
ar
X

iv
:0

80
9.

14
89

v1
  [

cs
.D

C
] 

 9
 S

ep
 2

00
8

AN OPTIMAL LOCAL APPROXIMATION ALGORITHM

FOR MAX-MIN LINEAR PROGRAMS
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Abstract. We present a local algorithm (constant-time distributed algorithm) for ap-
proximating max-min LPs. The objective is to maximise ω subject to Ax ≤ 1, Cx ≥ ω1,
and x ≥ 0 for nonnegative matrices A and C. The approximation ratio of our algorithm is
the best possible for any local algorithm; there is a matching unconditional lower bound.

1. Introduction

In a max-min linear program (max-min LP), the objective is to

maximise mink∈K ckx

subject to Ax ≤ 1,

x ≥ 0

(1.1)

or, equivalently, to maximise ω subject to Ax ≤ 1, Cx ≥ ω1, and x ≥ 0. The matrices A
and C are nonnegative and sparse: each row ai of A has at most ∆I positive elements, and
each row ck of C has at most ∆K positive elements; here ∆I and ∆K are constants.

Our work studies local algorithms [9, 10], that is, distributed algorithms that complete
in constant time (constant number of synchronous communication rounds), independent
of the size of the network. We assume that there is a network with one node v ∈ V for
each variable xv, one node i ∈ I for each constraint aix ≤ 1, and one node k ∈ K for
each objective ckx. Nodes v ∈ V and i ∈ I are adjacent if aiv is positive, and nodes
v ∈ V and k ∈ K are adjacent if ckv is positive. In a local algorithm for max-min LPs, the
node v ∈ V must choose the value xv based on the information that is available within its
constant-radius neighbourhood in the network.

Max-min LPs are a generalisation of packing LPs. Direct applications of max-min
LPs include various tasks of fair resource allocation, such as fair bandwidth allocation in
a communication network and balanced data gathering in a wireless sensor network. An
algorithm for approximating max-min LPs allows one to solve approximate mixed packing
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and covering problems [12] as well. Special cases of mixed packing and covering LPs include
finding an (approximate) solution to a nonnegative system of linear equations.

1.1. Prior work

For any ǫ > 0, there exists a local (1 + ǫ)-approximation algorithm for packing and
covering LPs, assuming a bounded-degree graph and bounded coefficients [7, 8]. However,
this is not the case with max-min LPs:

Theorem 1.1 (Floréen et al. [4]). For any ∆I ≥ 2 and ∆K ≥ 2, there exists no local approx-

imation algorithm for the max-min LP problem with the approximation ratio ∆I(1− 1/∆K).

This theorem holds even in the following special cases: (i) bipartite max-min LPs, where
each column of A and each column of C contains only one nonzero element, and (ii) 0/1
max-min LPs, where each element of A and C is either 0 or 1.

The approximation ratio ∆I(1− 1/∆K)+ǫ for any positive ǫ can be achieved by a local
algorithm for bipartite problems [4] and for a class of 0/1 problems [3]. However, for general
max-min LPs, the best known local algorithm has been the safe algorithm that achieves
the factor ∆I approximation [5, 11].

1.2. Contribution

The following theorem summarises the main contribution of this paper.

Theorem 1.2. For any ∆I ≥ 2, ∆K ≥ 2, and ǫ > 0, there exists a local approximation

algorithm for the max-min LP problem with the approximation ratio ∆I(1− 1/∆K) + ǫ.

By Theorem 1.1, the algorithm in Theorem 1.2 is optimal in the sense that no local
algorithm can achieve a better approximation ratio. For the case ∆I = ∆K = 2, the
approximation ratio is 1 + ǫ, that is, there is a local approximation scheme.

1.3. Definitions

We now give a detailed definition of a max-min LP in a distributed setting. Let G =
(V ∪ I ∪K,E) be a bipartite, undirected communication graph. The nodes v ∈ V are called
agents, the nodes i ∈ I are called constraints, and the nodes k ∈ K are called objectives;
the sets V , I, and K are disjoint. Edges e ∈ E are of the form e = {v, i} or e = {v, k}
where v ∈ V , i ∈ I, and k ∈ K.

Let Vi = {v ∈ V : {v, i} ∈ E}, Vk = {v ∈ V : {v, k} ∈ E}, Iv = {i ∈ I : {v, i} ∈ E}, and
Kv = {k ∈ K : {v, k} ∈ E} for all i ∈ I, k ∈ K, and v ∈ V . We assume that |Vi| ≤ ∆I and
|Vk| ≤ ∆K for all i ∈ I and k ∈ K for some constants ∆I and ∆K .

A max-min linear program associated with G is defined as follows. Associate a variable
xv with each agent v ∈ V , associate a coefficient aiv > 0 with each edge {i, v} ∈ E, i ∈ I,
v ∈ V , and associate a coefficient ckv > 0 with each edge {k, v} ∈ E, k ∈ K, v ∈ V . The
task is to

maximise ω(x) = mink∈K
∑

v∈Vk
ckvxv

subject to
∑

v∈Vi
aivxv ≤ 1, ∀ i ∈ I,

xv ≥ 0, ∀ v ∈ V.

(1.2)

The local input of an agent v ∈ V consists of the sets Iv and Kv and the coefficients
aiv, ckv for all i ∈ Iv, k ∈ Kv. The local input of a constraint i ∈ I consists of Vi, and the
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local input of an objective k ∈ K consists of Vk. In a local algorithm, there is a constant D
such that each agent v ∈ V chooses the output xv based on the local inputs of the nodes
within distance D (in number of edges) from v in the communication graph G; the constant
D is the local horizon of the algorithm.

Theorem 1.1 holds even if we assume that each node of the graph G has a unique
identifiers. We show that Theorem 1.2 holds even if we do not have unique identifiers. We
merely assume port numbering [1]: each edge {s, t} in G has two natural numbers associated
with it, the port number in s and the port number in t.

1.4. Overview of the algorithm

We begin in §2 by reminding that, in the port numbering model, we can without loss
of generality focus on the case where the communication graph G is a (countably infinite
but locally finite) tree [1, 4].

In §3, we present a series of local transformations that simplify the structure of the
problem. We show that with the objective of establishing Theorem 1.2, it is sufficient to
focus on the special case where |Vi| = 2, |Vk| ≥ 2, |Kv| = 1, |Iv| ≥ 1, and cku = 1 for all
i ∈ I, k ∈ K, v ∈ V , u ∈ Vk. Figure 1 shows an example of a communication graph G after
the local transformations.

In §4, we present a local algorithm for this special case. In §5, we prove that the output
of the algorithm is a factor 2(1− 1/∆K)+ ǫ′ approximation. Put together, we have a local,
factor ∆I(1− 1/∆K) + ǫ approximation for general max-min LPs, for any ǫ > 0.

The intuition behind the algorithm in §4 is best understood if we study its analysis
in §5. In the analysis, it is convenient to assume that we have assigned a one-dimensional
coordinate, layer, to each node of the tree G; see Figure 1 for an example. When we
assign the layers, we also partition the agents into up-agents and down-agents. We have
alternatingly layers of up-agents, constraints, down-agents, and objectives. Each objective
has exactly one adjacent up-agent “above” it, and at least one adjacent down-agent “below”
it; hence the names “up” and “down”.

We now assign every Rth layer of objectives to be passive, including the adjacent agents
that set xv = 0. Each agent v ∈ V computes an upper bound tv of the optimum; see §4.2.
Then we construct a solution for the active layers in a greedy manner, starting with a layer
of passive up-agents and propagating information upwards until we reach the next layer of
passive down-agents; see §4.3.

This is not yet an approximation for the original problem: while most objectives perform
at least as well as in the global optimum, the passive objectives have utility 0. By applying
ideas from the shifting strategy [2,6], we could consider R possible choices for the locations
of the passive layers. Then we could take averages over these to obtain a solution y. In
§5.2 we show that y would indeed be a factor R/(R− 1) approximation.

There is one difficulty, however. We cannot assign the layers by a local algorithm in a
globally consistent manner; in particular, we do not know whether a given agent is a down-
agent or an up-agent. To overcome this, we consider both possible roles for each agent, up
and down. For both roles, we compute a candidate solution by applying the shifting strategy.
Finally we take the average of both candidate solutions. This is the essence of (4.13).

In §5, we prove that this local approach yields a globally feasible solution, and the
solution is within factor 2(1− 1/∆K) + ǫ′ of the optimum. The constant ǫ′ > 0 can be
made arbitrarily small by choosing a sufficiently large R.
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Figure 1: The graph G (after the local transformations in §3) and the layers (see §5). We
have chosen R = 3 and hence r = 1. Thick lines highlight the tree Au (see §4.1).
There are several ways to choose the layers; nevertheless, if u is an up-agent on
layer −1 then the levels in Au necessarily coincide with the layers.

Yet another basic hurdle implicitly overcome in the proof of Theorem 1.2 stems from
underconstrained instances: if there are several equally good solutions, one needs to choose
between them in a globally consistent manner. Our definition of the values g+ and g−

in (4.8)–(4.10) addresses this by focusing on a particular extreme point. Each layer of
down-agents chooses as large values g+ as possible, without violating the constraints “be-
low” them. Each layer of up-agents chooses as small values g− as possible, as long as the
objectives “below” them meet the smoothed upper bounds sv.

2. Port numbering and unfolding

Our algorithm does not need to use any node identifiers; port numbering is sufficient.
In the port numbering model, a local algorithm cannot distinguish between a short cycle
and an infinitely long path. We can exploit this limitation to simplify the description of our
local algorithm: we can assume that we have unfolded all cycles of the graph G [1, 4].

The definition of unfolding requires some preliminaries. A walk of length ℓ in a graph
G is a nonempty tuple (u0, e1, u1, e2, u2, . . . , eℓ, uℓ) of alternating nodes and edges in G such
that, for all j = 1, 2, . . . , ℓ, the edge ej joins the nodes uj−1 and uj. The walk is said to start

at u0 and end at uℓ. A walk is non-backtracking if ej−1 6= ej holds for all j = 1, 2, . . . , ℓ. A
path is a walk with no repeated nodes.

Let G be a finite connected graph and let r be a node of G. The unfolding of G rooted

at r is the undirected simple graph G′ obtained as follows. The node set of G′ is the set of
all non-backtracking walks in G that start at r. Two nodes of G′ are joined by an edge iff
one can be obtained from the other by appending exactly one edge and one node of G.
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We associate with each node of G′ a parent node of G, namely the end-node of the walk.
We also associate with each edge of G′ a parent edge of G, namely the appended edge.

Remarks.

(1) The unfolding G′ is a tree.
(2) The unfolding G′ is finite iff G is a tree; otherwise G′ is countably infinite.
(3) Any two unfoldings of G rooted at different nodes are isomorphic. In what follows

we refer to “the” unfolding of G without specifying a particular root node.
(4) Assuming that the graph G has port numbers associated with the ends of its edges,

the unfolding G′ inherits the port numbering from the parent edges.
(5) Assuming that the graph G has a max-min LP associated with it, the max-min LP

associated with the unfolding G′ is defined by inheritance from the parent nodes
and edges. In particular, the type of each node (agent, constraint, objective) is the
type of the parent node, and the coefficients associated with the edges (aiv, ckv) are
inherited from the parent edges.

(6) Any two nodes of G′ with the same parent are related by an automorphism of G′. In
particular, any deterministic local algorithm in the port numbering model must give
the same output on any two nodes with the same parent. Any locally computable
feasible solution of the max-min LP associated with G′ defines a feasible solution of
the max-min LP associated with G, with the same utility.

(7) Any feasible solution of the max-min LP associated with G defines, by inheritance,
a feasible solution of the max-min LP associated with G′, with the same utility.

(8) Any locally computed feasible solution of G′ with utility at least 1/α times the utility
of any feasible solution of G′ yields an α-approximation of the optimum of G.

3. Local transformations

Consider an arbitrary max-min LP associated with the graph G. In this section we
carry out a sequence of locally computable transformations, with the goal of arriving at a
more structured max-min LP. The transformations are applied in the order of presentation,
from §3.1 to §3.5. We describe each individual transformation in three parts:

(1) A description of the transformation.
(2) Mapping a solution of the transformed instance back to the original instance.
(3) Implications to approximability. We write ω(·) for the utility of the original instance

and ω′(·) for the utility of the transformed instance.

Appendix A.1 presents the implementation of these transformations in the port numbering
model. Figure 2 illustrates the transformations that modify the communication graph G.

To avoid degenerate cases, we assume that each constraint and objective is adjacent to
at least one agent, and every agent is adjacent to at least one constraint and at least one
objective, that is, |Vi| ≥ 1, |Vk| ≥ 1, |Kv| ≥ 1, and |Iv| ≥ 1 for all i ∈ I, k ∈ K, v ∈ V .
Indeed, isolated constraints can be deleted, isolated objectives force the optimum of (1.2)
to zero, non-contributing agents can be set to zero, and unconstrained agents can be set
to +∞. Furthermore, we assume that G is connected, as we can handle each connected
component independently.
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Figure 2: Local transformations in §3.1–§3.4.

3.1. Augmenting singleton constraints – forcing |Vi| ≥ 2

The transformation. For each constraint i ∈ I with |Vi| = 1, introduce three new
agents, s, t, and u, two new objectives, h and ℓ, and one new constraint, j. Let v ∈ Vi

be the original agent adjacent to i, and let k ∈ Kv be an objective adjacent to v. Set
ais = ajt = aju = 1, chs = cℓs = 1, and cht = cℓu = 2

∑

w∈Vk
ckw mini∈Iw a−1

iw .

Mapping back. Let x′ be any feasible solution of the transformed instance. We map
this back by setting xv = x′v for all original agents v ∈ V .

Approximation ratio. Observe that we can always set x′s = 0 and x′t = x′u = 1/2 without
decreasing the objective value ω′(x′). Thus the optima of the original and transformed
instances coincide, and any approximation ratio is preserved.

3.2. Reducing the degree of constraints – forcing |Vi| = 2

The transformation [3]. Replace each constraint i ∈ I with |Vi| > 2 by the
(|Vi|

2

)

constraints
aiuxu + aivxv ≤ 1, u, v ∈ Vi, u < v. (3.1)

Mapping back. Let x′ be an arbitrary feasible solution of the transformed instance. We
map this back to a feasible solution x of the original instance by setting

xv =
2x′v

maxi∈Iv |Vi|
, v ∈ V. (3.2)

To verify that x is feasible, consider an arbitrary original constraint i ∈ I. By the
previous transformation, we have |Vi| ≥ 2. Taking the sum over all the constraints (3.1)
replacing i, or, if |Vi| = 2, considering the original constraint, we have

∑

v∈Vi

(

|Vi| − 1
)

aivx
′
v ≤ |Vi|

(

|Vi| − 1
)

/2.

By (3.2) we thus have
∑

v∈Vi
aivxv ≤

∑

v∈Vi
2aivx

′
v/|Vi| ≤ 1.

Approximation ratio. Because the objectives are unchanged in the transformation, we
have ω(x) ≥ 2ω′(x′)/∆I by linearity and (3.2). Furthermore, an optimal solution of the
original instance is a feasible solution of the transformed instance. Therefore, if x′ is an
α-approximate solution, then x is a α∆I/2-approximate solution.
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3.3. Associating a unique objective with each agent – forcing |Kv| = 1

The transformation. For each agent v ∈ V with |Kv| > 1, replace v with |Kv| copies of v
as follows. Associate each copy of v with a unique objective in Kv. Replace each constraint
adjacent to v with |Kv| copies of the constraint, with v replaced by a unique copy in each
constraint. The coefficients are unchanged.

Mapping back. Let x′ be a feasible solution of the transformed instance. By symmetry
we can assume that all copies u of v have the same value x′u without decreasing the objective
value ω′(x′); indeed, if the values are different, just set all copies to the maximum value.
Mapping back is done simply by identifying the copies back to the original.

Approximation ratio. Preserved. The optima of the original and the transformed in-
stance coincide.

3.4. Augmenting singleton objectives – forcing |Vk| ≥ 2

The transformation. For each objective k ∈ K with |Vk| = 1, let v be the unique agent
adjacent to k. Replace v with two copies, t and u, and replace each constraint adjacent to
v with two copies of the constraint, one containing t in place of v, and the other containing
u in place of v. Let ckt = cku = ckv/2. The coefficients are otherwise unchanged.

Mapping back. Let x′ be a feasible solution of the transformed instance. By symmetry
we can assume that the copies of v have the same value x′t = x′u without decreasing the
objective value ω′(x′); indeed, if the values are different, just set all copies to the maximum
value. Mapping back is done simply by identifying the copies back to the original.

Approximation ratio. Preserved. The optima of the original and the transformed in-
stance coincide.

3.5. Normalising coefficients – forcing ckv = 1 for adjacent k ∈ K and v ∈ V

For each v ∈ V , let k(v) be the unique objective in Kv.
The transformation. For each v ∈ V , i ∈ I, k ∈ K, divide aiv and ckv by ck(v)v .
Mapping back. For each v ∈ V , multiply xv by ck(v)v .
Approximation ratio. Preserved.

4. Local approximation algorithm

Throughout this section we consider a max-min LP associated with a bipartite graph
G = (V ∪ I ∪K,E) with these properties that follow from §2 and §3:

(1) the graph G is an unfolding of a finite graph,
(2) every agent v ∈ V is adjacent to exactly one objective and at least one constraint,
(3) every constraint i ∈ I is adjacent to exactly two agents,
(4) every objective k ∈ K is adjacent to at least two agents,
(5) for adjacent k ∈ K and v ∈ V , the coefficient ckv equals 1.

It follows that G is countably infinite.
Recall that k(v) is the unique objective adjacent to v ∈ V . Let N(v) = Vk(v) \ {v} be

the set of other agents adjacent to this objective. For a constraint i ∈ I and an agent v ∈ Vi,
denote by n(v, i) the unique agent other than v in Vi. See Figure 1 for an illustration.

Let R = 2, 3, . . . be a fixed parameter that will determine the local horizon and the
approximation ratio. Let r = R− 2.
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4.1. An upper bound via alternating trees

A walk W = (u0, e1, u1, . . . , eℓ, uℓ) in G is alternating if (i) for all 1 ≤ j < j′ ≤ ℓ with
uj ∈ K and uj′ ∈ K, there exists a j < j′′ < j′ with uj′′ ∈ I; and (ii) for all 1 ≤ j < j′ ≤ ℓ
with uj ∈ I and uj′ ∈ I, there exists a j < j′′ < j′ with uj′′ ∈ K.

Let u ∈ V be an arbitrary agent, and consider the subgraph Au of G induced by the
nodes reachable via alternating paths starting at u that (i) traverse the constraint k(u) and
have length at most 4r + 3; or (ii) have length at most 1. The level of a node of Au is
its distance to k(u), with the exception of u, which we define to have level −1, and the
constraints adjacent to u, which we define to have level −2. See Figure 1 for an illustration.

Associate withAu a max-min LP by restriction from the max-min LP associated with G.

Lemma 4.1. The graph Au is a finite tree. Moreover,

(1) every objective in Au is at level 0 (mod 4),
(2) every agent in Au is at level either 1 (mod 4) or 3 (mod 4),
(3) every constraint in Au is at level 2 (mod 4),
(4) the leaves of Au are constraints at levels −2 and 4r + 2,
(5) for any objective k in Au and any agent v adjacent to k in G, the agent v, occurs

in Au and is adjacent to k in Au.

Proof. By induction on R using the assumptions on the structure of G.

Lemma 4.2. The optimum value of the max-min LP associated with Au is an upper bound

on the value of any feasible solution of the max-min LP associated with G.

Proof. Because Au is finite, the optimum is well defined. It suffices to show that any feasible
solution of G is (by restriction) a feasible solution of Au. This follows from Lemma 4.1:
the objectives in Au are identical to those in G, and the constraints on variables in Au are
either identical or relaxed from G (at leaves or non-alternating constraints).

4.2. The optimum of Au

The tree structure of Au enables a recursive characterisation of the optimum that
proceeds level-wise towards u. Denote by L(u, ℓ) the set of all nodes at level ℓ in Au.

Let tu be the maximum value ω ≥ 0 such that for all d = 0, 1, . . . , r it holds that the
values

f+
u,v,0(ω) = min

i∈Iv
a−1
iv , v ∈ L

(

u, 4r + 1
)

, (4.1)

f−
u,v,d(ω) = max

(

0, ω −
∑

w∈N(v) f
+
u,w,d(ω)

)

, v ∈ L
(

u, 4(r − d)− 1
)

, (4.2)

f+
u,v,d(ω) = min

i∈Iv
a−1
iv

(

1− a
i,n(v,i)f

−
u,n(v,i),d−1(ω)

)

, d ≥ 1, v ∈ L
(

u, 4(r − d) + 1
)

(4.3)

satisfy the constraints

f+
u,v,d(ω) ≥ 0, 0 ≤ d ≤ r, v ∈ L

(

u, 4(r − d) + 1
)

, (4.4)

f−
u,u,r(ω) ≤ min

i∈Iu
a−1
iu . (4.5)

Note that the maximum exists because (4.2) and (4.3) can be expressed using linear in-
equalities (by introducing additional variables), and ω = 0 is a feasible value. In a practical
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implementation of our algorithm, we do not need to invoke an LP solver; a simple binary
search for an approximation of tu is sufficient.

Lemma 4.3. Let x be any feasible solution that achieves the objective value ω in the max-

min LP associated with Au. Then, for all d = 0, 1, . . . , r it holds that

0 ≤ xv ≤ f+
u,v,d(ω) for all v ∈ L

(

u, 4(r − d) + 1
)

; and (4.6)

f−
u,v,d(ω) ≤ xv ≤ min

i∈Iv
a−1
iv for all v ∈ L

(

u, 4(r − d)− 1
)

. (4.7)

In particular, tu is the optimum utility of the max-min LP associated with Au.

Proof. By induction on d and in order of evaluation of the recursive steps (4.2) and (4.3);
see Appendix A.2 for a full proof.

In what follows we use the shorthand notation f+
u,v,d = f+

u,v,d(tu) and f−
u,v,d = f−

u,v,d(tu).

4.3. Smoothing

For each agent v ∈ V in G, let sv be the minimum of the values tu over all agents u ∈ V
at distance at most 4r + 2 from v in G. For all v ∈ V in G and all d = 0, 1, . . . , r, define

g+v,0 = min
i∈Iv

a−1
iv , (4.8)

g−v,d = max
(

0, sv −
∑

w∈N(v) g
+
w,d

)

, (4.9)

g+v,d = min
i∈Iv

a−1
iv

(

1− a
i,n(v,i)g

−
n(v,i),d−1

)

, d ≥ 1. (4.10)

Lemma 4.4. For all u ∈ V and all d = 0, 1, . . . , r it holds that

g−v,d ≤ f−
u,v,d for all v ∈ L(u, 4(r − d)− 1), (4.11)

f+
u,v,d ≤ g+v,d for all v ∈ L(u, 4(r − d) + 1). (4.12)

Proof. By induction on d, using the definition of sv; see Appendix A.3 for a full proof.

Lemma 4.5. For all v ∈ V it holds that g+v,r ≥ 0 and g−v,r ≤ mini∈Iv a
−1
iv .

Proof. Let v ∈ V be arbitrary and choose u ∈ N(v); such a u exists because every objective
is adjacent to at least two agents. We have g+v,r ≥ f+

u,v,r ≥ 0 by (4.12) and (4.4). Similarly,
let u = v to obtain

g−v,r ≤ f−
v,v,r ≤ min

i∈Iv
a−1
iv

by (4.11) and (4.5).

Lemma 4.6. For all v ∈ V and d = 1, 2, . . . , r it holds that g−v,d−1 ≤ g−v,d and g+v,d ≤ g+v,d−1.

Proof. By induction on d; see Appendix A.4 for a full proof.

Lemma 4.7. For all v ∈ V and d = 0, 1, . . . , r it holds that g+v,d ≥ 0.

Proof. By Lemma 4.5 and Lemma 4.6.
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Figure 3: The weights used to assign the layers.

Finally, each agent v outputs the value

xv =
1

2R

r
∑

d=0

(

g+v,d + g−v,d
)

. (4.13)

This completes the description of the algorithm. The algorithm is local, with the local
horizon Θ(R). We proceed to show the vector x is a feasible solution, and within factor
2(1− 1/∆K) + ǫ′ of the optimum.

5. Analysis

We start by partitioning the set of agents V into up-agents and down-agents such that
(i) every constraint is adjacent to exactly one up-agent and exactly one down-agent; and
(ii) every objective is adjacent to exactly one up-agent.

Associate an integer layer to each node of G as follows. First, fix an arbitrary objective
k ∈ K to be at layer 0. Then, determine the layer of every other node u by considering
the unique directed path connecting k to u. The layer of u is determined by taking the
sum of the weights of the directed edges in the path, where the weights are displayed in
Figure 3. Figure 1 displays an example of a partition into up- and down-agents together
with an assignment of layers.

Lemma 5.1. The layers of the nodes of G satisfy the following four properties:

(1) every objective has layer 0 (mod 4),
(2) every down-agent has layer 1 (mod 4),
(3) every constraint has layer 2 (mod 4),
(4) every up-agent has layer 3 (mod 4).

Proof. Immediate from Figure 3.

5.1. Shifting strategy

Let j = 0, 1, . . . , R − 1 be a shift parameter. For each agent v ∈ V , represent the layer
of v uniquely as 4(Rc+ j) + 4d+ e for integers c, d, e with 0 ≤ d ≤ R− 1 and e ∈ {−1, 1}.
Recall that r = R− 2. Associate with v the value

yv(j) =











0 if d = R− 1;

g−v,r−d if d ≤ R− 2 and e = −1;

g+v,r−d if d ≤ R− 2 and e = 1.

(5.1)

Observe that a down-agent has e = 1 and an up-agent has e = −1, regardless of j.



11

For an objective k and a vector z indexed by the agents, let ωk(z) =
∑

v∈Vk
zv.

Lemma 5.2. The vector y(j) is a feasible solution of the max-min LP associated with G.
For every objective k ∈ K, it holds that ωk(y(j)) = 0 if k is at layer 4j − 4 (mod 4R), and
ωk(y(j)) ≥ minv∈Vk

sv otherwise.

Proof. From (4.8), (4.9), (4.10), and (5.1); see Appendix A.5 for a full proof.

Let us now average over all values of the shift parameter j = 0, 1, . . . , R − 1 to obtain

yv =
1

R

R−1
∑

j=0

yv(j) =

{

1
R

∑r
d=0 g

−
v,d if v is an up-agent

1
R

∑r
d=0 g

+
v,d if v is a down-agent.

(5.2)

Lemma 5.3. The vector y is a feasible solution of the max-min LP associated with G. For

every objective k ∈ K, it holds that ωk(y) ≥ (1− 1/R)minv∈Vk
sv.

Proof. Follows from Lemma 5.2.

5.2. Averaging

Associate with each agent v ∈ V a solution y↑v defined as follows. Choose the layers
so that v is an up-agent; this is always possible. Let y↑v be the value of (5.2).

Lemma 5.4. The vector x is a feasible solution of the max-min LP associated with G.

Proof. Consider an arbitrary constraint i ∈ I; let Vi = {v,w}. Note that whenever v is an
up-agent w is a down-agent and vice versa. Let

z =
(

y↑v + y↑w
)

/2.

By (5.2) and (4.13) we have

zv =
y↑vv + y↑wv

2
=

1

2

(

1

R

r
∑

d=0

g−v,d +
1

R

r
∑

d=0

g+v,d

)

= xv

and zw = xw. By Lemma 5.3, the solutions y↑v and y↑w do not violate the constraint i.
Therefore

avxv + awxw = avzv + awzw =
(

(avy
↑v
v + awy

↑v
w ) + (avy

↑w
v + awy

↑w
w )

)

/2 ≤ (1 + 1)/2 = 1.

We conclude that the solution x does not violate the constraint i.

Lemma 5.5. For every objective k ∈ K,

ωk(x) ≥
1

2

(

1−
1

R

)

|Vk|

|Vk| − 1
min
v∈Vk

sv. (5.3)

Proof. Consider an arbitrary objective k in G. Note that whenever v ∈ Vk is an up-agent,
each w ∈ N(v) is a down-agent. Let

z =
1

|Vk|

∑

v∈Vk

y↑v.

By (5.2) and (4.13) we have

|Vk|

2(|Vk| − 1)
zu =

1

2(|Vk| − 1)

∑

v∈Vk

y↑vu =
1

|Vk| − 1

(

1

2R

r
∑

d=0

g−u,d +
|Vk| − 1

2R

r
∑

d=0

g+u,d

)

≤ xu
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for all u ∈ Vk. By Lemma 5.3,

ωk(x) =
∑

u∈Vk

xu ≥
∑

u∈Vk

|Vk|

2(|Vk| − 1)
zu ≥

|Vk|

2(|Vk| − 1)

(

1−
1

R

)

min
v∈Vk

sv.

The claim follows.

5.3. Completing the analysis

Lemmata 4.2 and 4.3 show that for any v ∈ V , the value tv is an upper bound for
the utility of any feasible solution of the max-min LP instance associated with G, and so
is sv. Lemma 5.5 therefore shows that our local approximation algorithm achieves the
approximation ratio of 2(1 − 1/∆K)(1 + 1/(R − 1)), for the special case studied in §4.

Together with the local transformations of §3, taking into account the increase of the
approximation in §3.2, we conclude that the max-min LP problem admits a local algorithm
with the approximation ratio of ∆I(1− 1/∆K)(1 + 1/(R − 1)); the local horizon is Θ(R).
Theorem 1.2 follows by choosing a sufficiently large R. In particular, the constants ∆I and
∆K are not required to run the algorithm.
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Appendix A.

A.1. Local computability of the transformations in §3

Even though a description of a local algorithm often involves interleaved steps of com-
munication and computation, it should be noted that any local algorithm with local horizon
D can always be implemented as follows:

(1) Each node gathers full information about its radius D neighbourhood; this is the
local view of the agent.

(2) Each node simulates the algorithm in its local view to determine its output.

As pointed out in §2, we can assume that the local view is a tree. Furthermore, in our case
it is sufficient that each agent performs these steps – constraints and objectives do not need
to produce any output.

Therefore we can implement each transformation presented in this section as follows
(with a small increase of the local horizon):

(1) Each agent gathers its local view, up to some constant distance. This is a tree.
(2) Each agent performs the transformation in its local view. The result is a graph,

possibly with cycles.
(3) Each agent unfolds the graph to obtain a tree, discarding parts that are beyond its

local horizon.
(4) Each agent simulates the rest of the local algorithm in this tree, and applies the

back-mapping to determine its output.

In some of the transformations, new agent nodes are created. In §3.1, the output of the
new agents is not needed. In §3.3 and §3.4, existing agents can simulate their copies and
compute the back-mapping.

The nontrivial part is to make sure that the transformations can be performed deter-
ministically: if the local views of agents u and v partially overlap, and both agents perform
a transformation in the common part, the common parts must be identical after the trans-
formation. In particular, the port numbers must be identical. In the following, we show
how to achieve this.

§3.1: Node k is chosen to be the node in Kv that has the smallest port number in v.
The port number in i for {i, s} is one larger than the port number for {i, v}. Within the
gadget defined by s, t, u, h, ℓ, j, we can choose some fixed port numbering.

§3.2, §3.3, §3.4: These transformations can be summarised as follows: pick a subgraph,
take n copies of it, and discard some edges (e.g., in §3.3, we take copies of a subgraph induced
by an agent v ∈ V and the adjacent constraints Iv). We can choose the port numbers of the
transformed instance deterministically as follows. While we are taking copies of subgraphs,
copy the port numbers as well. This may create duplicates. However, in each of these
transformations, a set of duplicate port numbers in a node corresponds to a set of copies of
one subgraph (e.g., in §3.3, each copy of the subgraph induced by v and Iv creates exactly
one duplicate port number for each agent u 6= v adjacent to any i ∈ Iv). Furthermore, we
can impose an ordering for the copies: in §3.2 by using pairs of port number in i; in §3.3
by using port numbers in v; and in §3.4 by arbitrarily ordering otherwise identical copies.
Therefore we can re-number the ports in each node: first, order the ports by existing port
numbers, using the ordering of the copies to break the ties; second, assign new port numbers
1, 2, . . . in this order.

§3.5: The graph is not changed, and port numbering is preserved.
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A.2. Proof of Lemma 4.3

To set up the base case at d = 0, observe that by the feasibility of x and (4.1) we have

xv ≤ min
i∈Iv

a−1
iv = f+

u,v,0(ω) for all v ∈ L(u, 4r + 1).

Next consider any 0 ≤ d ≤ r and assume inductively that

xw ≤ f+
u,w,d(ω) for all w ∈ L

(

u, 4(r − d) + 1
)

.

Consider an arbitrary v ∈ L(u, 4(r − d) − 1). Observe that for all w ∈ Vk(v) it holds that
either v = w or w ∈ L(u, 4(r − d) + 1). If we have

0 ≥ ω −
∑

w∈N(v)

f+
u,w,d(ω),

then (4.2) implies f−
u,v,d(ω) = 0 ≤ xv; otherwise (4.2) implies

f−
u,v,d(ω) = ω −

∑

w∈N(v)

f+
u,w,d(ω) ≤ ω −

∑

w∈N(v)

xw ≤ xv.

Here the first inequality follows by the induction hypothesis, and the second inequality
follows by assumption that x achieves the objective value ω; in particular,

∑

w∈Vk(v)

xw = xv +
∑

w∈N(v)

xw ≥ ω.

To complete the induction, consider any 1 ≤ d ≤ r and assume inductively that

f−
u,w,d−1(ω) ≤ xw for all w ∈ L

(

u, 4(r − (d− 1))− 1
)

.

Consider an arbitrary v ∈ L(u, 4(r− d)+ 1). Observe that n(v, i) ∈ L(u, 4(r− (d− 1))− 1).
Because x is feasible, we have aivxv + ai,n(v,i)xn(v,i) ≤ 1 for all i ∈ Iv. Thus, the inductive
hypothesis and (4.3) imply

xv ≤ min
i∈Iv

a−1
iv

(

1− ai,n(v,i)xn(v,i)

)

≤ min
i∈Iv

a−1
iv

(

1− a
i,n(v,i)f

−
u,n(v,i),d−1(ω)

)

= f+
u,v,d(ω).

To conclude that tu is the optimum utility of the max-min LP associated with Au,
consider an optimal solution x with the objective value ω∗. Observe that (4.6) and (4.7)
imply (4.4) and (4.5). Therefore tu ≥ ω∗. Furthermore, tu > ω∗ would contradict with the
assumption that x is optimal.
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A.3. Proof of Lemma 4.4

Consider an arbitrary u ∈ V . For all w ∈ V at distance at most 4r+2 from u we have,
by the definition of sw,

0 ≤ sw ≤ tu. (A.1)

We proceed by induction on d. To establish the base case at d = 0, observe by (4.1)
and (4.8) that f+

u,v,0 = g+v,0 for all v ∈ L(u, 4r + 1).
Next consider any 0 ≤ d ≤ r and assume inductively that

f+
u,w,d ≤ g+w,d for all w ∈ L(u, 4(r − d) + 1).

Consider an arbitrary v ∈ L(u, 4(r− d)− 1). Observe that for all w ∈ Vk(v) either w = v or
w ∈ L(u, 4(r − d) + 1). Apply (4.9), (A.1), the inductive hypothesis, and (4.2) to obtain

g−v,d = max

(

0, sv −
∑

w∈N(v)

g+w,d

)

≤ max

(

0, tu −
∑

w∈N(v)

f+
u,w,d

)

= f−
u,v,d.

Finally, consider any 1 ≤ d ≤ r and assume inductively that

g−w,d−1 ≤ f−
u,w,d−1 for all w ∈ L(u, 4(r − (d− 1)) − 1).

Consider an arbitrary v ∈ L(u, 4(r − d) + 1). Observe that for all i ∈ Iv it holds that
n(v, i) ∈ L(u, 4(r − (d− 1))− 1). Apply (4.3), the inductive hypothesis, and (4.10), to
obtain

f+
u,v,d = min

i∈Iv
a−1
iv

(

1− a
i,n(v,i)f

−
u,n(v,i),d−1

)

≤ min
i∈Iv

a−1
iv

(

1− a
i,n(v,i)g

−
n(v,i),d−1

)

= g+v,d.

The induction is now complete.

A.4. Proof of Lemma 4.6

To set up the base case at d = 1, observe first that g−v,0 ≥ 0 by (4.9). By (4.10) and

(4.8) thus

g+v,1 = min
i∈Iv

a−1
iv

(

1− a
i,n(v,i)g

−
n(v,i),0

)

≤ min
i∈Iv

a−1
iv = g+v,0.

Next consider any 1 ≤ d ≤ r and assume inductively that g+v,d ≤ g+v,d−1. Apply (4.9) and

the inductive hypothesis to obtain

g−v,d = max

(

0, sv −
∑

w∈N(v)

g+w,d

)

≥ max

(

0, sv −
∑

w∈N(v)

g+w,d−1

)

= g−v,d−1.

Finally, consider any 2 ≤ d ≤ r and assume inductively that g−v,d−2 ≤ g−v,d−1. Apply (4.10)

and the inductive hypothesis to obtain

g+v,d = min
i∈Iv

a−1
iv

(

1− a
i,n(v,i)g

−
n(v,i),d−1

)

≤ min
i∈Iv

a−1
iv

(

1− a
i,n(v,i)g

−
n(v,i),d−2

)

= g+v,d−1.

This completes the induction.
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A.5. Proof of Lemma 5.2

Feasibility. The vector is nonnegative by (4.9) and Lemma 4.7. Consider an arbitrary
constraint i ∈ I. By Lemma 5.1 we can represent the layer of i uniquely as 4(Rc+j)+4d+2
for integers c, d with 0 ≤ d ≤ R− 1. Let Vi = {v,w} with v at layer 4(Rc+ j) + 4d+1 and
w at layer 4(Rc+ j) + 4(d+ 1)− 1.

First consider the case d = R−1. Note that the layer of w is actually 4(R(c+1)+j)−1,
that is, d = 0 and e = −1 for w. By (5.1) and Lemma 4.5, we have

aivyv(j) + aiwyw(j) = aiwg
−
w,r ≤ 1.

Next consider the case d = R− 2. By (5.1) and (4.8), we have

aivyv(j) + aiwyw(j) = aivg
+
v,0 ≤ 1.

Finally consider the case d < R− 2. By (5.1) and (4.10), we have

aivyv(j) + aiwyw(j) = aivg
+
v,r−d + aiwg

−
w,r−d−1

≤ aiva
−1
iv (1− aiwg

−
w,r−d−1) + aiwg

−
w,r−d−1 = 1.

The claim follows since i was arbitrary.
Objectives. Consider an arbitrary objective k in G. By Lemma 5.1 we can represent

the layer of k uniquely as 4(Rc + j) + 4d for integers c, d with 0 ≤ d ≤ R − 1. There is a
unique up-agent in Vk at layer 4(Rc+ j)+4d−1. Denote this agent by v. The other agents
w ∈ N(v) are down-agents at layer 4(Rc + j) + 4d+ 1.

First consider the case d = R− 1. By (5.1) we have

ωk(y(j)) = yv(j) +
∑

w∈N(v)

yw(j) = 0.

Then consider the case d ≤ R− 2. By (5.1) and (4.9), we have

ωk(y(j)) = yv(j) +
∑

w∈N(v)

yw(j) = g−v,r−d +
∑

w∈N(v)

g+w,r−d

≥ sv −
∑

w∈N(v)

g+w,r−d +
∑

w∈N(v)

g+w,r−d = sv ≥ min
u∈Vk

su.

The claim follows because k was arbitrary.
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