
Coarse-Grained Detection of Student Frustration in an

Introductory Programming Course
Ma. Mercedes T. RODRIGO

Dept. of Information Systems and Computer Science,
Ateneo de Manila Unversity,

Loyola Heights, Quezon City, Philippines
+63 (2) 426-6071

mrodrigo@ateneo.edu

Ryan Shaun J. d. BAKER
Human-Computer Interaction Institute

Carnegie Mellon University
Pittsburgh, PA

+1 (412) 268-9690

rsbaker@cs.cmu.edu

ABSTRACT

We attempt to automatically detect student frustration, at a coarse-

grained level, using measures distilled from student behavior

within a learning environment for introductory programming. We

find that each student’s average level of frustration across five lab

exercises can be detected based on the number of pairs of

consecutive compilations with the same edit location, the number

of pairs of consecutive compilations with the same error, the

average time between compilations and the total number of errors.

Attempts to detect frustration at a finer grain-size, identifying

individual students’ fluctuations in frustration between labs, were

less successful. These results indicate that it is possible to detect

frustration at a coarse-grained level, solely from coarse-grained

data about students’ behavior within a learning environment.

Categories and Subject Descriptors
K.3.2 [Computer and Information Science Education]:

Computer Science Education

General Terms
Human Factors

Keywords
Novice Programmers, Affect, Frustration Detection

1. FRUSTRATION AND THE NOVICE

PROGRAMMER
With the general decline in computer science and information

technology courses enrollment over recent years [28] (despite

some uptick in the current recession), computer science educators

are growing increasingly interested in promoting student retention

using a variety of approaches. Computer science research groups

within universities recruit undergraduates into research projects

early in the students’ college lives [cf. 10, 26], games are used as

capstone projects and/or to teach introductory computer science

concepts [3], curriculum pace is reduced to give students more

time to digest content [29], students program in pairs [30] or

groups [13], and are guided to participate in peer-review [2] to

stimulate conversations about their work.

A recurring theme in these efforts is the mitigation of frustration

among novice programmers [cf. 10, 13, 29]. Students’ self-

perception of their programming competence [4, 20] and their

comfort levels with the subject [4] have been shown to be

predictors of programming achievement. Many students

experience programming as a challenge to their self-esteem. Given

the frustrating experience of encountering bugs and being unable

to correct them immediately [23], a student may opt to disengage

from the programming task.

Researchers recognize frustration is potentially a mediator for

student disengagement and eventually attrition. They endeavor to

detect frustration in order to intervene in ways that will help

students persevere [14]. Models of frustration inform tutors

(whether human or automated) so that these interventions

maximize student self-efficacy and support effective learning [21].

Prior studies on the automated detection of student frustration

have often relied upon facial expressions, eye-gaze, posture, and

physiological signals such as skin conductance and blood volume

pulse [cf. 9, 11, 14, 21]. The models from these experiments have

been robust. D’Mello and his colleagues [9] were able to

distinguish each student’s affective state (out of a set of 5

affective states) 42% of the time, and to distinguish frustration

from the neutral state 78% of the time. Kapoor et al’s [14] model

could accurately identify frustration 79% of the time. Finally,

McQuiggan’s model [21] reported an accuracy rate of 68%.

Thus far, detectors of affect have not been developed for the

domain of computer programming. Khan [15] proposed that it

may be possible to detect programmer moods based on keystroke

and mouse movement level data, however no further work has

been published to this end. One interesting challenge in detecting

student affect in introductory programming courses comes from

the differences between the types of learning environments

typically used in these courses, as compared to more traditional

intelligent tutoring systems. While intelligent tutors for

programming exist [cf. 7, 22] students must eventually learn to

program in free-form programming environments, which allow

the student to edit entire programs to solve a problem. Within

these environments, available data is either much finer-grained

(mouse movements and keystrokes) or much coarser-grained

(compilation by compilation) than the data collected in [9. 11. 14.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

ICER’09, August 10–11, 2009, Berkeley, California, USA.

Copyright 2009 ACM 978-1-60558-615-1/09/08...$10.00.

21]. A number of studies have examined student online protocols,

defined as all student submissions to a compiler, to determine

student misconceptions [cf. 19] but our literature did not uncover

any studies that have used online protocols to study student affect.

We attempt to detect student frustration automatically based on

measures distilled from student behavior within the program

development environment. Automatic detection can support

instructors in large introductory classes, where instructors do not

have the time to monitor every student’s affective experience.

2. METHODS
This study was conducted with Computer Science freshmen and

Management Information Systems sophomores of the Ateneo de

Manila University during the first semester of school year 2007-

2008. The students were taking their first collegiate programming

course, CS21A Introduction to Computing, called CS1 in the

Computer Science Education literature. There were five sections

of CS21A during this semester, with a total of 146 students.

Although the teachers for each section varied, the textbook,

presentation slides, examples, exercises, midterm exam, final

exam, and programming projects were uniform. The programming

language used in the course was Java. During the first half of the

semester, the students used the BlueJ Integrated Development

Environment (IDE) [17] to complete programming exercises and

assignments. Ten students were randomly selected from each

section for behavior and affect observation, for a total of 50

students. Students whose observation or compilation records were

incomplete because of absences or technical problems were

deleted from the dataset. After all the deletions, our sample was

reduced to 40 students. Twenty-seven were male and 13 were

female.

The CS21A classes individually completed the lab exercises

within a computer laboratory. The lab sessions were 50 minutes

long. They were part of regularly scheduled class time and were

graded, so all students were expected to be present. Each student

was assigned a permanent seat and computer for the semester.

Over the first nine weeks of the semester, the students were asked

to write five small programs. During these lab periods, students

were free to consult their books, notes, presentation slides,

classmates and the teacher.

As the students completed these programming exercises in BlueJ,

the BlueJ IDE sent data about each student compilation to a

SQLite database running in the background [18]. The saved data

included but were not limited to the computer number, time stamp

of the compilation, success or failure of the compilation, error

message (if any), error message line number, name of the

compiled file, and source code.

During each lab period, two trained observers noted each

student’s affective state and behavior. In each session, the

observers were drawn from a pool of five students currently taking

their master’s degrees in either Computer Science or Education.

Each of these observers had teaching experience.

The observers were synchronized by a timed PowerPoint

presentation with slides numbered 1 to 150, each slide lasting 20

seconds. During each time slide, the observers surreptitiously

looked at a student’s facial expressions, body language,

utterances, and interactions with the computer, fellow students or

teacher. The observers studied the same 10 students per section,

per lab period. The identities of the 10 students under observation

were not revealed at any time. Observers wandered around the

classroom and watched the subjects from a distance. Since the

entire class occupied the lab during the lab period, it was fairly

easy to disguise who exactly the observers were watching and at

what time.

The observers then coded one affective state and one behavior for

that student for that time period. The affective states coded were

taken from [9, 25]. Key examples of behavior of students

experiencing each affective state are given below:

1. Boredom –slouching, and resting the chin on his/her

palm; statements such “This is boring!”

2. Confusion –scratching his/her head, repeatedly looking

at the same interface elements; consulting with a

classmate or a teacher; flipping through lecture slides or

notes; statements such as “Why didn’t it work?”

3. Delight –clapping hands, thrusting fists into the air as a

sign of victory, laughing with pleasure; statements such

as “Yes!” or “I got it!”

4. Surprise –jerking back suddenly or gasping; statements

such as “Huh?” or “Oh, no!”

5. Frustration –banging on the keyboard or the mouse;

cursing; statements such as “What’s going on?!?”

6. Flow – complete immersion and focus upon the system

[8]; towards the computer or mouthing solutions to

him/herself while solving a problem

7. The Neutral state, which was coded when the student

did not appear to be displaying any of the affective

states above, or the student’s affect could not be

determined for certain.

The behavioral states coded were taken from [1, 25] and described

as follows:

1. On-task – working on the programming task

2. On-task conversation: Domain and problem-focused–

helping or asking for help from the teacher or another

student about the program specifications or a Java

construct

3. IDE-related conversation – helping or asking for help

from the teacher or another student about the IDE

4. Off-task conversation – talking about any other topic

5. Off-task solitary behavior – behavior that did not

involve the programming task or another person (such

as surfing the web, blogging or checking a cell phone)

6. Inactivity – the student stares into space or puts his/her

head down on the desk.

7. Gaming the System – sustained and/or systematic

guessing, such as rapid-fire compiling without

consulting the error messages; repeatedly requesting for

help in order to arrive at a solution [cf. 1].

For tractability, observers coded only the first observed affective

state and behavior per student per time slice. After 20 seconds, the

observers moved on to the next student. After the 10th student, the

observers returned to the first. The observers gathered 15 affect

and 15 behavior observations per student per lab period.

After observations for all five lab sessions were gathered, inter-

rater reliability was computed. Cohen’s [6] kappa was acceptably

high at ĸ=0.65 for affect and ĸ=0.75 for behavior.

Recall that the purpose of this study is to detect frustration in an

aggregate fashion across all labs and not to detect frustration as it

happens, action-by-action. To this end, we constructed a per-

student record with the student’s frustration profile and a

compilation profile per lab and across all five labs. To arrive at

the frustration profile of each student, we first computed the

percentage of observations in which each student exhibited

frustration within each lab period. To arrive at the student’s

average frustration level, we took the mean of the student’s

frustration percentages across the five labs.

In the process of analyzing student online protocols, Jadud [18]

defined a construct, the Error Quotient (EQ), that assessed how

well or how poorly a student copes with syntax errors. The EQ

was calculated based on number of pairs of consecutive

compilations in error, number of pairs of consecutive

compilations with the same error, number of pairs of consecutive

compilations with the same error location, and number of pairs of

consecutive compilations with the same edit location. Tabanao et

al [27] showed that EQ correlated with mid-term test scores. To

arrive at the compilation profile, we computed the number of pairs

of compilations in error, number of pairs of compilations with the

same error, number of pairs of consecutive compilations with the

same edit location, and number of pairs of consecutive

compilations with the same edit location (essentially the

components of the EQ measure). We also computed for the

average time between compilations, total number of compilations,

and total number of errors. The student’s overall compilation

profile was the average of each of these measures across all five

labs.

3. RESULTS AND DISCUSSION
We used Weka [31] to generate linear regression models of

students’ per-lab and average frustration.

Table 1 shows that a student’s average frustration level for the

five labs is equal to 0.0033 * number of consecutive compilations

with the same edit location – 0.0036 * the number of consecutive

pairs with the same error + 0.0002 * the average time between

compilations + 0.0005 * the total number of errors -0.0109.

Factors whose coefficients were too small to make an impact on

the model were removed. This model achieves a weak r of 0.3178

when tested using 10-fold cross validation. Despite the weak

correlation, the model is still likely to be accurate enough to drive

some forms of “fail-soft” intervention, where the costs of a mis-

assigned intervention are relatively low.

Table 1. Weka linear regression model, predicting average

frustration across all labs.

Frustration =

r

BiC’ 10-fold Cross

Validation

0.0033 * Consecutive pairs of

 compilations with

 the same edit location +

-0.0036 * Consecutive pairs of compilations

 with the same error +

0.0002 * Average time between

 compilations +

0.0005 * Total errors +

-0.0109

0.3178

-7.86

The generalizability of a model can be tested using the Bayesian

Information Criterion for Linear Regression (BiC’), a method

frequently used to assess the tradeoff between model fit and the

number of parameters (which can spuriously increase model fit).

Values of BiC’ under -6 signify that the model has significantly

better fit than chance, given the number of model parameters [24].

The BiC’ value for this model is -7.86, which means that the

model explains statistically significantly more of the variance in

frustration than could be expected by chance, given the number of

model parameters.

Attempts to detect student frustration on a per lab basis, using this

sort of coarse-grained data, were significantly less successful

(Table 2). As with the model in Table 1, factors whose

coefficients were too small to make an impact on the model were

removed. Two of the labs, labs 3 and 4, had good cross-validated

r but poor BiC’. One lab, lab 5, had significant BiC’ but poor

cross-validated r. This pattern of results suggests that there is

some trend towards the models generalizing better than chance (as

both are measures of generalizability), but that the generalizability

is unstable.

These findings have two major implications. First, we find that it

is possible to automatically detect student frustration based on

coarse-grained data such as compilation logs. In particular, we

can infer that a student is frustrated when, over successive lab

periods, he or she tends to make compilation errors in the same

spot, despite successive edits. However, detecting frustration with

data this grain-size appears to require several sessions worth of

data for high accuracy; a single session’s data appears to be

insufficient to build a robust model.

The model presented here is hence insufficiently fine-grained for

interventions at the lab-session level, but is sufficiently fine-

grained to drive meaningful instructional interventions – after 5

sessions, the model can detect which students are experiencing

frustration, information that can be provided to instructors so that

these students can receive interventions from course staff before

frustration turns into non-retention in computer science.

Alternatively, the student could receive a message from the system

sympathizing with their frustration [16] and encouraging them to

keep trying, or reminding them that effort matters more than

innate ability [cf. 12]

4. CONCLUSION
Within this paper, we present an automated detector that detects

student frustration using coarse-grained data taken from protocols

of the interaction between students and a programming

environment. Using Weka, we generated a linear regression

detector of average student frustration across five lab exercises.

The detector made its prediction based on students’ average

number of consecutive compilations with the same edit location,

average number of consecutive pairs with the same error, the

average time between compilations, and average number of errors.

This model predicted frustration significantly better than would be

expected by chance, given the number of parameters in the model.

Our attempts to detect frustration on a per-lab basis were less

successful, with detector performance quite unstable when

generalized to new data (or under simulated generalization, using

the BiC’ measure). This implies that it is possible to detect

frustration using coarse-grained data but the detectors (or the

training algorithms) need a substantial amount of data to for the

models to be reasonably accurate.

Table 2. Weka linear regression model, predicting frustration

in individual labs.

Lab

No

Frustration =

R

BiC’ 10-fold

Cross

Validation

1 0.0015 * Consecutive pairs of

 compilations in

 error +

-0.0029 * Consecutive pairs of

 compilations with

the same error +

-0.0002 * Average time

 between

 compilations +

-0.0014 * Number of

 compilations +

0.0016 * Total errors +

0.0555

-0.0135 11.06

2 -0.0026 * Consecutive pairs of

 compilations in

 error +

0.0066 * Consecutive pairs of

 compilations with

the same error

location +

0.0127

0.0136 -1.45

3 -0.0016 * Consecutive pairs of

 compilations in

 error +

0.0015 * Total errors +

0.0127

-0.2352 -2.43

4 0.0003 * Total errors +

0.0057

-0.3472 0.88

5 0.0014 * Consec pairs of

 compilations with

the same edit

location +

-0.0013 * Consecutive pairs of

 compilations with

the same error

location +

0.0003 * Number of

 compilations +

-0.0047

-0.0331 -6.78

In future work, we will attempt to develop a finer-grained detector

for frustration and other affective states, using keystroke and

mouse movement data as well as the coarse-grained semantic data

utilized here. Thus far, most detectors of student affect have been

based on data at only one grain-size; there may be leverage from

combining distinct types of data to detect affect in a co-training

(e.g. multiple unrelated signals combined into one model) process

[5]. Determining how coarse-grained affect detectors can be

meaningfully used to drive interventions, towards improving

affect, learning, and course retention, is another important area of

future work.

5. ACKNOWLEDGMENTS
The authors thank Matthew C. Jadud for very helpful discussions

and collaborative support. We also thank Anna Christine Amarra,

Ramil Bataller, Andrei Coronel, Darlene Daig, Jose Alfredo de

Vera, Thomas Dy, Maria Beatriz Espejo-Lahoz, Dr. Emmanuel

Lagare, Sheryl Ann Lim, Ramon Francisco Mejia, Sheila Pascua,

Jessica Sugay, Emily Tabanao, Dr. John Paul Vergara, and the

technical and secretarial staff of the Ateneo de Manila’s

Department of Information Systems and Computer Science for

their assistance with this project. We thank the Ateneo de

Manila’s CS 21 A students, school year 2007-2008, for their

participation. This publication was made possible through the

Department of Science and Technology’s Philippine Council for

Advanced Science and Technology Research and Development

grant entitled Modeling Novice Programmer Behaviors

Through the Analysis of Logged Online Protocols and

Observation and Diagnosis of Novice Programmer Skills and

Behaviors Using Logged Online Protocols, the Engineering

Research and Development for Technology program for the grant

entitled Multidimensional Analysis of User-Machine

Interactions Towards the Development of Models of Affect, the

Pittsburgh Science of Learning Center, National Science

Foundation award SBE-0354420, and Dr. Rodrigo’s 2008-2009

Advanced Research and University Lecturing Fulbright

Scholarship from the US Department of State, the Philippine

American Educational Foundation and the Council for

International Exchange of Scholars.

6. REFERENCES
[1] Baker, R. S., Corbett, A. T., Koedinger, K. R., K.R., and

Wagner, A. Z. 2004. Off-task behavior in the Cognitive

Tutor classroom: When students "Game The System". ACM

CHI 2004: Computer-Human Interaction, 383-390, 2004.

[2] Barker, L. J., Garvin-Doxas, K. and Roberts E. 2005. What

can computer science learn from a fine arts approach to

teaching?. In Proceedings of the 36th SIGCSE Technical

Symposium on Computer Science Education (St. Louis,

Missouri, USA, February 23 - 27, 2005). SIGCSE '05. ACM,

New York, NY, 421-425.

[3] Barnes, T., Richter, H., Powell, E., Chaffin, A. and Godwin,

A.. 2007. Game2Learn: building CS1 learning games for

retention. In Proceedings of the 12th Annual SIGCSE

Conference on innovation and Technology in Computer

Science Education (Dundee, Scotland, June 25 - 27, 2007).

ITiCSE '07. ACM, New York, NY, 121-125.

[4] Bergin, S. and Reilly, R. 2005. Programming: factors that

influence success. In Proceedings of the 36th SIGCSE

Technical Symposium on Computer Science Education (St.

Louis, Missouri, USA, February 23 - 27, 2005). SIGCSE '05.

ACM, New York, NY, 411-415.

[5] Blum, A. and Mitchell, T.. Combining labeled and unlabeled

data with co-training.1998. In Proceedings of the 11th

Annual Conference on Computational Learning Theory

(COLT '98), 92-100.

[6] Cohen, J. 1960. A Coefficient of Agreement for Nominal

Scales. Educational and Psychological Measurement, 20,

37-46.

[7] Corbett, A. T. and Anderson, J. R. 1992. The LISP intelligent

tutoring system: Research in skill acquisition. In J. Larkin, R.

Chabay, and C. Scheftic (Eds.), Computer Assisted

Instruction and Intelligent Tutoring Systems: Establishing

Communication and Collaboration. Hillsdale, NJ: Erlbaum.

[8] Csikszentmihalyi, M.. 1990. Flow: The Psychology of Optimal

Experience. New York: Harper and Row.

[9] D’Mello, S. K., Craig, S. D. , Witherspoon, A., McDaniel, B.

and Graesser, A. 2008. Automatic detection of learner’s

affect from conversational cues. User Modeling and User-

Adapted Interaction, 18, 45-80.

[10] Dahlberg, T., Barnes, T., Rorrer, A., Powell, E. and Cairco,

L. 2008. Improving retention and graduate recruitment

through immersive research experiences for undergraduates.

In Proceedings of the 39th SIGCSE Technical Symposium on

Computer Science Education (Portland, OR, USA, March 12

- 15, 2008). SIGCSE '08. ACM, New York, NY, 466-470.

[11] Dragon, T., Arroyo, I., Woolf, B. P., Burleson, W.,

Kaliouby, R. e., and Eydgahi, H. 2008. Viewing student

affect and learning through classroom observation and

physical sensors. In B. P. Woolf, E. Aimeur, R. Nkambou

and S. P. Lajoie (Eds), Intelligent Tutoring Systems 2008.

[12] Dweck, C.. 2000. Self-theories: Their Role in Motivation,

Personality and Development. Philadelphia, PA: Psychology

Press.

[13] Guo. J. 2008. Using group-based projects to improve

retention of students in computer science major. Journal of

Computing in Small Colleges, 23(6), 187-193, 2008

[14] Kapoor, A., Burleson, W., and Picard, R. W. 2007.

Automatic prediction of frustration. International Journal of

Human-Computer Studies, 65, 724-736.

[15] Khan, I. A., Hierons, R. M., and Brinkman, W. P. 2007.

Mood independent programming. In Proceedings of the 14th

European Conference on Cognitive Ergonomics: invent!

Explore! (London, United Kingdom, August 28 - 31, 2007).

ECCE '07, vol. 250. ACM, New York, NY, 269-272.

[16] Klein, J., Moon, Y. and Picard, R.W. 2002. This computer

responds to user frustration: Theory, design, results, and

implications, Interacting with Computers, 14, 119-140.

[17] Kolling, M. and Rosenberg, J. 2004. BlueJ v. 2.1.3.

Computer Software.

[18] Jadud, M. C. 2006. An Exploration of Novice Compilation

Behavior in BlueJ. Doctoral thesis. University of Kent, 2006.

[19] Lane, H. C. and VanLehn, K. 2005. Intention-based scoring:

an approach to measuring success at solving the composition

problem. In Proceedings of the 36th SIGCSE Technical

Symposium on Computer Science Education (St. Louis,

Missouri, USA, February 23 - 27, 2005). SIGCSE '05. ACM,

New York, NY, 373-377.

[20] McKinney, D. and Denton, L. F. 2004. Houston, we have a

problem: there's a leak in the CS1 affective oxygen tank. In

Proceedings of the 35th SIGCSE Technical Symposium on

Computer Science Education (Norfolk, Virginia, USA,

March 03 - 07, 2004). SIGCSE '04. ACM, New York, NY,

236-239.

[21] McQuiggan, S. W., Lee, S., and Lester, J. C. 2007. Early

prediction of student frustration. In A. Paiva, R. Prada, and

R. W. Picard (Eds.), Affective Computing and Intelligent

Interaction, 698-709.

[22] Ng Cheong Vee, M.-H., Meyer, B., and Mannock, K. L.

2006. Understanding novice errors and error paths in Object-

oriented programming through log analysis. Proceedings of

the Workshop on Educational Data Mining at Intelligent

Tutoring Systems 2006, 13-20.

[23] Perkins, D. N., Hancock, C., Hobbs, R., Martin, F. and

Simmons, R. 1985. Conditions of Learning in Novice

Programmers. Concept Paper. Educational Technology

Center, Harvard Graduate School of Education..

[24] Raftery, A. E.. Bayesian model selection in social research.

Sociological Methodology, 25, 111-163, 2003.

[25] Rodrigo, M. M. T., Baker, R. S. J. d., Lagud, M. C. V., Lim,

S. A. L., Macapanpan, A. F., Pascua, S. A. M. S., Santillano,

J. Q., Sevilla, L. R. S., Sugay, J. O., Tep, S. and Viehland, N.

J. B. 2007. Affect and usage choices in simulation problem-

solving environments. In R. Luckin, K. R. Koedinger, J.

Greer (Eds.), 13th International Conference on Artificial

Intelligence in Education, 145-152.

[26] Stephenson, P., Peckham, J. , Hervé, J., Hutt, R. and

Encarnação, L. M. 2006. Increasing student retention in

computer science through research programs for

undergraduates. In ACM SIGGRAPH 2006 Educators

Program (Boston, Massachusetts, July 30 - August 03,

2006). SIGGRAPH '06. ACM, New York, NY, 10.

[27] Tabanao, E., Rodrigo, M. M. T. and Jadud, M. 2008.

Identifying at-risk novice programmers through the analysis

of online protocols. Philippine Computing Society Congress

2008, (UP Diliman, Quezon City, February 23-24, 2008).

[28] Vegso, J. 2008. Enrollments and degree production at US CS

departments drop further in 2006/2007. CRA Bulletin.

Accessed 3 December 2008 from the CRA Bulletin web site:

http://www.cra.org/wp/index.php?p=139,.

[29] Whittington, K. J. and Bills, D. P. 2004. Alternative pacing

in an introductory java sequence. In Proceedings of the 5th

Conference on information Technology Education (Salt Lake

City, UT, USA, October 28 - 30, 2004). CITC5 '04. ACM,

New York, NY, 118-121.

[30] Williams, L. and Upchurch, R. L. 2001. In support of student

pair-programming. ACM SIGCSE Bulletin, 33(1), 327-331,

2001.

[31] Witten, I. H. and Frank, E. 2005. Data Mining: Practical

Machine Learning Tools and Techniques, 2nd Edition,

Morgan Kaufmann: San Francisco, 2005.

