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ABSTRACT 

We attempt to automatically detect student frustration, at a coarse-

grained level, using measures distilled from student behavior 

within a learning environment for introductory programming. We 

find that each student’s average level of frustration  across five lab 

exercises can be detected based on the number of pairs of 

consecutive compilations with the same edit location, the number 

of pairs of consecutive compilations with the same error, the 

average time between compilations and the total number of errors.  

Attempts to detect frustration at a finer grain-size, identifying 

individual students’ fluctuations in frustration between labs, were 

less successful. These results indicate that it is possible to detect 

frustration at a coarse-grained level, solely from coarse-grained 

data about students’ behavior within a learning environment. 

Categories and Subject Descriptors 
K.3.2 [Computer and Information Science Education]: 

Computer Science Education 

General Terms 
Human Factors 
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1. FRUSTRATION AND THE NOVICE 

PROGRAMMER 
With the general decline in computer science and information 

technology courses enrollment over recent years [28] (despite 

some uptick in the current recession), computer science educators 

are growing increasingly interested in promoting student retention 

using a variety of approaches. Computer science research groups 

within universities recruit undergraduates into research projects 

early in the students’ college lives [cf. 10, 26], games are used as 

capstone projects and/or to teach introductory computer science 

concepts [3], curriculum pace is reduced to give students more 

time to digest content [29], students program in pairs [30] or 

groups [13], and are guided to participate in peer-review [2] to 

stimulate conversations about their work. 

A recurring theme in these efforts is the mitigation of frustration 

among novice programmers [cf. 10, 13, 29]. Students’ self-

perception of their programming competence [4, 20] and their 

comfort levels with the subject [4] have been shown to be 

predictors of programming achievement. Many students 

experience programming as a challenge to their self-esteem. Given 

the frustrating experience of encountering bugs and being unable 

to correct them immediately [23], a student may opt to disengage 

from the programming task. 

Researchers recognize frustration is potentially a mediator for 

student disengagement and eventually attrition.  They endeavor to 

detect frustration in order to intervene in ways that will help 

students persevere [14].  Models of frustration inform tutors 

(whether human or automated) so that these interventions 

maximize student self-efficacy and support effective learning [21].   

Prior studies on the automated detection of student frustration 

have often relied upon facial expressions, eye-gaze, posture, and 

physiological signals such as skin conductance and blood volume 

pulse [cf. 9, 11, 14, 21]. The models from these experiments have 

been robust.  D’Mello and his colleagues [9] were able to 

distinguish each student’s affective state (out of a set of 5 

affective states) 42% of the time, and to distinguish frustration 

from the neutral state 78% of the time. Kapoor et al’s [14] model 

could accurately identify frustration 79% of the time.  Finally, 

McQuiggan’s model [21] reported an accuracy rate of 68%. 

Thus far, detectors of affect have not been developed for the 

domain of computer programming. Khan [15] proposed that it 

may be possible to detect programmer moods based on keystroke 

and mouse movement level data, however no further work has 

been published to this end. One interesting challenge in detecting 

student affect in introductory programming courses comes from 

the differences between the types of learning environments 

typically used in these courses, as compared to more traditional 

intelligent tutoring systems. While intelligent tutors for 

programming exist [cf. 7, 22] students must eventually learn to 

program in free-form programming environments, which allow 

the student to edit entire programs to solve a problem. Within 

these environments, available data is either much finer-grained 

(mouse movements and keystrokes) or much coarser-grained 

(compilation by compilation) than the data collected in [9. 11. 14. 
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21]. A number of studies have examined student online protocols, 

defined as all student submissions to a compiler, to determine 

student misconceptions [cf. 19] but our literature did not uncover 

any studies that have used online protocols to study student affect.  

We attempt to detect student frustration automatically based on 

measures distilled from student behavior within the program 

development environment. Automatic detection can support 

instructors in large introductory classes, where instructors do not 

have the time to monitor every student’s affective experience. 

 

2. METHODS 
This study was conducted with Computer Science freshmen and 

Management Information Systems sophomores of the Ateneo de 

Manila University during the first semester of school year 2007-

2008.  The students were taking their first collegiate programming 

course, CS21A Introduction to Computing, called CS1 in the 

Computer Science Education literature.  There were five sections 

of CS21A during this semester, with a total of 146 students. 

Although the teachers for each section varied, the textbook, 

presentation slides, examples, exercises, midterm exam, final 

exam, and programming projects were uniform. The programming 

language used in the course was Java.  During the first half of the 

semester, the students used the BlueJ Integrated Development 

Environment (IDE) [17] to complete programming exercises and 

assignments.  Ten students were randomly selected from each 

section for behavior and affect observation, for a total of 50 

students. Students whose observation or compilation records were 

incomplete because of absences or technical problems were 

deleted from the dataset.  After all the deletions, our sample was 

reduced to 40 students.  Twenty-seven were male and 13 were 

female. 

The CS21A classes individually completed the lab exercises 

within a computer laboratory.  The lab sessions were 50 minutes 

long.  They were part of regularly scheduled class time and were 

graded, so all students were expected to be present.  Each student 

was assigned a permanent seat and computer for the semester.  

Over the first nine weeks of the semester, the students were asked 

to write five small programs. During these lab periods, students 

were free to consult their books, notes, presentation slides, 

classmates and the teacher. 

As the students completed these programming exercises in BlueJ, 

the BlueJ IDE sent data about each student compilation to a 

SQLite database running in the background [18]. The saved data 

included but were not limited to the computer number, time stamp 

of the compilation, success or failure of the compilation, error 

message (if any), error message line number, name of the 

compiled file, and source code. 

During each lab period, two trained observers noted each 

student’s affective state and behavior.  In each session, the 

observers were drawn from a pool of five students currently taking 

their master’s degrees in either Computer Science or Education. 

Each of these observers had teaching experience. 

The observers were synchronized by a timed PowerPoint 

presentation with slides numbered 1 to 150, each slide lasting 20 

seconds.  During each time slide, the observers surreptitiously 

looked at a student’s facial expressions, body language, 

utterances, and interactions with the computer, fellow students or 

teacher.  The observers studied the same 10 students per section, 

per lab period. The identities of the 10 students under observation 

were not revealed at any time. Observers wandered around the 

classroom and watched the subjects from a distance.  Since the 

entire class occupied the lab during the lab period, it was fairly 

easy to disguise who exactly the observers were watching and at 

what time. 

 

The observers then coded one affective state and one behavior for 

that student for that time period. The affective states coded were 

taken from [9, 25]. Key examples of behavior of students 

experiencing each affective state are given below:  

1. Boredom –slouching, and resting the chin on his/her 

palm; statements such “This is boring!” 

2. Confusion –scratching his/her head, repeatedly looking 

at the same interface elements; consulting with a 

classmate or a teacher; flipping through lecture slides or 

notes; statements such as “Why didn’t it work?” 

3. Delight –clapping hands, thrusting fists into the air as a 

sign of victory, laughing with pleasure; statements such 

as “Yes!” or “I got it!” 

4. Surprise –jerking back suddenly or gasping; statements 

such as “Huh?” or “Oh, no!” 

5. Frustration –banging on the keyboard or the mouse; 

cursing; statements such as “What’s going on?!?”  

6. Flow – complete immersion and focus upon the system 

[8]; towards the computer or mouthing solutions to 

him/herself while solving a problem  

7. The Neutral state, which was coded when the student 

did not appear to be displaying any of the affective 

states above, or the student’s affect could not be 

determined for certain. 

The behavioral states coded were taken from [1, 25] and described 

as follows: 

1. On-task – working on the programming task 

2. On-task conversation: Domain and problem-focused– 

helping or asking for help from the teacher or another 

student about the program specifications or a Java 

construct 

3. IDE-related conversation – helping or asking for help 

from the teacher or another student about the IDE  

4. Off-task conversation – talking about any other topic  

5. Off-task solitary behavior – behavior that did not 

involve the programming task or another person (such 

as surfing the web, blogging or checking a cell phone) 

6. Inactivity – the student stares into space or puts his/her 

head down on the desk. 

7. Gaming the System – sustained and/or systematic 

guessing, such as rapid-fire compiling without 

consulting the error messages; repeatedly requesting for 

help in order to arrive at a solution [cf. 1]. 

For tractability, observers coded only the first observed affective 

state and behavior per student per time slice. After 20 seconds, the 

observers moved on to the next student. After the 10th student, the 

observers returned to the first. The observers gathered 15 affect 

and 15 behavior observations per student per lab period. 

After observations for all five lab sessions were gathered, inter-

rater reliability was computed.  Cohen’s [6] kappa was acceptably 

high at ĸ=0.65 for affect and ĸ=0.75 for behavior. 



Recall that the purpose of this study is to detect frustration in an 

aggregate fashion across all labs and not to detect frustration as it 

happens, action-by-action.  To this end, we constructed a per-

student record with the student’s frustration profile and a 

compilation profile per lab and across all five labs.  To arrive at 

the frustration profile of each student, we first computed the 

percentage of observations in which each student exhibited 

frustration within each lab period.  To arrive at the student’s 

average frustration level, we took the mean of the student’s 

frustration percentages across the five labs.    

In the process of analyzing student online protocols, Jadud [18] 

defined a construct, the Error Quotient (EQ), that assessed how 

well or how poorly a student copes with syntax errors. The EQ 

was calculated based on number of pairs of consecutive 

compilations in error, number of pairs of consecutive 

compilations with the same error, number of pairs of consecutive 

compilations with the same error location, and number of pairs of 

consecutive compilations with the same edit location. Tabanao et 

al [27] showed that EQ correlated with mid-term test scores.  To 

arrive at the compilation profile, we computed the number of pairs 

of compilations in error, number of pairs of compilations with the 

same error, number of pairs of consecutive compilations with the 

same edit location, and number of pairs of consecutive 

compilations with the same edit location (essentially the 

components of the EQ measure). We also computed for the 

average time between compilations, total number of compilations, 

and total number of errors.  The student’s overall compilation 

profile was the average of each of these measures across all five 

labs.  

3. RESULTS AND DISCUSSION 
We used Weka [31] to generate linear regression models of 

students’ per-lab and average frustration.   

Table 1 shows that a student’s average frustration level for the 

five labs is equal to 0.0033 * number of consecutive compilations 

with the same edit location – 0.0036 * the number of consecutive 

pairs with the same error + 0.0002 * the average time between 

compilations + 0.0005 * the total number of errors -0.0109. 

Factors whose coefficients were too small to make an impact on 

the model were removed.  This model achieves a weak r of 0.3178 

when tested using 10-fold cross validation. Despite the weak 

correlation, the model is still likely to be accurate enough to drive 

some forms of “fail-soft” intervention, where the costs of a mis-

assigned intervention are relatively low. 

Table 1. Weka linear regression model, predicting average 

frustration across all labs. 

 

Frustration = 

r  

BiC’ 10-fold Cross 

Validation 

0.0033 * Consecutive pairs of  

                  compilations with  

                  the same edit location + 

-0.0036 * Consecutive pairs of compilations 

                  with the same error + 

0.0002 * Average time between  

                 compilations + 

0.0005 * Total errors + 

-0.0109 

0.3178 

 

-7.86 

 

The generalizability of a model can be tested using the Bayesian 

Information Criterion for Linear Regression (BiC’), a method 

frequently used to assess the tradeoff between model fit and the 

number of parameters (which can spuriously increase model fit). 

Values of BiC’ under -6 signify that the model has significantly 

better fit than chance, given the number of model parameters [24]. 

The BiC’ value for this model is -7.86, which means that the 

model explains statistically significantly more of the variance in 

frustration than could be expected by chance, given the number of 

model parameters. 

Attempts to detect student frustration on a per lab basis, using this 

sort of coarse-grained data, were significantly less successful 

(Table 2). As with the model in Table 1, factors whose 

coefficients were too small to make an impact on the model were 

removed.  Two of the labs, labs 3 and 4, had good cross-validated 

r but poor BiC’. One lab, lab 5, had significant BiC’ but poor 

cross-validated r. This pattern of results suggests that there is 

some trend towards the models generalizing better than chance (as 

both are measures of generalizability), but that the generalizability 

is unstable.   

These findings have two major implications. First, we find that it 

is possible to automatically detect student frustration based on 

coarse-grained data such as compilation logs.  In particular, we 

can infer that a student is frustrated when, over successive lab 

periods, he or she tends to make compilation errors in the same 

spot, despite successive edits. However, detecting frustration with 

data this grain-size appears to require several sessions worth of 

data for high accuracy; a single session’s data appears to be 

insufficient to build a robust model.   

The model presented here is hence insufficiently fine-grained for 

interventions at the lab-session level, but is sufficiently fine-

grained to drive meaningful instructional interventions – after 5 

sessions, the model can detect which students are experiencing 

frustration, information that can be provided to instructors so that 

these students can receive interventions from course staff before 

frustration turns into non-retention in computer science. 

Alternatively, the student could receive a message from the system 

sympathizing with their frustration [16] and encouraging them to 

keep trying, or reminding them that effort matters more than 

innate ability [cf. 12]   

4. CONCLUSION 
Within this paper, we present an automated detector that detects 

student frustration using coarse-grained data taken from protocols 

of the interaction between students and a programming 

environment. Using Weka, we generated a linear regression 

detector of average student frustration across five lab exercises. 

The detector made its prediction based on students’ average 

number of consecutive compilations with the same edit location, 

average number of consecutive pairs with the same error, the 

average time between compilations, and average number of errors. 

This model predicted frustration significantly better than would be 

expected by chance, given the number of parameters in the model. 

Our attempts to detect frustration on a per-lab basis were less 

successful, with detector performance quite unstable when 

generalized to new data (or under simulated generalization, using 

the BiC’ measure).  This implies that it is possible to detect 

frustration using coarse-grained data but the detectors (or the 



training algorithms) need a substantial amount of data to for the 

models to be reasonably accurate.  

Table 2. Weka linear regression model, predicting frustration 

in individual labs. 

 

Lab 

No 

 

Frustration = 

R  

BiC’ 10-fold 

Cross 

Validation 

1 0.0015 * Consecutive pairs of  

                compilations in  

                error + 

-0.0029 * Consecutive pairs of  

                  compilations with  

the same error + 

-0.0002 * Average time  

                 between  

                 compilations + 

-0.0014 * Number of  

                 compilations + 

0.0016 * Total errors + 

0.0555 

-0.0135 11.06 

2 -0.0026 * Consecutive pairs of  

                 compilations in  

                 error + 

0.0066 * Consecutive pairs of  

                  compilations with  

the same error 

location + 

0.0127 

0.0136 -1.45 

3 -0.0016 * Consecutive pairs of  

                 compilations in  

                 error + 

0.0015 * Total errors + 

0.0127 

 

-0.2352 -2.43 

4 0.0003 * Total errors + 

0.0057 

-0.3472 0.88 

5 0.0014 * Consec pairs of  

                  compilations with  

the same edit 

location + 

-0.0013 * Consecutive pairs of  

                  compilations with  

the same error 

location + 

0.0003 * Number of  

                compilations + 

-0.0047 

-0.0331 -6.78 

 

In future work, we will attempt to develop a finer-grained detector 

for frustration and other affective states, using keystroke and 

mouse movement data as well as the coarse-grained semantic data 

utilized here. Thus far, most detectors of student affect have been 

based on data at only one grain-size; there may be leverage from 

combining distinct types of data to detect affect in a co-training 

(e.g. multiple unrelated signals combined into one model) process 

[5].  Determining how coarse-grained affect detectors can be 

meaningfully used to drive interventions, towards improving 

affect, learning, and course retention, is another important area of 

future work. 
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