

ANANAANNNNNNNNNNNY
s 11777777 777777)
IS
rzzzezZzZZZ22ZZ7Z27

N7
N
7N
N
N7
N
N7
N
N7
N
N
N
N
/N7

> & N
Q @é\ \&@ &Qy & %0% .S
& &L S
e &

(b) Write barriers

Figure 9: Portion of barriers removed by different optimization techniques

number of writes for all benchmarks (except for yada) and that the
overall number of barriers that can be elided automatically can be
pretty high (e.g. 60% for yada).

Figure 9 shows the number of barriers that different capture
analysis techniques removed. The figure conveys two interest-
ing points: (1) the only program for which array runtime imple-
mentation removes fewer barriers than the others is yada, which
suggests that almost the full potential of capture analysis can be
achieved by tracking only a few memory allocations; (2) despite
using a simple algorithm, the compiler analysis is quite effective
identifying and removing unnecessary barriers—the only case for
which it removed significantly fewer barriers than the runtime tech-
niques using search tree and filtering hashtable is yada, while still
removed more than the filtering technique. It is worth noting that,
for all programs, the compiler optimization removed at least as
many barriers as the runtime optimization using an array.

4.2 Performance Impact

Table 1 shows the abort-to-commit ratio for all benchmarks run-
ning at 16 threads, for all optimizations and the baseline (to which
no optimization is applied). This ratio is defined as the ratio of
number of transactions aborted and retried to the number of trans-
actions committed. The table reveals that our optimizations sig-
nificantly reduce the number of aborts for both high- and low-
contention configurations of vacation benchmark. This results
in a performance improvement, as we show next.

To evaluate the performance improvement, we first measured
the execution time of all benchmarks running at a single thread,
and compared the results for all runtime and compiler optimiza-
tions to the baseline. In experiments for runtime optimizations, we
used the tree data structure for allocation log and performed ex-
periments in three different configurations: (1) checking for both
transaction-local stack and heap accesses in both read and write
barriers, (2) checking for both transaction-local stack and heap ac-
cesses only in write barriers, and (3) checking for only transaction-
local heap accesses only in write barriers. The results presented in
Figure 10 show that runtime optimizations do not degrade single-
thread performance, except for kmeans and yada. For kmeans,
this was due to the lack of barrier elision opportunities (Figure 8).
Since there was no barrier elision opportunity, runtime checks for

Baseline | Tree | Array | Filtering | Compiler
Bayes 0.95 | 0.86 1.2 0.94 0.67
Genome 0.05 0 0 0 0
Intruder 0.78 | 0.79 | 0.78 0.78 0.78
Kmeans High 1.6 1.6 1.6 1.6 1.6
Kmeans Low 0.66 | 0.67 0.68 0.65 0.67
Labyrinth 0.18 | 0.17 | 0.17 0.17 0.17
Ssca2 0 0 0 0 0
Vacation High 0.28 | 0.01 0.01 0.01 0.02
Vacation Low 0.24 0 0 0.01 0.01
Yada 1.7 1.6 1.7 1.6 1.6

Table 1: Abort-to-commit ratio at 16 threads

transaction-local accesses only added overheads, without benefits.
Because the number of barriers is very high for kmeans, the over-
head was significant. For yada, most of the redundant barriers
were already caught by cheap write-after-write checks in the base-
line system. Because of this, our runtime optimizations did not
improve performance, but added overheads and degraded perfor-
mance. It is worth noting that when we disabled runtime optimiza-
tions for read and transaction-local stack accesses, the overhead of
our runtime checks was reduced significantly. The compiler opti-
mization, on the other hand, did not cause any performance degra-
dation, as expected, because it did not introduce any runtime over-
heads.

We repeated the same experiments at 16 threads. The perfor-
mance for some of the benchmarks showed great fluctuations at 16
threads despite us repeating the experiments multiple times for each
data point. The fluctuations were mostly caused by contention and
the simple exponential-back-off contention manager that we used.
The relative standard deviation for all benchmarks at 16 threads for
5 repeated runs is shown in Table 2. Figure 11(a) shows the per-
formance of vacat ion improved by 14% for the high-contention
configuration and 18% for the low-contention configuration. The
reasons for these improvements are: (1) a relatively high number
of barrier elisions (Figure 9) and (2) the reduction of false conflicts
(Table 1). The figure also shows that our compiler optimization,
although very simple, performed close to or better than runtime op-

Rd+Wr+Stack+Heap N Wr+Stack+Heap # Wr+Heap N Compiler

6.00%

4.00%

2.00%

-2.00%

4.00%s

-6.00%

Performance Improvement

-8.00%

N
2
g
%
g
g
%

-10.00%
-28.54%

Figure 10: Performance improvement from runtime and com-
piler optimizations at single thread. Different configurations of
runtime were tried and measured.

Baseline | Tree | Array | Filtering | Compiler
Bayes 35 29 10 31 15
Genome 4.8 3.0 1.8 1.1 1.5
Intruder 1.5 | 0.95 1.3 0.98 1.3
Kmeans High 8.5 10 8.4 9.2 7.0
Kmeans Low 28 23 27 13 19
Labyrinth 5.7 18 15 11 12
Ssca2 1.8 1.1 0.96 0.36 1.4
Vacation High 1.0 | 0.33 0.89 0.51 0.78
Vacation Low 1.2 | 0.88 1.9 0.69 14
Yada 22 1 1.9 0.43 29

Table 2: Percent relative standard deviation at 16 threads(%)

timizations in almost all cases. However, other benchmarks were
indifferent to the optimizations, given the variance we saw in our
measurements.

Figure 11(b) compares three different implementations of the
runtime optimization and the compiler optimization. In these
experiments, we ran runtime checks only in write barriers and
only for transaction-local heap accesses. The figure shows that,
while all three runtime techniques resulted in comparable per-
formance improvements, tree and array implementations per-
formed slightly better than the £ilter, due to their lower costs.

S. RELATED WORK

Improving STM performance by reducing cost of read/write bar-
riers or eliminating unnecessary barriers completely has been previ-
ously done in contexts of both managed and unmanaged languages.

For unmanaged languages (C/C++), data partitioning is used
in [15] to fine-tune the STM algorithm for different parts of
program data, based on runtime workload characteristics. Spe-
cial types of data partitions are thread-local and transaction-local,
which correspond to thread-local and transaction-local heap in our
system. These partition types also use the same optimization tech-
niques. However, the approach in [15] relies on compiler data
structure analysis (DSA) and does not account for transactional
stack accesses. In [14], the burden of eliminating unnecessary bar-

riers is placed on the programmer who can annotate certain func-
tions as tm_pure, thus avoiding all instrumentation inside these
functions. Also, [14] introduces STM barrier optimizations that
allow the underlying STM runtime to invoke specialized versions
of STM barriers for memory locations that have already been ac-
cessed by the same transaction. Some STM barriers can effectively
be eliminated this way (read-after-write access for STMs that use
update-in-place, for example). While barrier optimizations, simi-
larly to optimizations proposed in this paper, aim to reduce STM
barrier costs, these two techniques are orthogonal.

Performing compiler analysis that eliminates unnecessary STM
barriers (or object opening for read or write) in managed languages,
like Java, is simpler and can be more precise, due to restrictions
that these languages impose on data pointers (references). In [1],
authors describe both optimizations similar to barrier optimizations
in [14] and elimination of transactional operations for transaction-
local objects in context of a Java system. Dataflow analysis of
Java programs is used in [7] to determine when the transactional
accesses can safely be replaced with non-transactional ones. The
system described in [8] uses flow-sensitive inter-procedural com-
piler analysis and runtime log filtering to identify accesses to
transaction-local heap objects. This analysis is used to eliminate
undo-logging of accessed fields, thus improving performance. Dy-
namic escape analysis and static not-accessed-in-transaction anal-
ysis are used in [18] to eliminate non-transactional barriers used to
enforce isolation and consistent ordering between transactional and
non-transactional accesses in a Java STM system.

6. CONCLUSIONS AND FUTURE WORK

We identified captured memory (transaction-local memory) as
a major source of compiler over-instrumentation, one of the per-
formance bottlenecks identified in our previous work [19]. We
proposed and implemented runtime and compiler optimizations to
elide STM barriers for captured memory. Our experimental results
showed such optimizations achieved as high as 18% performance
improvement for programs in the STAMP 0.9.9 benchmark suite
at 16 threads. This suggested that while analyzing and optimizing
performance of an STM system, we should look beyond traditional
compiler and runtime optimizations, take into consideration the na-
ture of a transactional system, and take advantage of the special
properties of transactions in order to optimize their performance.

Directions for future work include designing and implementing
compiler analysis to identify memory accesses that definitely re-
quire STM barriers and avoid runtime checks trying to elide them.
Also in general, understanding and optimizing STM performance
requires better understanding of contention and improving con-
tention management.

Acknowledgments

We are grateful to Xinmin Tian, Ravi Narayanaswamy, Sergey
Kozhukow, and Serguei Preis for their help with implementation
of the compiler optimization and to anonymous reviewers for their
helpful comments.

7. REFERENCES
[1] Ali-Reza Adl-Tabatabai, Brian T. Lewis, Vijay S. Menon,

Brian R. Murphy, Bratin Saha, and Tatiana Shpeisman.
Compiler and runtime support for efficient software
transactional memory. In PLDI 2006.

[2] Emery D. Berger, Kathryn S. McKinley, Robert D. Blumofe,
and Paul R. Wilson. Hoard: a scalable memory allocator for
multithreaded applications. SIGPLAN Not., 35(11):117-128,
2000.

Rd+Wr+Stack+Heap N Wr+Stack+Heap & Wr+Heap N Compiler

20.00%

15.00%

10.00% -

5.00% -

0.00%

Performance Improvement

-5.00% _

Performance Improvement

Tree N Array H Filter @ Compiler

20.00%

\
15.00% §
\
\
1) 2 §
10.00% o N
N N
N \
N \
N N
5.00% §§/ §
\ \
N N\
N N
0.00% é§ /§
-5.00%
> & > S
¢ & 3 NN > Y &
Q)‘Z;\ 000 \&b SERC I P ARG
F & & S S &
P &N U
R &

(a) Using different configurations of runtime (using tree of memory (b) Using different data structures for runtime optimizations and
ranges for heap checks) and compiler optimizations

(3]

(4]

(5]

(6]

(7]

(8]
(9]

[10]

[11]

[12]

compiler optimization

Figure 11: Performance improvement from runtime and compiler optimizations at 16 threads

Chi Cao Minh, JaeWoong Chung, Christos Kozyrakis, and
Kunle Olukotun. STAMP: Stanford transactional
applications for multi-processing. In ZISWC, 2008.
Jong-Deok Choi, Manish Gupta, Mauricio J. Serrano,
Vugranam C. Sreedhar, and Samuel P. Midkiff. Escape
analysis for Java. In OOPSLA 1999.

Luke Dalessandro, Virendra J. Marathe, Michael F. Spear,
and Michael L. Scott. Capabilities and limitations of
library-based software transactional memory in C++. In
TRANSACT 2007.

Dave Dice, Ori Shalev, and Nir Shavit. Transactional locking
II. In DISC 2006.

Guy Eddon and Maurice Herlihy. Language support and
compiler optimizations for STM and transactional boosting.
In ICDCIT, pages 209-224, 2007.

Timothy Harris, Mark Plesko, Avraham Shinnar, and David
Tarditi. Optimizing memory transactions. In PLDI 2006.
Maurice Herlihy, Victor Luchangco, Mark Moir, and III
William N. Scherer. Software transactional memory for
dynamic-sized data structures. In PODC 2003.

Maurice Herlihy and J. Eliot B. Moss. Transactional
memory: architectural support for lock-free data structures.
In ISCA 1993.

Richard L. Hudson, Bratin Saha, Ali-Reza Adl-Tabatabai,
and Benjamin C. Hertzberg. McRT-Malloc: A scalable
transactional memory allocator. In ZSMM 2006.

Donald E. Knuth. Art of Computer Programming, Volume 1:
Fundamental Algorithms (3rd Edition). Addison-Wesley
Professional, July 1997.

[13] Yosef Lev, Mark Moir, and Dan Nussbaum. PhTM: Phased

transactional memory. In TRANSACT 2007.

[14] Yang Ni, Adam Welc, Ali-Reza Adl-Tabatabai, Moshe Bach,

Sion Berkowits, James Cownie, Robert Geva, Sergey
Kozhukow, Ravi Narayanaswamy, Jeffrey Olivier, Serguei
Preis, Bratin Saha, Ady Tal, and Xinmin Tian. Design and
implementation of transactional constructs for C/C++. In
OOPSLA ’08: Proceedings of the 23rd ACM SIGPLAN
conference on Object oriented programming systems
languages and applications, pages 195-212, New York, NY,
USA, 2008. ACM.

[15] Torvald Riegel, Christof Fetzer, and Pascal Felber.

Automatic data partitioning in software transactional
memories. In 20th ACM Symposium on Parallelism in
Algorithms and Architectures (SPAA), June 2008.

[16] Bratin Saha, Ali-Reza Adl-Tabatabai, Rick Hudson, Chi Cao

Minh, and Benjamin Hertzberg. McRT-STM: A high
performance software transactional memory system for a
multi-core runtime. In PPoPP 2006.

[17] Bratin Saha, Ali-Reza Adl-Tabatabai, and Quinn Jacobson.

Architectural support for software transactional memory. In
MICRO 2006.

[18] Tatiana Shpeisman, Vijay Menon, Ali-Reza Adl-Tabatabai,

Steven Balensiefer, Dan Grossman, Richard L. Hudson,
Katherine F. Moore, and Saha Bratin. Enforcing isolation
and ordering in STM. In PLDI 2007.

[19] Richard M. Yoo, Yang Ni, Adam Welc, Bratin Saha,

Ali-Reza Adl-Tabatabai, and Hsien-Hsin S. Lee. Kicking the
tires of software transactional memory: Why the going gets
tough. In SPAA 2008.

