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Abstract

In this paper, we consider the online buffer management problem, which formulates the
problem of managing network switches supporting Quality of Service guarantee. We improve
competitive ratios of the 2-value multi-queue switch model, where the value of a packet is
restricted to 1 or α(≥ 1). We use a similar approach as Azar and Richter (STOC 2003 and
Algorithmica 43(1-2), 2005) did for the multi-value multi-queue switch model. Namely, we show
that the competitive ratio of “the relaxed model” of the 2-value multi-queue switch model is
at most x = min{c + 2−c

α(2−c)+c−1 , cα}, if the competitive ratio of an online algorithm for the

unit-value multi-queue switch model is at most c. Azar and Richter’s technique implies that if
the competitive ratio of the 2-value single-queue switch model is x′, then the competitive ratio
of the 2-value multi-queue switch model is at most xx′. We obtain several results using known
c and x′.

Keywords: online buffer management, competitive analysis, multi-queue switch, scheduling al-
gorithm

1 Introduction

A great amount of work has been done in order to guarantee Quality of Service (QoS) on the
Internet. One possible way of supporting QoS is differentiated services (DiffServ), on which a
traffic descriptor assigns a value to each packet according to the importance of the packet. QoS
switches then try to decide acceptance/rejection and/or the order of packet transmission using
priority values. The goal of the buffer management algorithm is to maximize the total value of
transmitted packets.

Recently, this kind of problem has been modeled as an online problem. Many models have been
proposed and the most basic one is the single-queue model defined as follows [1]: A switch has a
FIFO buffer of bounded size B. An input is a sequence of events. Each event is an arrival event
or a send event. At an arrival event, one packet arrives at an input port. Each packet has the
priority value and the size (the size is always one in this simplest case). A switch can store packets

A preliminary version of this paper was presented at the 21st ACM Symposium on Parallelism in Algorithms
and Architectures, SPAA 2009.
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provided that the total size of stored packets does not exceed B, that is, a switch can store up to
B packets simultaneously. At an arrival event, if the buffer is full, the new packet is rejected. If
there is a room for the new packet, an online policy determines, without knowledge of the future,
whether to accept it or not. (There is a more general preemptive model, introduced by Kesselman
et al. [23], which allows an algorithm to preempt packets (i.e., to drop packets already in the buffer
to make space).) At each send event, the packet at the head of the queue is transmitted. The
goal of the problem is to maximize the sum of the values of transmitted packets. A goodness of an
online policy is evaluated using competitive analysis [14, 38]. If, for any input σ, an online policy
ALG obtains at least 1/c-fraction of the value of an optimal offline policy for σ, then we say that
ALG is c-competitive.

Up to the present, several models have been considered. Among them, Azar and Richter [9]
have introduced the multi-queue switch model. In this model, a switch consists of m input ports
and one output port, and each packet has a destination port. Each port has a FIFO queue, which
can simultaneously store up to B packets. An input is a sequence of events. Each event is an
arrival event or a scheduling event (which is similar to the send event described above). When a
packet arrives at an arrival event, an online policy determines to accept it (if the buffer has room
for the new packet), reject it, or preempt a packet and accept the new packet. (We consider both
models in which preemption is allowed and not.) At a scheduling event, an online policy chooses
one nonempty buffer and transmits the first packet of the queue through the output port.

Previous Results. Several results on the competitiveness of the multi-queue switch model have
been presented [4, 8, 9, 10, 36]. Table 1 summarizes the current best upper and lower bound results
(together with our results) for the 2-value multi-queue switch models, where a packet can take one
of two values 1 and α ≥ 1.

In [9], the authors proposed a technique to convert an online algorithm for the single queue
model into one for the multi-queue switch model, so that the competitive ratio of the latter is at
most twice that of the former. More formally, they defined a non-FIFO variant, called the relaxed
model, of the multi-queue switch model (which will be formally defined in Sec. 2.2). They showed
that if (i) the competitive ratio of the single queue model is at most x and (ii) the competitive ratio
of the preemptive relaxed model is at most x′, then the competitive ratio of the corresponding multi-
queue switch model is at most xx′. They proved that the competitive ratio of a greedy algorithm
for the relaxed model is at most 2, and combining this with the results for the single-queue models
(Table 2), they obtained upper bounds described in Table 1.

Our Results. In this paper, we focus on the 2-value multi-queue switch model and present
two algorithms for the preemptive relaxed model. One is Dual Scheduling (DS) and the other
is Simple Scheduling (SS). SS uses a deterministic online algorithm A for the unit-value multi-
queue switch model as a subroutine, namely SS regards all the arriving packets as 1-packets, and
performs exactly the same operation as A does. It is not hard to see that if A is c-competitive then
SS is αc-competitive, because the number of packets transmitted by SS is at least 1/c-fraction of
those transmitted by an optimal offline algorithm. DS, which also uses A as a subroutine, is rather
complicated (its description is given in Sec. 3.1). We show that if A is c-competitive, then DS is
(c + 2−c

α(2−c)+c−1)-competitive. Therefore, we obtain an online algorithm for the relaxed model of

the 2-value multi-queue switch model whose competitive ratio is at most min{c+ 2−c
α(2−c)+c−1 , cα}.

Using the result of Azar and Richter [9], we can conclude that there is an online algorithm for
the 2-value multi-queue switch model whose competitive ratio is at most min{c+ 2−c

α(2−c)+c−1 , cα}c
′
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Table 1: Competitive ratios for the 2-value multi-queue switch models

Non-Preemptive Preemptive

Lower Bound Upper Bound Lower Bound Upper Bound

Deterministic

Algorithm

1 + 1
α ln(α/(α−1))

[20]

4− 2
α

∗ [9]
e

e−1 ≈ 1.581 [4]

2.564∗, 2.6† [9]

3.177∗ (C5.1)
2.516∗ (C5.3)

2.5996§ (C5.2)

Randomized

Algorithm

e
e−1 ≈ 1.581 [13] e

e−1 ≈ 1.581 [13]
2.5∗ [9]

2.270∗ (C5.4)

∗ large enough B, †any B, §B ≥ 3 Bold values indicate our results, where (C5.x) after
each value shows the corresponding Corollary number, and α is chosen to maximize each
value.

Table 2: Competitive ratios for the single-queue models

Non-Preemptive Preemptive

Lower Bound Upper Bound Lower Bound Upper Bound

Deterministic

Algorithm

2-value 2− 1/α [1] 2− 1/α ∗ [7, 40] 1.281 [23, 39] 1.282∗ [16]

multi-value ln(α) + 1 [7] ln(α) + 2 ‡ [6] 1.419 [25] 1.733 [16]

Randomized

Algorithm

2-value 1.197 [5] 1 + α− 1
2 − α−1 ∗ [5]

multi-value ln(α)/2 + 1 [40] 1.197 [5] 7/4 = 1.75 ∗ [5]
∗ large enough B, ‡ B ≥ ln(α) + 2

if there is a c′-competitive online algorithm for the 2-value single-queue switch model. Using the
currently best values for c and c′, we obtain several improved upper bounds listed in Sec. 5. Some
major results are summarized in Table 1.

Note that Azar and Richter [9] showed that improving competitive ratios for the single-queue
models implies improving competitive ratios for the multi-queue switch model. Our results in this
paper give additional potential: Improving competitive ratios for the unit-value multi-queue switch
models also implies improving competitive ratios for the 2-value multi-queue switch models.

Related Results. There is also work focusing on the multi-value multi-queue switch model
[9, 10, 21]. In this model, α(≥ 1) is the ratio between the largest and the smallest values of
packets. The current best lower and upper bounds for the non-preemptive case are ln(α) + 1 [7]
and 2 ln(α) + 4 [9], respectively, and those for the preemptive case are e

e−1 ≈ 1.581 [4] and 3− 1/α
[21], respectively. Al-Bawani and Souza [2] and Kawahara et al. [22] studied the m-value model
where arriving packets have one of m fixed values α1, . . . , αm, and packets with value αi arrive at
the ith queue.

For the unit-value multi-queue switch model, Azar and Richter [9] gave a lower bound 1.366−
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Θ(1/m) of randomized algorithms for any B and m, and an upper bound e
e−1 + o(1)(≈ 1.582) of a

randomized algorithm for any B and m. Albers and Schmidt [4] and Schmidt [37] showed that no
greedy algorithm can be better than (2 − 1/B − Θ(m−1/(2B−2)))-competitive for any B and large
enough m. They also gave a 17/9(≈ 1.889)-competitive deterministic algorithm for large enough
B. Moreover, they showed that for B = 2, the same algorithm achieves the competitive ratio of
13/7(≈ 1.858) and gave a matching lower bound for large enough m. Schmidt [37] also proposed
a deterministic algorithm whose competitive ratio is at most 17/9 for any even B ≥ 4 and at
most 17/9 + 2/9(B + 1) for any odd B ≥ 3. Furthermore, he showed a lower bound e

e−1(≈ 1.581)
of deterministic online algorithms for any B and large enough m, and a lower bound 1.465 of
randomized online algorithms for any B and large enough m. Azar and Litichevskey [8] showed a
e

e−1(≈ 1.58)-competitive deterministic algorithm for large enough B > logm. Schmidt [36] claimed
he showed a 3/2-competitive randomized algorithm, whose flaw was pointed out in [13]. Also, in
the case of m = 2, Schmidt [36] showed a lower bound of 16/13 ≈ 1.230 for any online algorithm
for large enough B. Bienkowski and Madry [12] and Kobayashi et al. [32] proved 16/13-competitive
algorithms for the randomized and deterministic cases respectively. Bienkowski [13] showed a lower
bound of e

e−1 for any online algorithm for any B and large enough m.

As for the single-queue models, the current upper and lower bounds on competitive ratios are
summarized in Table 2. There are several other models, such as shared-memory switches [19, 24, 31],
CIOQ switches [26, 11, 27, 30, 3] and crossbar switches [28, 29, 3], are also extensively studied.
Some of the recent models focus on generalizing processing times, in which each packet has its
own processing time and it needs this amount of time for transmission [17, 33, 15]. There are
comprehensive surveys on the buffer management problems (see e.g. [18, 35]).

2 Preliminaries

In this section, we formally define the online buffer management problem for the 2-value multi-queue
switch model and the 2-value relaxed model introduced in [9].

2.1 2-Value Multi-Queue Switch Model

A multi-queue switch has m input ports (FIFO queues), each of which is equipped with a buffer of
size B. The size of a packet is one, and hence each port can store up to B packets simultaneously.
Each packet has its value corresponding to the priority. In the 2-value multi-queue switch model,
each packet takes one of two values, say, 1 and α(≥ 1). We assume that the value of α is known
to an algorithm in advance. We call a packet with value 1 (α respectively) a 1-packet (an α-packet
respectively). (In the unit-value multi-queue switch model, the value of any packet is identical, say
1.)

An input is a sequence of events. An event is an arrival event or a scheduling event. We assume
that for any given input, no more than one event occurs simultaneously. At an arrival event, a
packet (say, p) arrives at one of m input ports, and the task of an algorithm (or a policy) is to
choose one of the following actions: insert p into the corresponding queue (accept p), drop p (reject
p), or drop a packet p′ existing in the current buffer (preempt p′) and accept p. Note that we
consider in this paper both preemptive and non-preemptive cases. If a packet is accepted, it is
stored at the tail of the corresponding input queue. At a scheduling event, an algorithm chooses
one nonempty input port from m ones and transmits the packet at the head of the chosen queue.
We assume that sufficiently many scheduling events occur to transmit all arriving packets.
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The gain of an algorithm is the sum of the values of transmitted packets, and our goal is to
maximize it. The gain of an algorithm ALG for an input σ is denoted by VALG(σ). For an online
algorithm ALG, if for any input σ, VALG(σ) ≥ VOPT (σ)/c, then we say that ALG is c-competitive,
where OPT is an optimal offline algorithm for σ. Without loss of generality, we can assume that
an optimal offline algorithm greedily accepts arriving packets and preempts a packet only when its
buffer is full.

2.2 Preemptive 2-Value Relaxed Model

The preemptive 2-value relaxed model is the same as the usual preemptive 2-value multi-queue
switch model defined in Sec. 2.1, except for the following relaxation: In the original model, only a
packet at the head of a queue can be transmitted at a scheduling event, but in the relaxed model,
any packet can be transmitted (that is, the buffer is not a FIFO queue).

As is the case with the preemptive multi-queue switch model, we can assume without loss of
generality that an optimal offline algorithm greedily accepts arriving packets and preempts a packet
only when its buffer is full.

2.3 Notation and Definitions

We give some notation and definitions used throughout this paper. For simplicity, the 2-value
multi-queue switch model (the unit-value multi-queue switch model and the preemptive 2-value
relaxed model, respectively) is denoted by M2 (M1 and Mr respectively). Note that M2 can be
used to describe both the preemptive and non-preemptive models. In addition, let us write OPT1

and OPTr as optimal offline algorithms for M1 and Mr respectively. Let an event time denote a
time at which at least one event occurs. In particular, we call it an arrival (scheduling) event time
if the event is an arrival (scheduling) event. Also, let a non-event time denote a time at which no
event occurs. For an event time t, t− represents a non-event time between t and the previous event
time. Similarly, t+ is a non-event time between t and the next event time. These definitions are
introduced to specify how many packets exist in a buffer immediately before and after an event.
The jth queue of the switch is denoted as Q(j)(1 ≤ j ≤ m). For an algorithm ALG for Mr or M1,

h
(j)
ALG(t) denotes the number of packets ALG holds in Q(j) at a non-event time t.

3 Algorithm DS

3.1 Dual Scheduling Algorithm

Recall that our target is a non-FIFO model Mr. The full description of our algorithm DS is given
in Fig. 3.1, but we first sketch an outline of its behavior. DS uses an online algorithm A (whose
competitive ratio is at most c) for M1 as a subroutine. Without loss of generality, we assume that
A is work-conserving [9], that is, A transmits a packet at a scheduling event whenever its buffer
is nonempty. We also assume that A greedily accepts arriving packets and can preempt a packet
only when its buffer is full. It is easy to convert any online algorithm as such without degrading
the competitive ratio.

DS uses A in two different ways, one for scheduling of α-packets and the other for 1-packets.
Therefore, it is convenient for us to think that DS is equipped with two As. To distinguish these
two algorithms, we call them in different names, “AS” for scheduling of α-packets and “OS” for
scheduling of 1-packets.
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At an arrival event (Case A), DS accepts packets greedily, by prioritizing α-packets over 1-
packets. At the same time, it runs AS and OS as follows. If an arriving packet is an α-packet,
then DS makes two copies of it and passes each copy to AS and OS. If an arriving packet is a
1-packet, then DS makes one copy and passes it to OS only. (From now on, we do not distinguish
between copies and original.) Both AS and OS then accept the passed packets greedily.

One additional operation is needed. If DS accepts a 1-packet p but OS rejects p (because its
buffer is full), then DS chooses a packet, say p′, from OS’s current buffer and associates it with p.
This correspondence is written as X(p′) = p using a function X. This operation can be interpreted
as follows: For a treatment of a 1-packet p at a scheduling event, DS refers to the behavior of OS
for the same packet p. But since OS rejected p, DS needs an alternative packet to refer to, and p′

is selected for this purpose.

At a scheduling event (Case S), DS refers to the behavior of either AS or OS, depending on
the contents of its buffer. If DS has at least one α-packet (Case AS), it runs AS for scheduling
events until either AS transmits an α-packet that DS has, in which case DS transmits the same
packet, or AS’s buffer gets empty, in which case DS does not transmit a packet. If DS has no
α-packet (Case OS), it essentially does the same operation using OS by taking the function X into
consideration. Namely, it runs OS for scheduling events until either OS transmits a packet p such
that DS has X(p), in which case DS transmits X(p), or OS’s buffer gets empty, in which case DS
does not transmit a packet.

3.2 Feasibility of DS

In this section, we prove the feasibility of Case A2.3.

Lemma 3.1 Let t be an arrival event time such that (i) a 1-packet p arrives at Q(ℓ) at t, (ii) OS
stores B packets at Q(ℓ) at t−, and (iii) DS accepts p. Then, there exists at least one packet p′

such that OS holds p′ but DS does not hold X(p′) in Q(ℓ) at t−.

Proof. Since DS accepts p at t by the condition (iii), h
(ℓ)
DS(t−) < B by the definition of buffer

management of DS. h
(ℓ)
OS(t−) = B by the condition (ii). Hence, there must be at least one packet

p′ such that OS stores p′ but DS does not store X(p′).

3.3 Basic Properties of DS

In this section, we show several lemmas that relate behaviors of DS and its subroutines AS and
OS. Among them, Lemma 3.4 is important because it relates the number of packets transmitted
by these algorithms.

Recall that in Case OS1.1, DS transmits the packet X(p) when OS transmits a packet p. In
this case, we say that “OS returns p to DS”.

Lemma 3.2 For a non-event time τ on σr, if DS stores a 1-packet p at τ , then OS stores p′ such
that X(p′) = p at τ .

Proof. We prove the lemma by induction on time. At a time just before the first event, the
statement is true because DS does not hold a packet. Let t be an event time on σr. We assume
that the statement is true at time t− and show that it is true at t+.
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Dual Scheduling Algorithm

Suppose that an event occurs at a time t.
Case A (t is an arrival event time): (suppose that a packet p arrives at Q(ℓ))

DS’s execution: X(p) := p. If h
(ℓ)
DS(t−) < B, DS accepts p. If p is an α-packet, h

(ℓ)
DS(t−) = B

and DS stores a 1-packet in Q(ℓ) at t−, DS preempts it and accepts p. Otherwise, DS rejects
p. If p is an α-packet, DS passes two copies of p to AS and OS. Otherwise, DS passes a copy
of p to OS.

AS’s execution: If AS’s buffer is not full, AS accepts p. Otherwise, AS rejects p.
OS’s execution: If OS’s buffer is not full, OS accepts p. Otherwise, OS rejects p.

DS’s execution: If h
(ℓ)
OS(t−) = B and DS accepts p, DS sets X(p′) := p in which p′ is a packet

such that OS stores a packet p′ in Q(ℓ) at t− but DS does not store X(p′) in Q(ℓ) at t−. Such
p′ exists by Lemma 3.1.

Case S (t is a scheduling event time):
Case AS (DS stores at least one α-packet): Let AS execute a scheduling event. If AS

transmits a packet p, then go to Step AS1. Otherwise (i.e. if AS does not transmit a packet),
do nothing and finish.

Step AS1: Execute one of the following two cases.
Case AS1.1 (DS stores p at t−): DS transmits p and finish.
Case AS1.2 (DS does not store p at t−): Go back to Case AS.

Case OS (DS does not have any α-packet): Let OS execute a scheduling event. If OS
transmits a packet p, then go to Step OS1. Otherwise (i.e. if OS does not transmit a packet),
do nothing and finish.

Step OS1: Execute one of the following two cases.
Case OS1.1 (DS stores X(p) at t−): DS transmits X(p) and finish.
Case OS1.2 (DS does not store X(p) at t−): Go back to Case OS.

Figure 1: Dual Scheduling Algorithm

Case 1: t is an arrival event time: Let p be a 1-packet which arrives at Q(i) at t. If DS rejects

p at t, the statement is true. Hence, suppose that DS accepts p. If h
(i)
OS(t−) < B, OS accepts p

because of its greediness and X(p) = p holds by definition. If h
(i)
OS(t−) = B, DS sets X(p′) := p for

some packet p′ in OS’s buffer, which can be executed by Lemma 3.1.

Case 2: t is a scheduling event time: If either DS executes Case AS at t or OS does not
transmit a packet p′′ at t such that DS stores X(p′′) at t−, then the statement is true by the
induction hypothesis. If OS transmits a 1-packet p′′ such that DS stores X(p′′) at t− when DS
executes Case OS at t, then OS returns p′′ to DS in Case OS1.1 and DS transmits X(p′′) at t.

We have shown that the statement is true at time t+.

Let σr be an input for DS. Let fAS(σr) be an input constructed by removing all the arrival
events of 1-packets from σr. Next, for each scheduling event e of fAS(σr), if DS executes Case
AS1.2 k times at e, then insert k new scheduling events just after e. Let gAS(σr) be the resulting
input. As we have mentioned in Sec. 3.1, we assume that the subroutine A’s acceptance policy
is greedy. Also, recall that only α-packets are passed to AS, and AS accepts them greedily and
may execute more than one scheduling events at one scheduling event of σr. It is then not hard
to see that AS’s behavior on σr as a subroutine of DS is identical to the behavior of AS on
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gAS(σr). (Later it will be shown that DS never executes Case AS1.2 and hence it appears to be
gAS(σr) = fAS(σr).) We also define fOS(σr) and gOS(σr). Let fOS(σr) be the input constructed
from σr by removing all the scheduling events where DS executes Case AS. The construction of
gOS(σr) from fOS(σr) is exactly the same as construction of gAS(σr) from fAS(σr). For example,
suppose that fOS(σr) = (e1, e2, e3, e4, e5, e6), where e2, e4 and e6 are scheduling events and the
others are arrival events, and suppose that DS executes Case OS1.2 twice, never and once when
dealing with e2, e4 and e6 respectively. In this case, gOS(σr) = (e1, e2, e

′
2, e

′′
2, e3, e4, e5, e6, e

′
6), where

e′2, e
′′
2 and e′6 are additional scheduling events. We remark that introducing gAS(σr) and gOS(σr)

allows us to analyze behaviors of AS and OS independently, and hence makes the analysis of the
competitive ratio of DS easier. Although we have mentioned in Sec. 2.3 that no two events occur
simultaneously, in gOS(σr) two or more scheduling events may occur simultaneously. This is only
for the convenience of analysis.

Lemma 3.3 For a non-event time τ on σr, ∀i h(i)OS(τ) ≥ h
(i)
DS(τ).

Proof. We prove the lemma by induction on time. At a time just before the first event, the
statement is true because DS does not store a packet. Let t be an event time on σr. We assume
that the statement is true at time t− and show that it is true at t+, namely, we assume that

∀i h(i)OS(t−) ≥ h
(i)
DS(t−) and show that ∀i h(i)OS(t+) ≥ h

(i)
DS(t+).

Case 1: t is an arrival event time: Let p be a packet which arrives at Q(j) at t. By the

induction hypothesis, clearly ∀i( ̸= j) h
(i)
OS(t+) ≥ h

(i)
DS(t+). Thus, in what follows, we will show

h
(j)
OS(t+) ≥ h

(j)
DS(t+).

If DS rejects p at t, we have h
(j)
DS(t+) = h

(j)
DS(t−) and h

(j)
OS(t+) ≥ h

(j)
OS(t−). Since h

(j)
OS(t−) ≥

h
(j)
DS(t−) by the induction hypothesis, the statement is true. If DS accepts p at t, h

(j)
DS(t+) =

h
(j)
DS(t−)+ 1. If h

(j)
OS(t−) < B, OS accepts p, that is, h

(j)
OS(t+) = h

(j)
OS(t−)+ 1. Hence, the statement

is true by the induction hypothesis. If h
(j)
OS(t−) = B, then h

(j)
OS(t+) = h

(j)
OS(t−) = B. Clearly

h
(j)
OS(t+) = B ≥ h

(j)
DS(t+).

Case 2: t is a scheduling event time and DS executes Case AS: By definition, the number
of arriving α-packets in fAS(σr) is equal to that in σr, and moreover both DS and AS greedily
accept α-packets. Hence, a packet AS transmits at Case AS is stored in DS’s buffer at the same
time, which means that DS does not execute Case AS1.2. Thus, in this case, DS transmits exactly

one α-packet at t. Hence, h
(j)
DS(t+) = h

(j)
DS(t−) − 1, where DS transmits the α-packet from Q(j).

On the other hand, since there does not exist a scheduling event at t for OS by the definition of

fOS(σr), OS does not transmit a packet at t. Hence, ∀i h(i)OS(t+) = h
(i)
OS(t−) holds. Therefore, by

the induction hypothesis, the statement holds.

Case 3: t is a scheduling event time and DS executes Case OS: Note that more than one
scheduling event may occur at one time on input gOS(σr), and OS may transmit several packets
at that time. Let xi be the number of packets p′ such that OS transmits p′ from Q(i) at t but DS
does not store X(p′) in Q(i) at t−. Also, if OS has at least one 1-packet p′′ such that DS stores
X(p′′) at t−, a 1-packet is certainly returned to DS at t by the definition of Case OS1.1. (In the
following, we assume that this packet is returned from Q(j).) Otherwise, no packet is returned. Let
yi be the number of a returned 1-packet in Q(i) at t. That is, if i = j, then yi ∈ {0, 1}. Otherwise,
yi = 0. Then,

∀i h(i)OS(t+) = h
(i)
OS(t−)− xi − yi.

All the packets which DS stores at t− are 1-packets because DS does not store α-packets at t− by
the condition of Case OS. Also, these packets are stored by OS in its buffer at t− by Lemma 3.2.
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Hence,

∀i h(i)OS(t−) ≥ h
(i)
DS(t−) + xi.

On the other hand, since DS transmits a packet when OS returns one in Case OS,

∀i h(i)DS(t+) = h
(i)
DS(t−)− yi.

Therefore by the above argument,

∀i h(i)OS(t+) = h
(i)
OS(t−)− xi − yi ≥ h

(i)
DS(t−) + xi − xi − yi = h

(i)
DS(t+) + yi − yi = h

(i)
DS(t+).

For each case, we have shown that the statement holds at t+.

Let RAS(σr) (ROS(σr)) be the number of packets which DS transmits when executing Case
AS1.1 (Case OS1.1). For a model M ∈ {M1,Mr}, an input σ on M and an algorithm ALG for M ,
define TALG(σ) as the number of packets transmitted by ALG on σ.

Lemma 3.4 RAS(σr) +ROS(σr) ≥ TOS(gOS(σr)).

Proof. For a non-event time τ on σr, let RAS(σr, τ) (ROS(σr, τ)) denote the number of packets
whichDS transmits when executing Case AS1.1 (Case OS1.1) for σr before τ , and let TOS(gOS(σr), τ)
denote the number of packets transmitted by OS before τ . To prove this lemma, it suffices to prove
the following inequality for any non-event time τ on σr:

RAS(σr, τ) +ROS(σr, τ) +

m∑
i=1

h
(i)
DS(τ) ≥ TOS(gOS(σr), τ) +

m∑
i=1

h
(i)
OS(τ). (1)

Let tF be a time after the end of the input. Since DS does not hold a packet,
∑m

i=1 h
(i)
DS(tF ) =

0. Also, clearly
∑m

i=1 h
(i)
OS(tF ) ≥ 0. On the other hand, RAS(σr, tF ) = RAS(σr), ROS(σr, tF ) =

ROS(σr) and TOS(gOS(σr), tF ) = TOS(gOS(σr)). By the above argument and Eq. (1), RAS(σr) +
ROS(σr) ≥ TOS(gOS(σr)).

We prove Eq. (1) by induction on time. At a time just before the first event, the statement
is true because no algorithm holds a packet. Let t be an event time on σr. We assume that the
statement is true at time t− and show that it is true at t+.

Case 1: t is an arrival event time: Let p be a packet which arrives at Q(j) at t. Of course,
since no algorithm transmits a packet, RAS(σr, t+) = RAS(σr, t−), ROS(σr, t+) = ROS(σr, t−), and

TOS(gOS(σr), t+) = TOS(gOS(σr), t−). If OS rejects p, h
(j)
OS(t+) = h

(j)
OS(t−)(= B). Hence, Eq. (1) is

true by the induction hypothesis because the state of queues except for Q(j) does not change. If OS

accepts p, h
(j)
OS(t+) = h

(j)
OS(t−)+1, which means h

(j)
OS(t−) ≤ B−1. Since B−1 ≥ h

(j)
OS(t−) ≥ h

(j)
DS(t−)

by Lemma 3.3, DS also accepts p. Hence, h
(j)
DS(t+) = h

(j)
DS(t−) + 1 holds. Since the state of queues

except for Q(j) does not change, Eq. (1) is true by the induction hypothesis.

Case 2: t is a scheduling event time and DS executes Case AS: DS stores at least one
α-packet at t− by the condition of Case AS, and DS transmits a packet at t, that is, it is returned to

DS in Case AS at t. Hence,
∑m

i=1 h
(i)
DS(t+) =

∑m
i=1 h

(i)
DS(t−)−1 and RAS(σr, t+) = RAS(σr, t−)+1.

Furthermore, OS is not executed because this scheduling event at t does not exist in the
inputs fOS(σr) and gOS(σr) by the way of constructing fOS(σr). Thus, TOS(gOS(σr), t+) =

9



TOS(gOS(σr), t−), ROS(σr, t+) = ROS(σr, t−), and
∑m

i=1 h
(i)
OS(t+) =

∑m
i=1 h

(i)
OS(t−). By the above

equalities and the induction hypothesis, Eq. (1) is true.

Case 3: t is a scheduling event time and DS executes Case OS: Since DS does not hold
an α-packet at t− by the condition of Case OS, RAS(σr, t+) = RAS(σr, t−). Let xi be the number
of packets p′ such that OS transmits p′ from Q(i) at t and DS does not store X(p′) in its buffer at
t−. Moreover, let yi ∈ {0, 1} be the number of 1-packets p′′ such that OS returns p′′ from Q(i) at
t and DS stores X(p′′) in its buffer at t−. Note that

∑m
i=1 yi ≤ 1 (The definitions of xi and yi are

the same as those used in the proof of Lemma 3.3). Then,

m∑
i=1

h
(i)
OS(t+) =

m∑
i=1

(h
(i)
OS(t−)− xi − yi)

holds. Furthermore, since OS also transmits a packet returned to DS,

TOS(gOS(σr), t+) = TOS(gOS(σr), t−) +

m∑
i=1

(xi + yi).

On the other hand, since DS transmits a packet when OS returns a packet,

m∑
i=1

h
(i)
DS(t+) =

m∑
i=1

(h
(i)
DS(t−)− yi)

and

ROS(σr, t+) = ROS(σr, t−) +

m∑
i=1

yi.

Therefore, Eq. (1) is true by the above equalities and the induction hypothesis.

4 Competitive Analysis of DS

In this section, we prove the following theorem:

Theorem 4.1 The competitive ratio of DS is at most c+ 2−c
α(2−c)+c−1 .

The rest of this section is devoted to the proof of Theorem 4.1.

4.1 Bounding the Numbers of α-packets

Let σr for Mr be an input for DS. Let TB,1(σr) (TB,α(σr), respectively) be the number of 1-packets
(α-packets, respectively) p such that (i) just before p arrives, its destination buffer of DS stores
B α-packets, (ii) DS does not transmit p but OPTr transmits p. Also, let TB,1(σr) (TB,α(σr),
respectively) be the number of 1-packets (α-packets, respectively) p such that (i) just before p
arrives, its destination buffer of DS stores at most B − 1 α-packets, (ii) DS does not transmit p
but OPTr transmits p. We first show that TB,α(σr) = 0.

Lemma 4.2 TB,α(σr) = 0.

10



Proof. DS accepts arriving α-packets greedily, namely, it accepts an arriving α-packet whenever
its destination buffer has at most B − 1 α-packets. Since DS never preempts an α-packet as we
have discussed in Sec. 3.1, those α-packets are eventually transmitted. Thus, Condition (ii) of the
definition of TB,α(σr) fails and hence, TB,α(σr) = 0 holds.

The next lemma shows that we can assume without loss of generality that TB,1(σr) = 0.

Lemma 4.3 For any input σr for Mr, there exists an input σ′
r for Mr such that TB,1(σ

′
r) = 0 and

VOPTr (σ
′
r)

VDS(σ′
r)

≥ VOPTr (σr)
VDS(σr)

.

Proof. If TB,1(σr) = 0, then we are done (simply let σ′
r = σr). If TB,1(σr) > 0, then let pj (j =

1, . . . , TB,1(σr)) be a 1-packet satisfying the condition of TB,1(σr). Then, construct an input σ′
r

from σr by replacing each 1-packet pj with an α-packet qj . Since at each arrival of qj , DS’s
corresponding buffer is full of α-packets, DS rejects qj . Therefore, the behavior of DS is exactly
the same for σr and σ′

r, thus VDS(σ
′
r) = VDS(σr). We can define an offline algorithm OFF for σ′

r

whose behavior is exactly the same as that of OPTr for σr. Then since OFF transmits qj for every
j, VOPTr(σ

′
r) ≥ VOFF (σ

′
r) ≥ VOPTr(σr) + TB,1(σr)(α − 1) ≥ VOPTr(σr). This completes the proof.

By Lemmas 4.2 and 4.3, the numbers of 1-packets and α-packets respectively that OPTr transmits
but DS does not are TB,1(σr) and TB,α(σr). Let T 1(σr) (T α(σr)) denote the number of 1-packets
(α-packets) which DS transmits but OPTr does not. Also, let Vcommon(σr) denote the total value
of packets transmitted by both DS and OPTr. Then,

VOPTr(σr) = Vcommon(σr) + TB,1(σr) + αTB,α(σr)

and
VDS(σr) = Vcommon(σr) + T 1(σr) + αT α(σr).

By these equalities,

VOPTr(σr) = VDS(σr)− T 1(σr)− αT α(σr) + TB,1(σr) + αTB,α(σr). (2)

By the definitions of RAS(σr) and ROS(σr),

VDS(σr) = αRAS(σr) +ROS(σr). (3)

The next lemma bounds the difference between the number of α-packets transmitted by OPTr and
DS using those transmitted by AS.

Lemma 4.4
TB,α(σr)− T α(σr) ≤ (c− 1)RAS(σr). (4)

Proof. As stated in Case 2 of the proof of Lemma 3.3, DS does not execute Case AS1.2. Hence,
we have

TAS(gAS(σr)) = RAS(σr) (5)

and
gAS(σr) = fAS(σr). (6)

11



By the definitions of c and AS (i.e. A),

cTAS(fAS(σr)) ≥ TOPT1(fAS(σr)). (7)

Let OPTr,α be the offline algorithm which accepts and transmits only α-packets transmitted by
OPTr. Using Lemma 4.2, we have

TOPT1(fAS(σr)) ≥ TOPTr,α(σr) = TB,α(σr) + TB,α(σr) + Tcommon = TB,α(σr) + Tcommon, (8)

where Tcommon denotes the number of α-packets which both OPTr and DS transmit, and the
inequality follows from the optimality of OPT1. Also, we have

RAS(σr) = T α(σr) + Tcommon. (9)

Then,

cRAS(σr) = cTAS(gAS(σr)) = cTAS(fAS(σr)) (by Eqs. (5) and (6))

≥ TOPT1(fAS(σr)) ≥ TB,α(σr) + Tcommon (by Eqs. (7) and (8))

= TB,α(σr) +RAS(σr)− T α(σr). (by Eq. (9))

The proof can be completed by rearranging this inequality.

4.2 Free Cells, p-events and f-events

Our next task is to evaluate the number of 1-packets whichDS or OPTr transmits, that is, to bound
the value TB,1(σr)−T 1(σr) from above. As we have seen in Lemma 4.4, bounding TB,α(σr)−T α(σr)
was relatively easy because gAS(σr) = fAS(σr). However, since gOS(σr) ̸= fOS(σr), it is not very
easy for 1-packets. To overcome this difficulty, in this section we introduce useful tools for analysis,
free cells, p-events, f-events, p-events, and f -events.

Recall that the size of the buffer is B. We think that a buffer consists of B cells, each of which
can store one packet. Suppose that σ is an input in {σr, gOS(σr)}, and OFF is an offline algorithm
for σ which greedily accepts arriving packets and can preempt a packet only when its buffer is full.

At a non-event time t, suppose that h
(i)
OS(t)− h

(i)
OFF (t) ≥ 0. Then, the number of OFF ’s free cells

in Q(i) at t is defined as h
(i)
OS(t)− h

(i)
OFF (t). Similarly, if h

(i)
OFF (t)− h

(i)
OS(t) ≥ 0, then the number of

OS’s free cells in Q(i) at t is h
(i)
OFF (t)− h

(i)
OS(t).

We call an arrival event at which the number of OFF ’s free cells decreases a profit-event (or
a p-event for short) for (OFF, σ). We will omit “for (OFF, σ)” when it is clear from the context.
Observe that a p-event occurs when OFF accepts the arriving packet without preemption, and OS
rejects it. Note that at the beginning of the input, the number of OFF ’s free cells is 0 for every
queue. Thus, if a p-event occurs at a time t, then there must be an event before t which increases
the number of OFF ’s free cells. We call such an event a free cell-event (or an f-event for short).
Recall that both OS and OFF accept arriving packets greedily and OFF preempts a packet only
when the buffer is full. Therefore, an arrival event cannot increase the number of OFF ’s free cells,
and hence an f -event must be a scheduling event. We give a formal definition. For a p-event ea
at Q(i) at a time t, the f -event corresponding to ea is a scheduling event es which occurs at Q(i)

at a time t′ < t satisfying the following three conditions: (i) At es, OFF transmits a packet from
Q(i) but OS does not transmit a packet from Q(i), (ii) the number of OFF ’s free cells in Q(i) is

h
(i)
OS(t−)− h

(i)
OFF (t−)− 1 just before es and h

(i)
OS(t−)− h

(i)
OFF (t−) just after es, and (iii) after es, the
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number of OFF ’s free cells in Q(i) retains at least h
(i)
OS(t−)−h

(i)
OFF (t−) until ea. Note that for each

p-event, the corresponding f -event is uniquely determined and this mapping is an injection. An
f -event is called an f -event for (OFF, σ) if the corresponding p-event is for (OFF, σ).

Similarly, we call an arrival event at which the number of OS’s free cells decreases an anti
profit-event (or an p-event) for (OFF, σ). Observe that an p-event occurs when OFF either rejects
the arriving packet or preempts a packet and accepts it, and OS accepts it. For the same reason
as above, for each p-event, there must be a scheduling event that causes increase in the number
of OS’s free cells. We call such an event an anti free cell-event (or an f-event). Formally, for an
p-event ea at Q(i) at a time t, the corresponding f-event is a scheduling event es which occurs at
Q(i) at a time t′ < t satisfying the following three conditions: (i) At es, OS transmits a packet
from Q(i) but OFF does not transmit a packet from Q(i), (ii) the number of OS’s free cells in Q(i)

is h
(i)
OFF (t−)− h

(i)
OS(t−)− 1 just before es and h

(i)
OFF (t−)− h

(i)
OS(t−) just after es, and (iii) after es,

the number of OS’s free cells in Q(i) retains at least h
(i)
OFF (t−)− h

(i)
OS(t−) until ea. Similarly to the

case for p-events and f -events, this mapping is an injection. An f -event is called an f -event for
(OFF, σ) if the corresponding p-event is for (OFF, σ).

Here, we give some definitions on the numbers of p-events, p-events, f -events and f -events. For
an input σ ∈ {σr, gOS(σr)} and an offline algorithm OFF for σ which greedily accepts arriving
packets and preempts a packet only when its buffer is full, let POFF (σ) (POFF (σ)) denote the
number of p-events (p-events) for (OFF, σ). Also, let FOFF (σ) (FOFF (σ)) denote the number of
f -events (f -events) for (OFF, σ). First we prove a simple but important lemma on these events.

Lemma 4.5 For any input σ ∈ {σr, gOS(σr)} and any offline algorithm OFF for σ which greedily
accepts arriving packets and can preempt a packet only when its buffer is full, POFF (σ) = FOFF (σ)
and POFF (σ) = FOFF (σ).

Proof. Since there exists a one-to-one mapping between p-events and f -events for each queue Q(i),
the number of p-events is equal to that of f -events. Therefore, the total number of p-events is the
same as that of f -events. Similarly, the total number of p-events is equal to that of f -events.

4.3 Bounding the Numbers of 1-packets

In this section, we bound the number of 1-packets transmitted by DS or OPTr, and finally com-
pletes the proof of Theorem 4.1. The first lemma to be proven is the following:

Lemma 4.6 TB,α(σr) + TB,1(σr)− T α(σr)− T 1(σr) ≤ POPTr(σr)− POPTr(σr).

Proof. We give a few definitions to prove this lemma. We say that an algorithm drops a packet
if the algorithm rejects or preempts the packet. That is, if the algorithm does not drop a packet
which has already arrived, it has transmitted the packet or the packet exists in its buffer.

For a non-event time t′ on σr, TB,1(σr, t
′) denotes the number of 1-packets p such that (i) p

arrives at a time t′′ < t′, (ii) its destination buffer of DS stores at most B− 1 α-packets at t′′−, and
(iii) DS drops p before t′ but OPTr does not drop p before t′.

Let TB,α(σr, t
′) be the number of α-packets p such that (i) p arrives at a time t′′ < t′, (ii) its

destination buffer of DS stores B α-packets at t′′−, and (iii) DS rejects p at t′′ but OPTr does not
drop p before t′.

T α(σr, t
′) (T 1(σr, t

′)) denotes the number of α-packets (1-packets) p such that (i) p arrives at
a time t′′ < t′, and (ii) DS does not drop p before t′ but OPTr drops p before t′.
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Figure 2: We give an example to explain p-events and f -events occurring at Q(i) for B = 4. Time,
Event and Action columns show times at which events occur at Q(i), the names of the events, and
OS’s and OFF ’s actions for the events, respectively. OS and OFF columns show the numbers of
OS’s and OFF ’s packets in Q(i) at each time, respectively. Free cells column shows the number of
OFF ’s free cells at each time. For example, at time 11, OS rejects an arriving packet but OFF
accepts it without preemption. Then, the number of OFF ’s free cells decreases and hence this
arrival event is a p-event. The f -event corresponding to this p-event occurs at time 10, at which
OFF transmits a packet from Q(i) but OS does not. It is easy to see that p-events and f -events
form balanced parenthesis.
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For any input σ ∈ {σr, gOS(σr)}, any offline algorithm OFF for σ which greedily accepts
arriving packets and can preempt a packet only when its buffer is full, and a non-event time t′ on
σ, POFF (σ, t

′) (POFF (σ, t
′)) denotes the number of p-events (p-events) for (OFF, σ) which occur

before t′.

Now we prove by induction on time that for a non-event time t′ on σr,

TB,α(σr, t
′) + TB,1(σr, t

′)− T α(σr, t
′)− T 1(σr, t

′) ≤ POPTr(σr, t
′)− POPTr(σr, t

′). (10)

The statement of the lemma is immediate by taking t′ as a time after the end of the input.

At a time just before the first event in σr, the statement is true because no packet has arrived
yet and hence all the terms are 0. Let t be an event time. We assume that the statement is true
at time t− and show that it is true at t+.

Since a p-event (p-event) occurs at only an arrival event, its number does not change at a
scheduling event. By definition, the left side of Eq. (10) does not change at a scheduling event.
Thus, by the induction hypothesis the statement holds.

Second we consider the case in which an arrival event occurs, which is categorized into the
following nine cases. Suppose that a packet p arrives at Q(i) at t.

Case 1: OPTr accepts p without preemption: An arrival event at which OPTr accepts the
arriving packet is not an p-event by definition. Thus, POPTr(σr, t+) = POPTr(σr, t−).

Case 1.1: DS accepts p without preemption: Since both DS and OPTr accept p, the left
side of Eq. (10) does not change. On the other hand, POPTr(σr, t−) does not decrease, which
means that POPTr(σr, t+) ≥ POPTr(σr, t−). By the above argument and the induction hypothesis,
Eq. (10) is true at t+.

Case 1.2: DS rejects p: Since DS rejects p, T α(σr, t−) and T 1(σr, t−) do not change. Of course,
p is a 1-packet or an α-packet, and TB,α(σr, t+) + TB,1(σr, t+) = TB,α(σr, t−) + TB,1(σr, t−) + 1

by definition. Also, by the condition of Case 1.2, DS rejects p, which means h
(i)
DS(t−) = B.

Hence, h
(i)
OS(t−) ≥ h

(i)
DS(t−) = B by Lemma 3.3. Then, OS rejects p. That is, POPTr(σr, t+) =

POPTr(σr, t−) + 1. The above argument and the induction hypothesis show that Eq. (10) is true.

Case 1.3: DS preempts a packet p′ and accepts p: By the greediness ofDS, p and p′ are an α-
packet and a 1-packet, respectively. Thus, TB,α(σr, t+) = TB,α(σr, t−) and T α(σr, t+) = T α(σr, t−).
If OPTr does not drop p′ before t+, i.e., p

′ exists in its buffer at t+ or OPTr transmits p′ before
t+, then TB,1(σr, t+) = TB,1(σr, t−) + 1 and T 1(σr, t+) = T 1(σr, t−). If OPTr drops p′ before

t+, i.e., OPTr rejects or preempts p′ before t+, then TB,1(σr, t+) = TB,1(σr, t−) and T 1(σr, t+) =

T 1(σr, t−)−1. That is, in either case TB,1(σr, t+)−T 1(σr, t+) = TB,1(σr, t−)−T 1(σr, t−)+1 holds.

Moreover, since DS preempts p′, h
(i)
DS(t−) = B. Then, h

(i)
OS(t−) ≥ h

(i)
DS(t−) = B by Lemma 3.3.

Hence, OS rejects p. Thus, POPTr(σr, t+) = POPTr(σr, t−) + 1. Therefore, Eq. (10) is true by the
above argument and the induction hypothesis.

Case 2: OPTr rejects p: Since a p-event does not occur in this case, POPTr(σr, t+) = POPTr(σr, t−).

Case 2.1: DS accepts p without preemption: TB,α(σr, t−) + TB,1(σr, t−) does not change

becauseDS accepts p which OPTr rejects. Also, T α(σr, t+)+T 1(σr, t+) = T α(σr, t−)+T 1(σr, t−)+
1. Moreover, POPTr(σr, t+) ≥ POPTr(σr, t−) + 1 because OS may accept p. Thus, the above
argument together with the induction hypothesis shows that Eq. (10) is true.

Case 2.2: DS rejects p: Since both OPTr and DS reject p, the left side of Eq. (10) does not
change. On the other hand, we can show that OS rejects p in the same way as Case 1.2 which is
stated above. Hence, POPTr(σr, t+) = POPTr(σr, t−). Since no value in Eq. (10) changes, Eq. (10)
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holds by the induction hypothesis.

Case 2.3: DS preempts a packet p′ and accepts p: By the definition of DS, p is an α-packet
and p′ is a 1-packet. Hence, T α(σr, t+) = T α(σr, t−) + 1 and TB,α(σr, t+) = TB,α(σr, t−). Also,
we can show TB,1(σr, t+)−T 1(σr, t+) = TB,1(σr, t−)−T 1(σr, t−) + 1 in the same way as Case 1.3.
Therefore, the left side of Eq. (10) does not change. On the other hand, OS rejects p, which can be
shown in the same way as Case 1.3 as well. Thus, POPTr(σr, t+) = POPTr(σr, t−). By the above
argument and the induction hypothesis, Eq. (10) is true.

Case 3: OPTr preempts a packet p′′ and accepts p: Since a p-event does not occur in this
case by definition, POPTr(σr, t+) = POPTr(σr, t−).

Case 3.1: DS accepts p without preemption: Since p is an α-packet, TB,α(σr, t−) and
T α(σr, t−) do not change. Also, since p′′ is a 1-packet, this case is similar to Case 1.3, in which
DS preempts a packet. If DS does not drop p′′ before t+, then TB,1(σr, t+) = TB,1(σr, t−) and

T 1(σr, t+) = T 1(σr, t−) + 1. If DS drops p′′ before t+, then T 1(σr, t+) = T 1(σr, t−). In addition,
we assume that TB,1(σr) = 0 by Lemma 4.3, and in the case in which DS rejects a 1-packet, the
number of α-packets in its destination buffer is at most B−1. Thus, TB,1(σr, t+) = TB,1(σr, t−)−1.

That is, in either case, TB,1(σr, t+)− T 1(σr, t+) = TB,1(σr, t−)− T 1(σr, t−)− 1. Furthermore, OS

may accept p and hence POPTr(σr, t+) ≥ POPTr(σr, t−)+1. By the above argument, the right side
of Eq. (10) may decrease by one and the left side certainly decreases by one. Therefore, Eq. (10)
is true by the induction hypothesis.

Case 3.2: DS rejects p: T α(σr, t−) does not change because p is an α-packet. Also, TB,α(σr, t+) =

TB,α(σr, t−)+1. Since h
(i)
OS(t−) ≥ h

(i)
DS(t−) = B by Lemma 3.3, OS rejects p and thus POPTr(σr, t+) =

POPTr(σr, t−). In regard to p′′ in the same way as Case 3.1, TB,1(σr, t+)−T 1(σr, t+) = TB,1(σr, t−)−
T 1(σr, t−)− 1. By the above, the values in the right side of Eq. (10) do not change, and the total
value of the left side does not change. Hence, the induction hypothesis together with the above
argument shows Eq. (10) holds.

Case 3.3: DS preempts a packet p′ and accepts p: OS rejects p because h
(i)
OS(t−) ≥

h
(i)
DS(t−) = B by Lemma 3.3. Thus, POPTr(σr, t+) = POPTr(σr, t−). Since both DS and OPTr

accept p, which is an α-packet, TB,α(σr, t−) and T α(σr, t−) do not change. If p′ = p′′, TB,1(σr, t−)

and T 1(σr, t−) do not change. If p′ ̸= p′′, we consider p′ and p′′ in the same way as Cases 1.3 and 3.1
respectively, and can show the total value of the left side of Eq. (10) does not change. For example,
if OPTr drops p′ before t+ and DS does not drop p′′ before t+, then TB,1(σr, t+) = TB,1(σr, t−)

and T 1(σr, t+) = T 1(σr, t−). By the above argument, the values in the right side do not change
and the total value of the left side does not change. Therefore, Eq. (10) is true by the induction
hypothesis.

Lemma 4.7

FOPTr(σr)−FOPTr(σr) ≤ RAS(σr) + (c− 1)(RAS(σr) +ROS(σr)) (11)

and
FOPTr(σr)−FOPTr(σr) ≤ RAS(σr) +ROS(σr). (12)

Proof. For input σr for Mr, let k denote the number of executions of Case OS1.2 for σr, that is,
the number of scheduling events added to fOS(σr) to construct gOS(σr). We call these additional
scheduling events OS-events. Let k′ denote the number of scheduling events removed from σr to
construct fOS(σr). We call these removed scheduling events OPTr-events. By definition

k = TOS(gOS(σr))−ROS(σr) (13)
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and
k′ = RAS(σr). (14)

First we will show Eq. (11). We define the following offline algorithm A′ for gOS(σr): A
′ greedily

accepts packets. At a scheduling event, A′ chooses the same queue as the one OPTr for σr chooses,
but A′ does nothing if it is an OS-event. Recall that OPTr is an offline algorithm which greedily
accepts arriving packets and can preempt a packet only when its buffer is full. Hence, A′ has the
same property.

For gOS(σr), let TA′(gOS(σr)) denote the number of packets which A′ transmits but OS does
not. Also, let TOS(gOS(σr)) denote the number of packets which OS transmits but A′ does not.
In the same way as in the proof of Lemma 4.4, we can show

TA′(gOS(σr))− TOS(gOS(σr)) ≤ (c− 1)TOS(gOS(σr)), (15)

which follows from the fact that OS is c-competitive for M1.

Now we consider the relation between the value of TA′(gOS(σr))− TOS(gOS(σr)) and the num-
bers of f -events and f -events. Suppose that, at a p-event for (A′, gOS(σr)), A

′ accepts and OS
rejects an arriving packet. Then, let z1 and z2 denote the numbers of such packets transmitted and
preempted, respectively, by A′. Similarly, suppose that, at an p-event for (A′, gOS(σr)), OS accepts
and A′ rejects an arriving packet. Then, let w1 denote the number of such packets transmitted by
OS. Suppose that, at an arrival event, OS accepts a packet p and A′ preempts a packet p′ and
accepts p. Then, let w2 and w3 denote the numbers of such packets p′ transmitted and rejected,
respectively, by OS.

By definition, TA′(gOS(σr)) = z1, TOS(gOS(σr)) = w1+w2, PA′(gOS(σr)) =
∑2

i=1 zi, PA′(gOS(σr)) =∑3
i=1wi, and z2 = w3. By these equalities, we have

PA′(gOS(σr))− PA′(gOS(σr)) = TA′(gOS(σr))− TOS(gOS(σr)). (16)

By the definition of A′, OPTr for σr can accept an arriving packet at the arrival event in which
A′ for gOS(σr) accepts the packet. Hence, if an arrival event is a p-event for (A′, gOS(σr)), it is a
p-event for (OPTr, σr) as well by the definition of p-events. Also, if an arrival event is not an p-event
for (A′, gOS(σr)), then it is not an p-event for (OPTr, σr) either by the definition of p-events. Let
x′ denote the number of arrival events which are p-events for (OPTr, σr) but not for (A

′, gOS(σr)).
Similarly, let y′ denote the number of arrival events which are p-events for (A′, gOS(σr)) but not
for (OPTr, σr). Then, we have

POPTr(σr) = PA′(gOS(σr)) + x′ (17)

and
POPTr(σr) = PA′(gOS(σr))− y′. (18)

The number of arrival events at which OPTr accepts the arriving packets without preemption and
A′ either rejects them or accepts them with preemption is x′+ y′ by the definitions of p-events and
p-events. Therefore, OPTr transmits x′+ y′ more packets than A′ does, but this is at most k′ since
OPTr has k′ more opportunities for transmission (i.e. OPTr-events) than A′. (This can be seen
as follows: Just imagine that at an OPTr-event, if OPTr transmits a packet then A′ discards the
same packet. Then the contents of buffers of OPTr and A′ are always the same, and OPTr can
transmit at most k′ more packets.) Thus,

x′ + y′ ≤ k′. (19)
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By the above argument,

FOPTr(σr) − FOPTr(σr) = POPTr(σr)− POPTr(σr) (by Lemma 4.5)

= PA′(gOS(σr))− PA′(gOS(σr)) + x′ + y′ (by Eqs. (17) and (18))

≤ PA′(gOS(σr))− PA′(gOS(σr)) + k′ (by Eq. (19))

≤ TA′(gOS(σr))− TOS(gOS(σr)) + k′ (by Eq. (16))

≤ (c− 1)TOS(gOS(σr)) +RAS(σr) (by Eqs. (15) and (14))

≤ (c− 1)(RAS(σr) +ROS(σr)) +RAS(σr). (by Lemma 3.4)

Second we will bound FOPTr(σr) from above to show Eq. (12). When a scheduling event is an f -
event for (OPTr, σr), OPTr transmits a packet from some Q(j) at the scheduling event. In addition,
OS must store at least one packet in Q(j). There exist TOS(gOS(σr)) scheduling events at which
OS stores at least one packet, which include k OS-events but not k′ OPTr-events. Since only OS
transmits packets at the k OS-events, they are not f -events. On the other hand, the k′ OPTr-events
can be f -events. Hence, the number of f -events for (OPTr, σr) is at most TOS(gOS(σr)) + k′ − k.
Therefore,

FOPTr(σr) − FOPTr(σr) ≤ FOPTr(σr) (by the fact FOPTr(σr) ≥ 0)

≤ TOS(gOS(σr)) + k′ − k

≤ TOS(gOS(σr)) +RAS(σr)− TOS(gOS(σr)) +ROS(σr) (by Eqs. (13) and (14))

= RAS(σr) +ROS(σr).

Lemma 4.8

TB,α(σr) + TB,1(σr)− T α(σr)− T 1(σr) ≤ RAS(σr) + (c− 1)(RAS(σr) +ROS(σr)) (20)

and
TB,α(σr) + TB,1(σr)− T α(σr)− T 1(σr) ≤ RAS(σr) +ROS(σr). (21)

Proof. Using Lemmas 4.6 and 4.5, we have

TB,α(σr) + TB,1(σr)− T α(σr)− T 1(σr) ≤ POPTr(σr)− POPTr(σr)

≤ FOPTr(σr)−FOPTr(σr).

This inequality and Lemma 4.7 directly imply Eqs. (20) and (21).

We are now ready to complete the proof of Theorem 4.1. If (c−1)(RAS(σr)+ROS(σr)) ≥ ROS(σr)
in Eqs. (20) and (21), then we have

ROS(σr) ≤
c− 1

2− c
RAS(σr). (22)

Otherwise, we have

RAS(σr) <
2− c

c− 1
ROS(σr). (23)
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Hence,

VOPTr(σr) = VDS(σr)− T 1(σr)− αT α(σr) + TB,1(σr) + αTB,α(σr) (by Eq. (2))

≤ VDS(σr) +RAS(σr) +ROS(σr) + (α− 1)(TB,α(σr)− T α(σr)) (by Eq. (21))

≤ VDS(σr) +RAS(σr) +ROS(σr) + (α− 1)(c− 1)RAS(σr) (by Eq. (4))

= VDS(σr) + (−α+ 2 + cα− c)RAS(σr) +ROS(σr)

= VDS(σr) +
(−α+ 2 + cα− c)RAS(σr) +ROS(σr)

αRAS(σr) +ROS(σr)
VDS(σr). (by Eq. (3)) (24)

If (c− 1)(RAS(σr) +ROS(σr)) ≥ ROS(σr), we have by Eqs. (22) and (24)

VOPTr(σr) ≤ VDS(σr) +
(−α+ 2 + cα− c)RAS(σr) +

c−1
2−cRAS(σr)

αRAS(σr) +
c−1
2−cRAS(σr)

VDS(σr)

=

(
c+

2− c

α(2− c) + c− 1

)
VDS(σr).

Also, if (c− 1)(RAS(σr) +ROS(σr)) < ROS(σr), we have by Eqs. (23) and (24)

VOPTr(σr) ≤ VDS(σr) +
(−α+ 2 + cα− c)2−c

c−1ROS(σr) +ROS(σr)

α2−c
c−1ROS(σr) +ROS(σr)

VDS(σr)

=

(
c+

2− c

α(2− c) + c− 1

)
VDS(σr).

This completes the proof of Theorem 4.1.

5 Competitive Ratios for 2-Value Multi-Queue Switch Models

In this section, we give upper bounds on several variants of M2 using Theorem 4.1 and the com-
petitive ratio of SS shown in Sec. 1. In the following results, for each value of B, we chose α
maximizing the competitive ratio; to calculate the competitive ratios and the corresponding values
of α, we used Mathematica.

5.1 Competitive Ratios for Arbitrary m

In this section, we use, as subroutines of DS and SS, the deterministic algorithm Semi-Greedy
(SGR) for M1 [37]. Its competitive ratios for several values of B are given in the second column of
Table 3 as c. In the case of large enough B, the best known competitive ratio is e

e−1 achieved by

EM
ˆEP ′

[8], and hence we use it as subroutines.

Corollary 5.1 There is a deterministic online algorithm for the non-preemptive M2 for large
enough B and any m, whose competitive ratio is at most 3.177.

Proof. There is a (2− 1
α)-competitive non-preemptive deterministic algorithm for large enough B

[7, 40] for the non-preemptive 2-value single queue model. By Azar and Richter [9] and our results,
there is a deterministic online algorithm for the non-preemptive M2 whose competitive ratio is at
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Table 3: Competitive ratios of deterministic online algorithms for the preemptive M2

B c α Competitive Ratio

2 13/7 3.335 2.5596

3 35/18 3.647 2.5996

≥ 4 and even 17/9 3.453 2.5766

5 52/27 3.587 2.5931

7 23/12 3.554 2.5894

large enough 17/9 3.453 2.5766

The third column shows the values of α that maxi-
mize the competitive ratios.

most min{c + 2−c
α(2−c)+c−1 , cα}(2 − 1

α)(≜ d). Since an upper bound c on the competitive ratio of

EM
ˆEP ′

is e
e−1 for large enough B, d takes the maximum value of

(−4 + 8e− 6e2 + 2e3 + e3/2
√
−2 + 4e− 3e2 + e3)(e2 + 2

√
−2e+ 4e2 − 3e3 + e4)

(−1 + e)(2− 2e+ e2 +
√
−2e+ 4e2 − 3e3 + e4)(−e+ e2 +

√
−2e+ 4e2 − 3e3 + e4)

< 3.177

when α = 2−2e+e2+
√
−2e+4e2−3e3+e4

(−2+e)2
.

Corollary 5.2 There are deterministic online algorithms for the preemptive M2 for any m, whose
competitive ratios are shown in Table 3.

Proof. There is a −1−α+2α2+
√
1+2α−3α2+4α3

2α2 (≜ d′)-competitive preemptive deterministic algorithm
for any B for the preemptive 2-value single queue model [34]. By Azar and Richter [9] and our
results, there is a deterministic online algorithm for the preemptive M2 whose competitive ratio is
at most min{c + 2−c

α(2−c)+c−1 , cα}d
′(≜ d). For each B, d takes the maximum value provided in the

fourth column of Table 3 by α in the third column.

For large enough B, we can obtain a better bound than 2.5766 shown in Table 3 using another

preemptive 2-value single queue algorithm and EM
ˆEP ′

for M1:

Corollary 5.3 There is a deterministic online algorithm for the preemptive M2 whose competitive
ratio is at most 2.516 for large enough B and any m.

Proof. There is a 1.282-competitive preemptive deterministic algorithm for the preemptive 2-value
single queue model for large enough B [16]. Furthermore, an upper bound c on the competitive ratio

of EM
ˆEP ′

is e
e−1 for large enough B. Therefore, the competitive ratio of a deterministic algorithm

for the preemptiveM2 is at most min{c+ 2−c
α(2−c)+c−1 , cα}·1.282 where c =

e
e−1 , which takes the max-

imum value of e
e−1 ·

3e−e2−
√
−16e+33e2−22e3+5e4

4e−2e2
· 1.282 < 2.516 when α = 3e−e2−

√
−16e+33e2−22e3+5e4

4e−2e2
.
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Corollary 5.4 There is a randomized online algorithm for the preemptive M2 whose competitive
ratio is at most 2.270for large enough B and any m.

Proof. There is a (1+α− 1
2 −α−1)-competitive preemptive randomized algorithm for the preemptive

2-value single queue model for large enough B [5]. An upper bound c on the competitive ratio of

EM
ˆEP ′

is e
e−1 for large enough B. Therefore, the competitive ratio of a randomized algorithm for

the preemptive M2 is at most min{c+ 2−c
α(2−c)+c−1 , cα}(1 +α− 1

2 −α−1) where c = e
e−1 , which takes

the maximum value of 2.2690 when α = 2.2454.

5.2 Competitive Ratios for m = 2

In this section, we use, as subroutines of DS and SS, the deterministic algorithm Segmental
Greedy (SG) for M1 for m = 2 [32]. Its competitive ratios for several values of B are given in
the second column of Table 4 as c. The values of c for 1 ≤ B ≤ 8 are not explicitly written in the
paper [32] but implied by its appendix.

Corollary 5.5 There is a deterministic online algorithm for the non-preemptive M2 for large
enough B and m = 2, whose competitive ratio is at most 2.562.

Proof. There is a (2− 1
α)-competitive non-preemptive deterministic algorithm for large enough B

[7, 40] for the non-preemptive 2-value single queue model. By Azar and Richter [9] and our results,
there is a deterministic online algorithm for the non-preemptive M2 whose competitive ratio is at
most min{c+ 2−c

α(2−c)+c−1 , cα}(2−
1
α)(≜ d). Since an upper bound c on the competitive ratio of SG

is 16/13 for large enough B, d takes the maximum value of 4(1037− 20
√
2314)/117 < 2.562 when

α = (89 + 2
√
2314)/50.

Corollary 5.6 There are deterministic online algorithms for the preemptive M2 for m = 2, whose
competitive ratios are shown in Table 4.

Proof. There is a −1−α+2α2+
√
1+2α−3α2+4α3

2α2 (≜ d′)-competitive preemptive deterministic algorithm
for any B for the preemptive 2-value single queue model [34]. By Azar and Richter [9] and our
results, there is a deterministic online algorithm for the preemptive M2 whose competitive ratio is
at most min{c+ 2−c

α(2−c)+c−1 , cα}d
′(≜ d). For each value of B, d takes the maximum value provided

in the fourth column of Table 4 by α in the third column.

Corollary 5.7 There is a randomized online algorithm for the preemptive M2 whose competitive
ratio is at most 2.056 for large enough B and m = 2.

Proof. There is a (1+α− 1
2 −α−1)-competitive preemptive randomized algorithm for the preemptive

2-value single queue model for large enough B [5]. An upper bound c on the competitive ratio of
SG is 16/13 for large enough B. Therefore, the competitive ratio of a randomized algorithm for the

preemptive M2 is at most min{c + 2−c
α(2−c)+c−1 , cα}(1 + α− 1

2 − α−1) where c = 16/13, which takes

the maximum value of 4(−13 +
√
494 + 2

√
5(7 +

√
494))/65 < 2.056 when α = (7 +

√
494)/20.
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Table 4: Competitive ratios of deterministic online algorithms for the preemptive M2 when m = 2

B c α Competitive Ratio

1 3/2 2.253 2.297

2, 3 4/3 1.853 2.169

4 13/10 1.776 2.145

5, 7 14/11 1.713 2.126

6 24/19 1.691 2.120

8 29/23 1.685 2.118

large enough 16/13 1.616 2.098

The third column shows the values of α that maxi-
mize the competitive ratios.

6 Concluding Remarks

In this paper, we have designed online algorithms DS and SS for the 2-value relaxed model.
We have improved the previous competitive ratio of 2 to min{c + 2−c

α(2−c)+c−1 , cα}, where c is the
competitive ratio of an online algorithm for the unit-value multi-queue switch model, which is used
as subroutines of DS and SS. As a result, we have improved competitive ratios for the 2-value
multiqueue switch model in several settings.

We conclude the paper by providing open questions: (i) Our policy in this paper is to use an
algorithm for M1 for designing an algorithm for M2. When determining acceptance/rejection of
packets, we give absolute priority to α-packets (than 1-packets), which we think is a correct direction
in our policy. However, we use greedy algorithms within α-packets and within 1-packets. Is there
any elaborate way for buffer management of those packets (rather than simple greedy algorithms)?
(ii) Our technique in this paper is available only for the 2-value case. Can it be extended to the
multi-value case? (iii) The competitive analysis using the relaxed model may generate overhead,
and hence may be inefficient. Can we construct better algorithms for M2 without using the relaxed
model?
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