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Abstract 1 Introduction
This paper introduces a storage format for sparse matrices, calledWhen multiplying a large x n sparse matriXA havingnnznonze-
compressed sparse blocks (CSB), which allows bothAx and ATx ros by a densa-vectorx, the memory bandwidth for reading
to be computed efficiently in parallel, whefeis ann x n sparse can limit overall performance. Consequently, most algorithms to
matrix with nnz> n nonzeros and is a dense-vector. Our algo- computeAx storeA in a compressed format. One simple “tuple”
rithms use®@(nnz work (serial running time) an®(,/nlgn) span representation involves storing each nonzer@afs a triple con-
(critical-path length), yielding a parallelism @(nnz/+/nlgn), sisting of its row index, its column index, and the nonzero value

which is amply high for virtually any large matrix. The storage itself. This representation, however, requires storingZrow and
requirement for CSB is esssentially the same as that for the more-column indices, in addition to the nonzeros. The current standard
standard compressed-sparse-rows (CSR) format, for which com-storage format for sparse matrices in scientific computaogy-
puting Axin parallel is easy buA"x is difficult. Benchmark results pressed sparse rows (CSR) [32], is more efficient, because it stores

indicate that on one processor, the CSB algorithm#foand AT x only n+ nnzindices or pointers. This reduction in storage of CSR
run just as fast as the CSR algorithm fax, but the CSB algo- compared with the tuple representation tends to result in faster se-
rithms also scale up linearly with processors until limited by off- rial algorithms.

chip memory bandwidth. In the domain of parallel algorithms, however, CSR has its lim-

itations. Although CSR lends itself to a simple parallel algorithm
i . . for computing the matrix-vector produétx, this storage format

Categories and Subject Descriptors does not admit an efficient parallel algorithm for computing the
productATx, whereAT denotes the transpose of the mathix—
or equivalently, for computing the productA of a row vectorx”
by A. AIthough one could useompressed sparse columns (CSC)
to computeA' x, many applications, including iterative linear sys-
tem solvers such as biconjugate gradients and quasi-minimal resid-
ual [32], require botlAxandA'x. One could transpogkeexplicitly,

F.2.1 [Analysis of Algorithms and Problem Complexity]: Nu-
merical Algorithms and Problemseemputations on matrice&.4
[Mathematics of Computing]: Mathematical Software-parallel
and vector implementations

General Terms but computing the transpose for either CSR or CSC formats is ex-
pensive. Moreover, since matrix-vector multiplication for sparse
Algorithms, Design, Experimentation, Performance, Theory matrices is generally limited by memory bandwidth, it is desirable

to find a storage format for which botxandATx can be computed

in parallel without performing more thamzfetches of nonzeros
Keywords from the memory to compute either product.

This paper presents a new storage format catiemipressed

Compressed sparse blocks, compressed sparse columns, COMgyarep pocks (CSB) for representing sparse matrices. Like CSR
pressed sparse rows, matrix transpose, matrix-vector multiplica- and CSC, the CSB format requires omiy- nnzwords of storage
tion, multithreaded algorithm, parallelism, span, sparse matrix, for indices. Because CSB does not favor rows over columns or vice
storage format, work. versa, it admits efficient parallel algorithms for computing eitver

This work was supported in part by the National Science Fatiod or ATx, as We_” as for computingxwhenA is symmetric and only
under Grants 0540248, 0615215, 0712243, 0822896, and 830a8d by half the matrix is actually stored.
MIT Lincoln Laboratory under contract 7000012980. Previous work on parallel sparse matrix-vector multiplication

has focused on reducing communication volume in a distributed-
memory setting, often by using graph or hypergraph partitioning

techniques to find good data distributions for particular matrices
([7,38], for example). Good partitions generally exist for matrices

whose structures arise from numerical discretizations of partial dif-
ferential equations in two or three spatial dimensions. Our work, by
contrast, is motivated by multicore and manycore architectures, in
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Figure 1: Average performance dix andATx operations on 13 different
matrices from our benchmark test suite. CSpMV and CSBSpMV_T
use compressed sparse blocks to perfésandATx, respectively. CSR
SpMV (Serial) and CSRSpMV_T (Serial) use OSKI [39] and compressed
sparse rows without any matrix-specific optimizations. $tgy=Ax) and
Star-P (y'=x’A) use Star-P [34], a parallel code based on CSRe ex-
periments were run on a ccNUMA architecture powered by AMDeBgpt
8214 (Santa Rosa) processors.

which parallelism and memory bandwidth are key resources. Our
algorithms are efficient in these measures for matrices with arbi-
trary nonzero structure.

Figure 1 presents an overall summary of achieved performance.

The serial CSR implementation uses plain OSKI [39] without any
matrix-specific optimizations. The graph shows the average perfor-
mance over all our test matrices except for the largest, which failed
to run on Star-P [34] due to memory constraints. The performance
is measured in Mflops (Millions of FLoating-point OPerationS) per
second. BothAx and A'x take 2nnzflops. To measure perfor-
mance, we divide this value by the time it takes for the computation
to complete. Section 7 provides detailed performance results.

The remainder of this paper is organized as follows. Section 2
discusses the limitations of the CSR/CSC formats for parallelizing
Ax andATx calculations. Section 3 describes the CSB format for

sparse matrices. Section 4 presents the algorithms for computing

Ax andATx using the CSB format, and Section 5 provides a theo-

CSR_SPMV (A, X.Y)

n <« A.rows
fori«Oton—1in parallel
doyfi]—0
for k«— A.row_ptr[i] to A.row_ptr[i+1] — 1
do y[i] < y[i] +A.vallK] - x]A. coLind[k]]
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Figure 2: Parallel procedure for computing— Ax, where then x n matrix
Alis stored in CSR format.

is, if val[k] stores matrix elemera;, thencolind[k] = j.

The compressed sparse column (CSC) format is analogous to
CSR, except that the nonzeros of each column, instead of row, are
stored in contiguous memory locations. In other words, the CSC
format forA is obtained by storing' in CSR format.

The earliest written description of CSR that we have been able
to divine from the literature is an unnamed “scheme” presented in
Table 1 of the 1967 article [36] by Tinney and Walker, although
in 1963 Sato and Tinney [33] allude to what is probably CSR.
Markowitz’s seminal paper [28] on sparse Gaussian elimination
does not discuss data structures, but it is likely that Markowitz used
such a format as well. CSR and CSC have since become ubiquitous
in sparse matrix computation [13,16,17,21,23, 32].

The following lemma states the well-known bound on space used
by the index data in the CSR format (and hence the CSC format as
well). By index data, we mean all data other than the nonzeros —
that is, therow_ptr andcol_ind arrays.

Lemmal. The CSR format useslgnnz+nnzgn bits of index
data for an nx n matrix.

For a CSR matripA, computingy < Axin parallel is straightfor-
ward, as shown in Figure 2. Procedure CSRMV in the figure
computes each element of the output array in parallel, and it does
not suffer from race conditions, because each parallel iteration
writes to a single location[i] which is not updated by any other
iteration.

We shall measure the complexity of this code, and other codes in
this paper, in terms aofiork andspan [10, Ch. 27]:

e Thework, denoted by, is the running time on 1 processor.

¢ Thespan,! denoted by, is running time on an infinite num-

ber of processors.

retical analysis of their parallel performance. Section 6 describes The parallelism of the algorithm isT; /T, which corresponds to
the experimental setup we used, and Section 7 presents the resultshe maximum possible speedup on any number of processors. Gen-

Section 8 offers some concluding remarks.

2 Conventional storage formats

erally, if a machine has somewhat fewer processors than the paral-
lelism of an application, a good scheduler should be able to achieve
linear speedup. Thus, for a fixed amount of work, our goal is to

achieve a sufficiently small span so that the parallelism exceeds the

This section describes the CSR and CSC sparse-matrix storage fornUmber of processors by a reasonable margin.

mats and explores their limitations when it comes to computing
bothAxandA'x in parallel. We review the work/span formulation
of parallelism and show that performig with CSR (or equiva-
lently ATx with CSC) yields ample parallelism. We consider vari-
ous strategies for performing’x in parallel with CSR (or equiva-
lently Axwith CSC) and why they are problematic.

The work of CSR SPMV is ©(nnz), assuming, as we shall, that
nnz> n, because the body of the outer loop starting in line 2 ex-
ecutes fom iterations, and the body of the inner loop starting in
line 4 executes for the number of nonzeros initheow, for a total
of nnztimes.

The span of CSRSPMV depends on the maximum numbar

The compressed sparse row (CSR) format stores the nonzero£f nonzeros in any row of the matri&, since that number deter-
(and ideally only the nonzeros) of each matrix row in consecutive Mines the worst-case time of any iteration of the loop in line 4.

memory locations, and it stores an index to the first stored ele-
ment of each row. In one popular variant [14], CSR maintains one
floating-point arrayvalinng and two integer arrays;ol_ind[nnZ
androw_ptr[n] to store the matriA = (ajj). Therow_ptr array
stores the index of each row iral. That is, ifvallk] stores matrix
elementa;j, thenrow_ptr(i] < k < row_ptr[i +1]. ThecolL ind ar-

ray stores the column indices of the elements invilearray. That

Then iterations of the parallel loop in line 2 contribu@lgn) to
the span, assuming that loops are implemented as binary recursion.
Thus, the total span i®(nr+Ign).

The parallelism is therefor®(nnz/(nr+Ign)). In many com-
mon situations, we havenz= O(n), which we will assume for
estimation purposes. The maximum numbepf nonzeros in any

1The literature also uses the terdepth [3] andcritical-path length [4].



CSR_SPMV_T(A,X,y)

n«— A.cols
fori<—Oton—-1
doyfi]—0
fori<—Oton—-1
do for k«— A.row_ptrli] to A.row_ptr[i +1] — 1
do y[A. colind[K]] < y[A. colind[K]] + A. val[k] - xi]

Figure 3: Serial procedure for computing— ATx, where then x n matrix
Alis stored in CSR format.

row can vary considerably, however, from a constant, if all rows
have an average number of nonzerog),ti the matrix has a dense
row. If nr = 0O(1), then the parallelism i®(nnz/lgn), which is
quite high for a matrix with a billion nonzeros. In particular, if we
ignore constants for the purpose of making a ballpark estimate, we
havennz/Ign= 10°/(Ig10°) > 3x 107, which is much larger than
any number of processors one is likely to encounter in the near fu-
ture. If nr = ©(n), however, as is the case when there is even a
single dense row, we have parallelidinnz/n) = ©(1), which
limits scalability dramatically. Fortunately, we can parallelize the
inner loop (line 4) using divide-and-conquer recursion to compute
the sparse inner product in(fy) span without affecting the asymp-
totic work, thereby achieving parallelis®(nnz/Ign) in all cases.

ComputingATx serially can be accomplished by simply inter-
changing the row and column indices [15], yielding the pseudocode
shown in Figure 3. The work of procedure CS®MV_T is
©(nny, the same as CSFBPMV.

Parallelizing CSRSPMV _T is not straightforward, however.
We shall review several strategies to see why it is problematic.

One ideais to parallelize the loops in lines 2 and 5, but this strat-
egy yields minimal scalability. First, the span of the procedure is
O(n), due to the loop in line 4. Thus, the parallelism can be at
mostO(nnz/n), which is a small constant in most common situ-
ations. Second, in any practical system, the communication and
synchronization overhead for executing a small loop in parallel is
much larger than the execution time of the few operations executed
in line 6.

Another idea is to execute the loop in line 4 in parallel.
Unfortunately, this strategy introduces race conditions in the
read/modify/write toy[A. col_ind[K]] in line 62 These races can
be addressed in two ways, neither of which is satisfactory.

The first solution involves locking columeol_ind[k] or using

some other form of atomic update.This solution is unsatisfac-

explicitly and then use CSESPMV. Unfortunately, parallel trans-
position of a sparse matrix in CSR format is costly and encounters
exactly the same problems we are trying to avoid. Moreover, ev-
ery element is accessed at least twice: once for the transpose, and
once for the multiplication. Since the calculation of a matrix-vector
product tends to be memory-bandwidth limited, this strategy is gen-
erally inferior to any strategy that accesses each element only once.

Finally, of course, we could store the matAX in CSR format,
that is, storingA in CSC format, but then computingx becomes
difficult.

To close this section, we should mention that if the mafriis
symmetric, so that only about half the nonzeros need be stored —
for example, those on or above the diagonal — then computing
Axin parallel for CSR is also problematic. For this example, the
elements below the diagonal are visited in an inconvenient order,
as if they were stored in CSC format.

3 The CSB storage format

This section describes the CSB storage format for sparse matrices
and shows that it uses the same amount of storage space as the
CSR and CSC formats. We also compare CSB to other blocking
schemes.

For a givenblock-size parameter 3, CSB partitions then x n

matrix A into n?/B2 equal-sized® x B squareblocks®

Ago Ao1 Aon/p-1
A10 A1l ALn/p-1
A= . . . )
Anp-10 Anp-11 An/-1n/p-1

where the blockA;j is the B x B submatrix ofA containing el-
ements falling in rowsB,ip+1,...,(i+ 1) —1 and columns
iB,iB+1,...,(j+1)B—1 of A. For simplicity of presentation,
we shall assume thfitis an exact power of 2 and that it divides
relaxing these assumptions is straightforward.

Many or most of the individual blocka;j arehypersparse [6],
meaning that the ratio of nonzeros to matrix dimension is asymp-
totically 0. For example, iB = /n andnnz= cn, the average block
has dimension/n and onlyc nonzeros. The space to store a block
should therefore depend only on its nonzero count, not on its di-
mension.

CSB represents a blogk; by compactly storing a triple for each
nonzero, associating with the nonzero data element a row and col-
umn index. In contrast to the column index stored for each nonzero

tory because of the high overhead of the lock compared to the costin CSR, the row and column indices lie within the subma#ix,

of the update. Moreover, i\ contains a dense column, then the
contention on the lock i®(n), which completely destroys any par-
allelism in the common case whamaz= ©(n).

The second solution involves splitting the output aryainto
multiple arraysyp in a way that avoids races, and then accumu-
latingy < Zpyp at the end of the computation. For example, in a
system withP processors (or threads), one could postulate that pro-
cessomp only operates on array, thereby avoiding any races. This
solution is unsatisfactory because the work beco®@sz+Pn),
where the last term comes from the need to initialize and accumu-
late P (dense) lengtimarrays. Thus, the parallel execution time is
O((nnz+Pn)/P) = Q(n) no matter how many processors are avail-
able.

A third idea for parallelizingATx is to compute the transpose

2In fact, if nnz> n, then the “pigeonhole principle” guarantees that the
program has at least one race condition.

3No mainstream hardware supports atomic update of floatingtpoi
quantities, however.

and hence require fewer bits. In particularBit= \/n, then each
index intoAjj requires only half the bits of an index info Since
these blocks are stored contiguously in memory, CSB uses an aux-
iliary array of pointers to locate the beginning of each block.

More specificallyy, CSB maintains a floating-point array
vallnng, and three integer arrayew_ind[nnZ, col_ind[nnZ, and
blk_ptr[n?/B?]. We describe each of these arrays in turn.

Theval array stores all the nonzeros of the matrix and is anal-
ogous to CSR’s array of the same name. The difference is that
CSR storesows contiguously, whereas CSB storbbcks con-
tiguously. Although each block must be contiguous, the ordering
among blocks is flexible. Let(i, j) be the bijection from pairs of

block indices to integers in the rangel0...,n?/p2 — 1 that de-
scribes the ordering among blocks. Thatfi§, j) < f(i’, j’) if and

4The CSB format may be easily extended to nonsqnaren matrices.

In this case, the blocks remain as squzreB matrices, and there anen/ 32
blocks.



only if Ajj appears beforéy j in val. We discuss choices of order-
ing later in this section.

The row_ind and col_ind arrays store the row and column in-
dices, respectively, of the elements in treé array. These indices
are relative to the block containing the particular element, not the
entire matrix, and hence they range from @te1. Thatis, ifvallk]
stores the matrix elemeaf . jp..c, which is located in theth row
andcth column of the bloctj, thenrow_ind = r andcol_ind = c.

stores a sparse collection of dense blocks, whereas CSB stores a
dense collection of sparse blocks. We conjecture that it would be
advantageous to apply BCSR-style register blocking to each indi-
vidual sparse block of CSB.

Nishtalaet al.[30] have proposed a data structure similar to CSB
in the context of cache blocking. Our work differs from theirs in
two ways. First, CSB is symmetric without favoring rows over
columns. Second, our algorithms and analysis for CSB are de-

As a practical matter, we can pack a corresponding pair of elementssigned for parallelism instead of cache performance. As shown

of row_ind andcol_ind into a single integer word of 2§ bits so
that they make a single array of lengthz which is comparable to
the storage needed by CSR for ttad_ind array.

Theblk_ptr array stores the index of each block in tred array,
which is analogous to thew_ptr array for CSR. Ifvallk] stores
a matrix element falling in blockj, thenblk_ptr[f(i, j)] < k <
blk_ptr[f(i, j) +1].

The following lemma states the storage used for indices in the
CSB format.

Lemma?2. The CSB format useg®?/B?)Ignnz+2nnzgp bits of
index data.

Proof.  Since theval array containginz elements, referencing
an element requires tmzbits, and hence thblk_ptr array uses
(n?/B?)lgnnzbits of storage.

For each element inal, we use I@ bits to represent the row
index and I bits to represent the column index, requiring a total
of nnzlg B bits for each ofow_ind andcol_ind. Adding the space
used by all three indexing arrays completes the proof. |

in Section 5, CSB supports ample parallelism for algorithms com-
putingAxandATx, even on sparse and irregular matrices.

Blocking is also used in dense matrices. The Morton-hybrid lay-
out [1,27], for example, uses a parameter equivalent to our param
eterf3 for selecting the block size. Whereas in CSB we store ele-
ments in a Morton ordering within blocks and an arbitrary ordering
among blocks, the Morton-hybrid layout stores elements in row-
major order within blocks and a Morton ordering among blocks.
The Morton-hybrid layout is designed to take advantage of hard-
ware and compiler optimizations (within a block) while still ex-
ploiting the cache benefits of a recursive layout. Typically the block
size is chosen to be 3232, which is significantly smaller than the
O(y/n) block size we propose for CSB. The Morton-hybrid lay-
out, however, considers only dense matrices, for which designing
a matrix-vector multiplication algorithm with good parallelism is
significantly easier.

4 Matrix-vector multiplication using CSB

To better understand the storage requirements of CSB, we This section describes a parallel algorithm for computing the

present the following corollary fg8 = y/n. In this case, both CSR
(Lemma 1) and CSB use the same storage.

Coroallary 3. The CSB format usedginnz+ nnzign bits of index
data wherp3 = /n. O

sparse-matrix dense-vector prodyct- Ax, whereA is stored in
CSB format. This algorithm can be used equally well for comput-
ing y «— ATx by switching the roles of row and column. We first
give an overview of the algorithm and then describe it in detail.

At a high level, the CSBSPMV multiplication algorithm sim-
ply multiplies each “blockrow” by the vector in parallel, where

Thus far, we have not addressed the ordering of elements within the ith blockrow is the row of blocks(AjoAi1---A; n/p—1). Since

each block or the ordering of blocks. Within a block, we use a Z-
Morton ordering [29], storing first all those elements in the top-left
quadrant, then the top-right, bottom-left, and finally bottom-right

guadrants, using the same layout recursively within each quadrant.

each blockrow multiplication writes to a different portion of the
output vector, this part of the algorithm contains no races due to
write conflicts.

If the nonzeros were guaranteed to be distributed evenly among

In fact, these quadrants may be stored in any order, but the regursiv block rows, then the simple blockrow parallelism would yield an
ordering is necessary for our algorithm to achieve good parallelism efficient algorithm wittn/B-way parallelism by simply performing

within a block.
The choice of storing the nonzeros within blocks in a recursive
layout is opposite to the common wisdom for storing dense matri-

ces [18]. Although most compilers and architectures favor conven-

tional row/column ordering for optimal prefetching, the choice of
layout within the block becomes less significant for sparse blocks

a serial multiplication for each blockrow. One cannot, in general,
guarantee that distribution of nonzeros will be so nice, however. In
fact, sparse matrices in practice often include at least one dense row
containing roughlyn nonzeros, whereas the number of nonzeros
is only nnz= cn for some small constard Thus, performing a
serial multiplication for each blockrow yields no better ttaway

as they already do not take full advantage of such features. More parallelism.

importantly, a recursive ordering allows us to efficiently determine
the four quadrants of a block using binary search, which is crucial
for parallelizing individual blocks.

Our algorithm and analysis do not, however, require any particu-
lar ordering among blocks. A Z-Morton ordering (or any recursive

To make the algorithm robust to matrices of arbitrary nonzero
structure, we must parallelize the blockrow multiplication when a
blockrow contains “too many” nonzeros. This level of paralleliza-
tion requires care to avoid races, however, because two blocks in
the same blockrow write to the same region within the output vec-

ordering) seems desirable as it should get better performance intor. Specifically, when a blockrow contaifX() nonzeros, we re-

practice by providing spatial locality, and it matches the ordering
within a block. Computing the functiofi(i, j ), however, is simpler
for a row-major or column-major ordering among blocks.

Comparison with other blocking methods

A blocked variant of CSR, calleBCSR, has been used for im-
proving register reuse [24]. In BCSR, the sparse matrix is divided

cursively divide it “in half,” yielding two subblockrows, each con-
taining roughly half the nonzeros. Although each of these sub-
blockrows can be multiplied in parallel, they may need to write to
the same region of the output vector. To avoid the races that might
arise due to write conflicts between the subblockrows, we allocate a
temporary vector to store the result of one of the subblockrows and
allow the other subblockrow to use the output vector. After both
subblockrow multiplications complete, we serially add the tempo-

into small dense blocks that are stored in consecutive memory loca-rary vector into the output vector.

tions. The pointers are maintained to the first block on each row of

To facilitate fast subblockrow divisions, we first partition the

blocks. BCSR storage is converse to CSB storage, because BCSRy|ockrow into “chunks” of consecutive blocks, each containing at



CSB_SPMV (A,X,Y)

1 fori«<Oton/B—1inparallel /I For each blockrow.

2 do Initialize a dynamic arrayR;
3 R[0] <0
4 count— 0 /I Count nonzeroes in chunk.
5 for j«—Oton/B—2
6 do count— count+nnzZAjj)
7 if count+nnzA ;1) > O(B)
8 then // End the chunk, since the next block
/I makes it too large.
9 append toR;  // Last block in chunk.
10 count— 0
11 append/B—1toR
12 CSB.BLOCKROWV (Ai, R, x, Y[iB..(Ii+1)B—1])

Figure 4: Pseudocode for the matrix-vector multiplicatign— Ax. The
procedure CSBBLOCKROWV (pseudocode for which can be found in
Figure 5) as called here multiplies the blockrow by the vegtand writes

the output into the appropriate region of the output vegtorThe nota-
tion x[a..b] means the subarray afstarting at indexa and ending at in-
dexb. The functionnnzA;j) is a shorthand foA. blk_ptr[f(i, ) + 1] —

A blk_ptr[f(i, j)], which calculates the number of nonzeros in the biggk

For conciseness, we have overloaded@ip) notation (in line 7) to mean

“a constant timeg§”; any constant suffices for the analysis, and we use the
constant 3 in our implementation.

mostO(B) nonzeros (when possible) a3) nonzeros on aver-
age. The lower bound d®(f3) will allow us to amortize the cost
of writing to the lengthB temporary vector against the nonzeros in
the chunk. By dividing a blockrow “in half,” we mean assigning to
each subblockrow roughly half the chunks.

Figure 4 gives the top-level algorithm, performing each block-
row vector multiplication in parallel. Thefér ...in parallel do”
construct means that each iteration of itieloop may be executed
in parallel with the others. For each loop iteration, we partition
the blockrow into chunks in lines 2—11 and then call the blockrow
multiplication in line 12. The array stores the indices of the
last block in each chunk; specifically, tkeh chunk, fork > 0, in-
cludes blocksAj g k-1 +1A R k-1 +2 AR [k )- A chunk consists

of either a single block containin@(f3) nonzeros, or it consists of
many blocks containin®(B) nonzeros in total. To compute chunk
boundaries, just iterate over blocks (in lines 5-10) until enough
nonzeros are accrued.

Figure 5 gives the parallel algorithm CSBLoCKkRoOwWV for
multiplying a blockrow by a vector, writing the result into the
lengthf vectory. In lines 22—-29, the algorithm recursively di-

CSB_BLOCKROWV (A/i, R, X,Y)

11 if Rlength=2 /I The subblockrow is a single chunk.
12 then ¢ — R[]+ 1 /I Leftmost block in chunk.
13 r — R[1] /I Rightmost block in chunk.
14 if¢=r

15 then // The chunk is a single (dense) block.
16 start «— A.blk_ptr[f (i, )]

17 end<— A.blk_ptr[f(i,¢)+1] -1

18 CSB_BLOCKV (A, start end 3, x,y)

19 else /I The chunk is sparse.

20 multiplyy < (Ai¢Ai o+1 - - - Ar )x serially

21 return

/I Since the block row is “dense,” split it in half.
mid — [Rlength/2] — 1 /I Divide chunks in half.
/I Calculate the dividing point in the input vectar
xmid«— B- (R[mid] — R[0])
allocate a lengtfi-temporary vectog, initialized to 0
in parallel
do CSB_BLockROWV (Ai,R[0..mid],x[0..xmid—1],y)
do CSB_BLOCKROWV (A, i, Rmid..R.length—1],
x[xmid..x.length—1],z)
28 fork—0topB—1
29  doylk] « y[K + 7K

22

23
24
25
26
27

Figure 5: Pseudocode for the subblockrow vector produet (AigAi r41
---Air)x. Thein parallel do...do... construct indicates that all of thio
code blocks may execute in parallel. The procedure CBBOCKV (pseu-
docode for which can be found in Figure 6) calculates the yebdf the
block and the vector in parallel.

The block-vector multiplication proceeds by recursively dividing
the (sub)blockM into quadrantMgg, M1, M10, andM11, each of
which is conveniently stored contiguously in the Z-Morton-ordered
val, row_ind, andcol_ind arrays between indicetartandend We
perform binary searches to find the appropriate dividing points in
the array in lines 34-36.

To understand the pseudocode, consider the search for the divid-
ing pointsy; betweenMpoMp1 and M1pM11. For any recursively
chosendimx dim matrix M, the column indices and row indices
of all elements have the same leadin@ lglg dim bits. Moreover,
for those elements iMggMo1, the next bit in the row index is a
0, whereas for those in elements MygM11, the next bit in the
row index is 1. The algorithm does a binary search for the point at
which this bit flips. The cases for the dividing point betwéégy
andMpz or M1g andMy; are similar, except that we focus on the
column index instead of the row index.

vides the blockrow such that each half receives roughly the same  After dividing the matrix into quadrants, we execute the matrix
number of chunks. We find the appropriate middles of the chunk products involving matriceMog andM 1 in parallel (lines 37—39),

arrayR and the input vectox in lines 22 and 23, respectively. We
then allocate a lengtf-temporary vector (line 24) and perform
the recursive multiplications on each subblockrow in parallel (lines
25-27), having one of the recursive multiplications write its output

as they do not conflict on any outputs. After completing these prod-
ucts, we execute the other two matrix products in parallel (lines
40-42)° This procedure resembles a standard parallel divide-and-
conquer matrix multiplication, except that our base case of serial

toz When these recursive multiplications complete, we merge the mytiplication starts at a matrix containit@(dim) nonzeros (lines

outputs into the vectoy (lines 28-29).

29-32). Note that although we pass the full lenBtarraysx and

The recursion bottoms out when the blockrow consists of a sin- y 1o each recursive call, the effective length of each array is halved

gle chunk (lines 12-21). If this chunk contains many blocks, it is
guaranteed to contain at ma3{f3) nonzeros, which is sufficiently
sparse to perform the serial multiplication in line 20. If, on the

implicitly by partitioningM into quadrants. Passing the full arrays
is a technical detail required to properly compute array indices, as
the indicesA. row_ind andA. col_ind store offsets within the block.

other hand, the chunk is a single block, it may contain as many as  The CSB SPMV _T algorithm is identical to CSBSPMV, ex-

BZ ~ nnonzeros. A serial multiplication here, therefore, would be
the bottleneck in the algorithm. Instead, we perform the parallel
block-vector multiplication CSBBLocKYV in line 18.

If the blockrow recursion reaches a single block, we perform a
parallel multiplication of the block by the vector, given in Figure 6.

cept that we operate over blockcolumns rather than blockrows.

5The algorithm may instead ddoo andMg in parallel followed byMoy
andMs; in parallel without affecting the performance analysis.serging
the algorithm with two choices may yield better load balance.



CSB_BLOCKV (A, start,end dim, x,y)

/I A.val[start..end is adimx dim matrix M.
28 if end—start < ©(dim)
29 then // Perform the serial computatign— y + Mx.

30 for k — starttoend

31 do y[A.row_ind[K]] < y[A. row_ind[K]]
+A.vallk] - x[A. col_ind[K]]

32 return

33 /I Recurse. Find the indices of the quadrants.

34 binary searcBtart, start+1,...,endfor the smalless,
such thafA.row_ind[sp] & dim/2) # 0

35 binary searchtart, start+1,...,s, — 1 for the smalless;
such tha{A. colind[s;] & dim/2) # 0

36 binary searcky, sy + 1, ...,endfor the smallesss
such tha{A. colind[sz] & dim/2) # 0

37 inparalld

38 do CSB_BLOCKV (A starts; —1,dim/2,x,y) /I Moo.

39 do CSB_BLOCKV(A,s3,enddim/2 x,y) /I M11.
40 inparalle

41 do CSB_BLOCKV(A s, —1,dim/2,x,y) /I Moz.
42 do CSB_BLOCKV(A,sp,53—1,dim/2,x,y) /I M1o.

Figure 6: Pseudocode for the subblock-vector prodpet Mx, whereM

is the list of tuples stored iA. val[start..end, A.row_ind[start..end, and
A.colind[start..end, in recursive Z-Morton order. The & operator is a
bitwise AND of the two operands.

5 Analysis

In this section, we prove that for anx n matrix with nnznonze-
ros, CSB.SPMV operates with workd(nnz) and sparO(,/nlgn)
whenp = \/n, yielding a parallelism of2(nnz/,/nign). We also
provide bounds in terms @ and analyze the space usage.

We begin by analyzing block-vector multiplication.

Lemma4. On a B x B block containing r nonzerosCSB_
BLockV runs with work®(r) and span @p).

Proof. The span for multiplying aimx dim matrix can be
described by the recurren&dim) = 2S(dim/2) + O(lgdim) =

nodes gives total worl®(r). td
The next lemma analyzes blockrow-vector multiplication.

Lemma5. On a blockrow containing /3 blocks and r nonzeros,
CSB_BLOCKROWV runs with work®(r) and span @3Ig(n/B)).

Proof.  Consider a call to CSBBLOCKROWV on a row that is
partitioned intaC chunks, and 1€tV (C) denote the work. The work
per recursive call on a multichunk subblockrow is dominated by
the ©(B) work of initializing a temporary vectaz and adding the
vectorz into the output vectoy. The work for a CSBBLOCK-
ROWV on a single-chunk subblockrow is linear in the number of
nonzeros in the chunk. (We perform linear work either in line 20
orin line 18 — see Lemma 4 for the work of line 18.) We can thus
describe the work by the recurrenggC) < 2W([C/2]) + ©(B)
with a base case of work linear in the nonzeros, which solves to
W(C) =0O(CB+r) for C > 1. WhenC = 1, we havéN(C) = O(r),

as we do not operate on the temporary veetor

To bound work, it remains to bound the maximum number of
chunks in a row. Notice that any two consecutive chunks contain
at leastQ(B) nonzeros. This fact follows from the way chunks are
chosen in lines 2-11: a chunk is terminated only if adding the next
block to the chunk would increase the number of nonzeros to more
than®(B). Thus, a blockrow consists of a single chunk whenever
r = O(B) and at mosO(r/B) chunks whenever = Q(B). Hence,
the total work isO(r).

We can describe the span of CSBLOCKROWV by the recur-
renceS(C) = §([C/2]) + O(B) = O(BIgC) + S(1). The base case
involves either serially multiplying a single chunk containing at
mostO(f3) nonzeros in line 20, which has sp@B), or multiplying
a single block in parallel in line 18, which also has sgif) from
Lemma 4. We have, therefore, a spardgplgC) = O(Blg(n/B)),
sinceC < n/p. U

We are now ready to analyze matrix-vector multiplication itself.

Theorem 6. On an nx n matrix containing nnz nonzero€SB_
SPMV runs with work@(n?/B? + nnz) and span QBlg(n/p) +

n/B).

Proof.  For each blockrow, we ad®(n/B) work and span for
computing the chunks, which arise from a serial scan ofrif&

blocks in the blockrow. Thus, the total work@n?/p?) in addi-

O(dim). The Igdim term represents a loose upper bound on the tion to the work for multiplying the blockrows, which is linear in
cost of the binary searches. In particular, the binary-search costthe number of nonzeros from Lemma 5.

is O(lgz) for a submatrix containing nonzeros, and we have
z < din?, and henc®(lgz) = O(lgdim), for adimx dim matrix.

To calculate the work, consider the degree-4 tree of recursive
procedure calls, and associate with each node the work done by

that procedure call. We say that a node in the tree has hieiffit
corresponds to a2« 2" subblock, i.e., itlim= 2" is the parameter
passed into the corresponding CSB ockV call. Node heights
are integers ranging from O tofg Observe that each heightaode
corresponds to a distincP 2 2" subblock (although subblocks may
overlap for nodes having different heights). A heighieaf node
(serial base case) corresponds to a subblock containing atzrsost
O(2") nonzeros and has work linear in this numaef nonzeros.
Summing across all leaves, therefore, gi@s) work. A heighth

internal node, on the other hand, corresponds to a subblock contain-
ing at least = Q(2") nonzeros (or else it would not recurse further

and be a leaf) and has wofl(Ig2") = O(h) arising from the bi-
nary searches. There can thus be at rixsy2") heighth internal
nodes having total worl((r /2")h). Summing across all heights

gives total work ofy "\ O((r/2Mh) < r S29% o(h/2") = o(r)

The total span i€(lg(n/B)) to parallelize all the rows, plus
O(n/B) per row to partition the row into chunks, plus the
O(Blg(n/B)) span per blockrow from Lemma 5. td

The following corollary gives the work and span bounds when
we choosé to yield the same space for the CSB storage format as
for the CSR or CSC formats.

Corallary 7. On an nx n matrix containing nnz n nonzeros, by
choosingP = ©(y/n), CSB_SPMV runs with work®(nnz and
span d/nlgn), achieving a parallelism o (nnz//nign). I

Since CSB SPMV _T is isomorphic to CSBSPMV, we obtain
the following corollary.

Corallary 8. On an nx n matrix containing nnz n nonzeros, by
“choosing3 = ©(y/n), CSB_SPMV _T runs with work®(nn2 and
span d/nlgn), achieving a parallelism o (nnz//nign). I

The work of our algorithm is dominated by the space of the tem-
porary vectorg, and thus the space usage on an infinite number of
processors matches the work bound. When run on fewer proces-
sors however, the space usage reduces drastically. We can analyze

for internal nodes. Comblnlng the work at mternal nodes and leaf the space in terms of theerialization of the program, which corre-

sponds to the program obtained by removingpatiallel keywords.



Lemma9. On an nx n matrix, by choosin@ = ©(,/n), the seri-
alization of CSB_SPMV requires Q/nlgn) space (not counting
the storage for the matrix itself).

count the nonzeros in a subblockrow more easily when comput-
ing y < Ax. This optimization is not symmetric, but interestingly,
we achieved similar performance when computing ATx, where
we must still aggregate the nonzeros in each block. In fact, in al-
most half the cases, computidgx was faster thax, depending
on the matrix structure.

The Z-Morton ordering on nonzeros in each block is equiva-

Proof. The serialization executes one blockrow multiplication at
a time. There are two space overheads. First, weQ(sg3) =
O(/n) space for the chunk array. Second, we @sspace to
store the temporary vectarfor each outstanding recursive call to  lent to first interleaving the bits abw_ind andcolind, and then
CSB_BLockROWV. Since the recursion depth@Ign), the total sorting the nonzeros using these bit-interleaved values as the keys.
space become3(Blgn) = O(y/nlgn). | Thus, itis tempting to store the index array in a bit-interleaved fash-

A typical work-stealing scheduler executes the program in a ion, thereby simplifying the binary searches in lines 34-36. Con-
depth-first (serial) manner on each processor. When a processoierting to and from bit-interleaved integers, however, is expensive
completes all its work, it “steals” work from a different processor, With current hardware suppdtwhich would be necessary for the
beginning a depth-first execution from some unexecuted parallel Serial base case in lines 29-32. Instead ktheelement of the in-
branch. Although not all work-stealing schedulers are space effi- dex array is the concatenationrofv_ind[k] andcol_ind[k], as indi-
cient, those maintaining tHausy-leaves property [5] (e.g., as used catgd earlier. Thls (_Jle5|gn ch_0|ce c_Jf storing concatenated, |nsteapl of
in the Cilk work-stealing scheduler [4]) are space efficient. The bit-interleaved, indices requires either some care when performing
“busy-leaves” property roughly says that if a procedure has begun the binary search (as presented in Figure 6) or implicitly converting
(but not completed) executing, then there exists a processor cur-from the concatenated to interleaved format when making a binary-

rently working on that procedure or one of its descendants proce- Search comparison. Our preliminary implementation does the lat-
dures. ter, using a C++ function object for comparisons [35]. In practice,

the overhead of performing these conversions is small, since the
number of binary-search steps is small.

Performing the actual address calculation and determining the
pointers tox andy vectors are done by masking and bit-shifting.
The bitmasks are determined dynamically by the CSB constructor
depending on the input matrix and the data type used for storing
matrix indices. Our library allows any data type to be used for
matrix indices and handles any type of matrix dynamically. For
the results presented in Section 7, nonzero values are represented

creasing this threshold by a constant factor reduces the number of2S double-precision floating-point numbers, and indices are repre-
reads and writes to temporaries by the same constant factor. AsSented as 32-bit unsigned integers. Finally, as our library aims to
these temporaries constitute the majority of the work overhead of P€ géneral instead of matrix specific, we did not employ speculative
the algorithm, doubling the threshold nearly halves the overhead. 'oW-level optimizations such as software prefetching, pipelining, or

Increasing the threshold, however, also increases the span by a conMatrix-specific optimizations such as index and/or value compres-
stant factor. and so there is a trade-off. sion [25, 40], but we believe that CSB and our algorithms should

not adversely affect incorporation of these approaches.

Coroallary 10. Suppose that a work-stealing scheduler with the
busy-leaves property schedules an executidb®B_SPMV on an

n x n matrix with the choic@ = \/n. Then, the execution requires
O(P+/nlgn) space.

Proof. Combine Lemma 9 and Theorem 1 from [4]. U

The work overhead of our algorithm may be reduced by increas-
ing the constants in th®(B) threshold in line 7. Specifically, in-

6 Experimental design Choosing the block size B

This section describes our implementation of the CSBVV and We investigated different strategies to choose the block size that
CSB_SPMV_T algorithms, the benchmark matrices we used to achieves the best performance. For the types of loads we ran, we
test the algorithms, the machines on which we ran our tests, andfound that a block size slightly larger tha/n delivers reasonable
the other codes with which we compared our algorithms. performance. Figure 7 shows the effect of different blocksizes on
the performance of thg < Ax operation with the representative
matrix Kkt_power. The closest exact power of 2 & is 1024,
which turns out to be slightly suboptimal. In our experiments, the
We parallelized our code using Cilk++ [9], which is a faithful  overall best performance was achieved wResatisfies the equa-
extension of C++ for multicore and shared-memory parallel pro- tion [Ig/n] <IgB < 3+ [Ig/n].
gramming. Cilk++ is based on the earlier MIT Cilk system [20], Merely settingB to a hard-coded value, however, is not robust
and it employs dynamic load balancing and provably optimal task for various reasons. First, the elements stored in the index ar-
scheduling. The CSB code used for the experiments is freely avail- ray should use the same data type as that used for matrix indices.
able for academic use attp://gauss. cs. ucsh. edu/ ~aydi n/ Specifically, the intege — 1 should fit in 2 bytes so that a con-
sof tware. htnl . catenatedow_ind andcol_ind fit into 4 bytes. Second, the length-
Therow_ind andcolind arrays of CSB, which store the row and 8 regions of the input vector and output vectoy (which are ac-
column indices of each nonzero within a block (i.e., the lower-order cessed when multiplying a single block) should comfortably fit into
bits of the row and column indices within the matA, are imple- L2 cache. Finally, to ensure speedup on matrices with evenly dis-
mented as a singlandex array by concatenating the two values tributed nonzeros, there should be enough parallel slackness for
together. The higher-order bits miw_ind andcol_ind are stored the parallelization across blockrows (i.e., the highest level paral-
only implicitly, and are retrieved by referencing thié_ptr array. lelism). Specifically, whef® grows large, the parallelism is roughly
The CSB blocks themselves are stored in row-major order, while bounded byO(nnz/(Blg(n/B))) (by dividing the work and span
the nonzeros within blocks are in Z-Morton order. The row-major from Theorem 6). Thus, we waminz/(BIg(n/B)) to be “large
ordering among blocks may seem to break the overall symmetry enough,” which means limiting the maximum magnitud¢of

Implementation

of CSB, but in practice it yields efficient handling of block indices
for look-up in A.blk_ptr by permitting an easily computed look-
up function f(i,j). The row-major ordering also allowed us to

We adjusted our CSB constructor, therefore, to automatically
select a reasonable block-size param@er It starts with3 =

6Recent research [31] addresses these conversions.
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Figure 7: The effect of block size paramet@on SpMV performance using
the Kkt_power matrix. For valuef > 32768 and3 < 32, the experiment
failed to finish due to memory limitations. The experiment wasdcmted
on the AMD Opteron.

the output vector for both recursive calls. In other words, when
a blockrow multiplication is scheduled serially, the multiplication
procedure detects this fact and mimics a normal serial execution,
without the use of temporary vectors. Our implementation exploits
an undocumented feature of Cilk++ to test whether the first call has
completed before making the second recursive call, and we allocate
the temporary as appropriate. This test may also be implemented
using Cilk++ reducers [19].

Sparse-matrix test suite

We conducted experiments on a diverse set of sparse matrices
from real applications including circuit simulation, finite-element
computations, linear programming, and web-connectivity analysis.
These matrices not only cover a wide range of applications, but
they also greatly vary in size, density, and structure. The test suite
contains both rectangular and square matrices. Almost half of the
square matrices are asymmetric. Figure 8 summarizes the 14 test
matrices.

Included in Figure 8 is the load imbalance that is likely to oc-
cur for an SpMV algorithm parallelized with respect to columns
(CSC) and blocks (CSB). In the last column, the average (mean)

3+ [lg/n] and keeps decreasing it until the aforementioned con- and the maximum number of nonzeros among columns (first line)
straints are satisfied. Although a research opportunity may exist t0 and blocks (second line) are shown for each matrix. The sparsity
autotune the optimal block size with respect to a specific matrix and of matrices can be quantified by the average number of nonzeros

architecture, in most test matrices, chooging /n degraded per-
formance by at most 10%-15%. The optirfialalue barely shifts

per column, which is equivalent to the mean of CSC. The sparsest
matrix (Rajat31) has.8 nonzeros per column on the average while

along thex-axis when running on different numbers of processors  the densest matrix has about 73 nonzeros per column (Sme3Dc and

and is quite stable overall.

An optimization heuristic for structured matrices

Even though CSBSPMV and CSB_SPMV _T are robust and ex-

Torso). For CSB, the reported mean/max values are obtained by
setting the block dimensidgdito be approximately/n, so that they
are comparable with statistics from CSC.

hibit plenty of parallelism on most matrices, their practical perfor- Architectures and comparisons

mance can be improved on some sparse matrices having regulafye ran our experiments on three multicore superscalar architec-
structure. In particular, a block diagonal matrix with equally sized tyres. Opteron is a ccNUMA architecture powered by AMD
blocks has nonzeros that are evenly distributed across blockrows.opteron 8214 (Santa Rosa) processors clocked2#BRz. Each

In this case, a simple algorithm based on blockrow parallelism ¢ore of Opteron has a private 1 MB L2 cache, and each socket has
would suffice in place of the more complicated recursive method its own integrated memory controller. Although it is an 8-socket
from CSB_BLOCKV. This divide-and-conquer within blockrows  gyal-core system, we only experimented with up to 8 processors.
incurs overhead that might unnecessarily degrade performanceHarpertown is a dual-socket quad-core system running two Intel
Thus, when the nonzeros are evenly distributed across the block-xeon X5460's, each clocked at1® GHz. Each socket has 12 MB
rows, our implementation of the top-level algorithm (given in Fig-  of |2 cache, shared among four cores, and a front-side bus (FSB)
ure 4) calls the serial multiplication in line 12 instead of the CSB  yynning at 1333 MHz. Nehalem is a single-socket quad-core Intel
BLOCKROWV procedure. o _ .. Corei7 920 processor. Like Opteron, Nehalem has an integrated

To see whether a given matrix is amenable to the optimization, memory controller. Each core is clocked 28@ GHz and has a pri-
we apply the following “balance” heuristic. We calculate the imbal- yate 256 KB L2 cache. An 8 MB L3 cache is shared among four
ance among blockrows (or blockcolumns in the casg of ATx) cores.
and apply the optimization only when no blocks have more than  \hjle Opteron has 64 GB of RAM, Harpertown and Nehalem
twice the average number of nonzeros per blockrow. In other paye only 8 GB and 6 GB, respectively, which forced us to exclude
words, if maxnnzA)) < 2-mear{nnzAj)), then the matrixiscon-  our biggest test matrix (Webbase2001) from our runs on Intel ar-
sidered to have balanced blockrows and the optimization is applied. chitectures. We compiled our code usiggg 4. 1 on Opteron and
Of course, this optimization is not the only way to achieve a per- Harpertown and witlycc 4. 3 on Nehalem, all with optimization
formance boost on structured matrices. flags- @ -fno-rtti -fno-exceptions.

To evaluate our code on a single core, we compared its perfor-
mance with “pure” OSKI matrix-vector multiplication [39] running
on one processor of Opteron. We did not enable OSKI’s prepro-
cessing step, which chooses blockings for cache and register usage
that are tuned to a specific matrix. We conjecture that such matrix-
specific tuning techniques can be combined advantageously with
our CSB data structure and parallel algorithms.

To compare with a parallel code, we used the matrix-vector
multiplication of Star-P [34] running on Opteron. Star-P is a
distributed-memory code that uses CSR to represent sparse matri-
ces and distributes matrices to processor memories by equal-sized
blocks of rows.

Optimization of temporary vectors

One of the most significant overheads of our algorithm is the use
of temporary vectors to store intermediate results when paralleliz-
ing a blockrow multiplication in CSBBLoCKRowV. The “bal-

ance” heuristic above is one way of reducing this overhead when
the nonzeros in the matrix are evenly distributed. For arbitrary
matrices, however, we can still reduce the overhead in practice.
In particular, we only need to allocate the temporary veztfin

line 24) if both of the subsequent multiplications (lines 25-27) are
scheduled in parallel. If the first recursive call completes before
the second recursive call begins, then we instead write directly into
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Name Dimensions CSC (mean/ma:
Description Spy Plot Nonzeros CSB (mean/ma
Asic_320k 321K x 321K 60/157K
circuit simulation 1931K 49/23K
Sme3Dc 42K x 42K 733/405
3D structural 3148K 1116/1368
mechanics

Parabolic_fem 525K x 525K 7017
diff-convection 3674K 35/1,534
reaction

Mittelmann 1,468K x 1,961K 2717

LP problem 5382K 20/3713
Rucci 1,977Kx 109K 709/108
lll-conditioned 7791K 94 /36
least-squares

Torso & 116K x 116K 733/ 12K
Finite diff, ) 8,516K 413 /366K
2D model of torso SN

Kkt_power g\\ 2.06M x 2.06M 6.2/90
optimal power flow, 1Z77M 31/1,840
nonlinear opt. [

Rajat31 4.69M x 4.69M 43/12K
circuit simulation 20B1M 39/87K

L door 952K x 952K 446 1 77
structural prob. 429M 491/43872
Bone010 986K x 986K 485/63
3D trabecular bone 485M 515/18670
Grid3D200 8M x 8M 6.97/7
3D 7-point 557M 3.7/9,818
finite-diff mesh

RMat23 8.4M x 8.4M 9.4/703K
Real-world 787M 4.7 12221K
graph model

Cagel5 5.15M x 5.15M 192 /47
DNA electrophoresis M 156/39712
Webbase2001 118Mx 118M 86/816K
Web connectivity 1019M 49/2,375K

Figure 8: Structural information on the sparse matrices used in ourrexpe
iments, ordered by increasing number of nonzeros. The firsinegnices
and Cagel5 are from the University of Florida sparse mattirciion [12].

Grid3D200 is a 7-point finite difference mesh generated utiegMatlab
Mesh Partitioning and Graph Separator Toolbox [22]. The R@ana-
trix [26], which models scale-free graphs, is generated liygusepeated
Kronecker products [2]. We chose parametirs 0.7, B=C=D =0.1

for RMat23 in order to generate skewed matrices. Webbase2@Ddrawl
of the World Wide Web from the year 2001 [8].

MFlops/sec

Figure 9: CSB_SPMV performance on Opteron (smaller matrices).

MFlops/sec

Figure 10: CSB_SPMV _T performance on Opteron (smaller matrices).

7 Experimental results

Figures 9 and 10 show how CSBPMV and CSB.SPMV_T,
respectively, scale for the seven smaller matrices on Opteron, and
Figures 11 and 12 show similar results for the seven larger matrices.
In most cases, the two codes show virtually identical performance,
confirming that the CSB data structure and algorithms are equally
suitable for both operations. In all the parallel scaling graphs, only
the valuesp = 1,2,4, 8 are reported. They should be interpreted as
performance achievable by doubling the number of cores instead

MFlops/sec

Figure 11: CSB_SPMV performance on Opteron (larger matrices).
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Figure 12: CSB_SPMV_T performance on Opteron (larger matrices).

Processord _CSB-SPMV_| CSB_SpMV_T
17 814| 17 814
P=2 165 170 | 144 149
P=4 234 249 | 207 230
P=8 275 303 | 281 316 exhibit the least parallelism. Asi820k is also irregular in struc-

ture, which means that our balance heuristic does not apply. Nev-
ertheless, CSBSPMV scaled almost perfectly given enough flops
per byte.
The parallel performance of CSBPMV and CSB_SPMV_T
] is generally not affected by highly uneven row and column nonzero
of as the exact performance gnthreads (e.g.p=8is the best  counts. The highly skewed matrices RMat23 and Webbase2001
performance achieved for$ p < 8). achieved speedups as good as for matrices with flat row and column
In general, we observed better speedups for larger problems. Forcounts. An unusual case is the Torso matrix, where both CSB
example, the average speedup of CSBMYV for the first seven  spMV and CSB.SPMV _T were actually slower on 2 processors
matrices was Z5 on 8 processors, whereas it waB3for the sec-  than serially. This slowdown does not, however, mark a plateau in
Ondlset of seven matrices with more nOﬂZel’O.S. Flgure 13 sum- performance’ since Torso Speeds up as we add more than 2 pro-
marizes these results. The speedups are relative to the CSB codeessors. We believe this behavior occurs because the overhead of
running on a single processor, which Figure 1 shows is competitive intrablock parallelization is not amortized for 2 processors. Torso
with serial CSR codes. In another study [41] on the same Opteron requires a large number of intrablock parallelization calls, because
architecture, multicore-specific parallelization of the CSR code for it js unusually irregular and dense.
4 cores achieved comparable speedup to what we report here, al- Figure 15 shows the performance of CS®MV on Harper-
beiton a Sllght'y different sparse-matrix test suite. That Study does town for a subset of test matrices. We do not report performance
not consider the — ATx operation, however, which is difficult to  for CSB_SPMV_T, as it was consistently close to that of CSB
parallelize with CSR but which achieves the same performance asspMV. The performance on this platform levels off beyond 4 pro-
y < Axwhen using CSB. o cessors for most matrices. Indeed, the average Mflops/sec on 8
For CSB.SPMV on 4 processors, CSB reached its highest processors is only.8% higher than on 4 processors. We believe
speedup of B0 on the RMat23 matrix, showing that this algorithm  this plateau results from insufficient memory bandwidth. The con-
is robust even on a matrix with highly |rregular nonzero structure. tinued speedup on Opteron is due to its higher ratio of memory
On 8 processors, CSEBPMV reached its maximum speedup of  pandwidth (bytes) to peak performance (flops) per second.
3.93 on the Webbase2001 matrix, indica’[ing the code’s abl'lty to Figure 16 summarizes the performance results of CSBAV
handle_very large matrices without sacrificing parallel scalability. for the same subset of test matrices on Nehalem. Despite having
Sublinear speedup occurs only after the memory-system band-only 4 physical cores, for most matrices, Nehalem achieved scal-
width becomes the bottleneck. This bottleneck occurs at different ing up to 8 threads thanks to hyperthreading. Running 8 threads
numbers of cores for different matrices. In most cases, wewbder  was necessary to utilize the processor fully, because hyperthreading
nearly linear speedup up to 4 cores. Although the speedup is sub-ills the pipeline more effectively. We observed that the improve-
linear beyond 4 cores, in every case (except CSBMV on Mit- ment from oversubscribing is not monotonic, however, because
telmann), we see some performance improvement going from 4 to running more threads reduces the effective cache size available to
8 cores on Opteron. Sublinear speedup of SpMV on superscalareach thread. Nehalem’s point-to-point interconnect is faster than
multicore architectures has been noted by others as well [41]. Opteron’s (a generation old Hypertransport 1.0), which explains its
We conducted an additional experiment to verify that perfor- petter speedup values when comparing the 4-core performance of
mance was limited by the memory-system bandwidth, not by lack hoth architectures. Its raw performance is also impressive, beating
of parallelism. We repeated each scalar multiply-add operation of poth Opteron and Harpertown by large margins.

Figure 13: Average speedup results for relatively smaller (1-7) angklar
(8—-14) matrices. These experiments were conducted on Opteron

the formy; «— yi + Ajjx; a fixed numbet of times. Although the
resulting code computeg« tAx, we ensured that the compiler
did not optimize away any multiply-add operations. Settirg10

To determine CSB’s competitiveness with a conventional CSR
code, we compared the performance of the CSB serial code with
plain OSKI using no matrix-specific optimizations such as register

did not affect the timings significantly—flops are indeed essentially or cache blocking. Figures 17 and 18 present the results of the

free—but, fort = 100, we saw almost perfect linear speedup up to

comparison. As can be seen from the figures, CSB achieves similar

16 cores, as shown in Figure 14. We performed this experiment serial performance to CSR.

with Asic_320k, the smallest matrix in the test suite, which should

In general, CSR seems to perform bestbanded matrices, all
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Figure 16: CSB_SPMV performance on Nehalem.

Figure 18:

of whose nonzeros are located near the main diagonal. (The max-
imum distance of any nonzero from the diagonal is called the ma-
trix's bandwidth, not to be confused with memory bandwidth.) If
the matrix is banded, memory accesses to the input vediend

to be regular and thus favorable to cacheline reuse and automatic
prefetching. Strategies for reducing the bandwidth of a sparse ma-
trix by permuting its rows and columns have been studied exten-
sively (see [11, 37], for example). Many matrices, however, oann

be permuted to have low bandwidth. For matrices with scattered
nonzeros, CSB outperforms CSR, because CSR incurs many cache
misses when accessing tk@ector. An example of this effect oc-
curs for the RMat23 matrix, where the CSB implementation is al-
most twice as fast as CSR.

Figure 19 compares the parallel performance of the CSB algo-
rithms with Star-P. Star-P’s blockrow data distribution does not
afford any flexibility for load-balancing across processors. Load
balance is not an issue for matrices with nearly flat row counts,
including finite-element and finite-difference matrices, such as
Grid3D200. Load balance does become an issue for skewed ma-
trices such as RMat23, however. Our performance results confirm
this effect. CSB SPMV is about 500% faster than Star-P’'s SpMV
routine for RMat23 on 8 cores. Moreover, for any number of pro-
cessors, CSBSPMV runs faster for all the matrices we tested,
including the structured ones.

CSB_SpMV / Star-P (MFlops/sec ratio)
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Figure 19: Performance comparison of parallel CS8MV with Star-

P, which is a parallel-dialect of Matlab. The vertical axiows the per-
formance ratio of CSBSPMV to Star-P. A direct comparison of CSB
SPMV _T with Star-P was not possible, because Star-P does noehativ
support multiplying the transpose of a sparse matrix by a vecto



8 Conclusion [17]

Compressed sparse blocks allow parallel operations on sparse ma-
trices to proceed either row-wise or column-wise with equal facil- [18]
ity. We have demonstrated the efficacy of the CSB storage format
for SpMV calculations on a sparse matrix or its transpose. It re-
mains to be seen, however, whether the CSB format is limited to [19]
SpMV calculations or if it can also be effective in enabling par-
allel algorithms for multiplying two sparse matrices, performing
LU-, LUP-, and related decompositions, linear programming, and
a host of other problems for which serial sparse-matrix algorithms
currently use the CSC and CSR storage formats. [21]
The CSB format readily enables parallel SpMV calculations on
a symmetric matrix where only half the matrix is stored, but we [22]
were unable to attain one optimization that serial codes exploit in
this situation. In a typical serial code that computes Ax, where
A= (ajj) is a symmetric matrix, when a processor fetchgs= aji
out of memory to perform the updaye < y; -+ ajjXxj, it can also
perform the updatgj «— yj + &jx; at the same time. This strategy
halves the memory bandwidth compared to executing CSB1V
on the matrix, wherej; = aji is fetched twice. It remains an open
problem whether the 50% savings in storage for sparse matrices Carlyg)
be coupled with a 50% savings in memory bandwidth, which is an
important factor of 2, since it appears that the bandwidth between
multicore chips and DRAM will scale more slowly than core count.
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