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Markov processes that have a product form solution have become an important

computer performance modeling tool. The fact that such a simple solutlon exists for

seemingly complex Markov processes M surprlsmg at first encounter and can be

established by showing that balance equations are satisfied. In this article we attempt

to provide insight as to why such a solution form exists and demonstrate that product

form and compamon results, such as the arrwal theorem and Norton’s theorem, are

consequences of four properties satisfied by queues that satisfy partial balance Notions

of reverse processes, reversibility, and quasireversibility are developed to establish the

four properties.

Categories and Subject Descriptors: C,4 [Computer Systems Organization]:
Performance of Systems—modelmg techniques; G.3 [Mathematics of Computing]:

Probability and Statistics; 1.6 [Computing Methodologies]: Simulation and Modeling

General Terms: Performance

Additional Key Words and Phrases: Networks, partial balance, product form,

quasireverslbdity, queuing theory, reversibility

1. INTRODUCTION

The discovery that certain queuing net-
works have tractable product form solu-
tions [Baskett et al. 1975; Gordon and
Newell 1967; Jackson 1963; Whittle 1967]
has had a profound influence on com-
puter performance modeling. In such sys-
tems the stationary distribution of the
network is composed of a product of the
distributions of each queue analyzed in
isolation (subject to a normalization con-
stant). When first encountered, such a
solution is difficult to understand since
for open networks it implies indepen-
dence (of the stationary distributions) of

the individual queues, and for closed net-
works it implies that the dependence be-
tween the queues is captured by normal-
izing the independent solution over a
truncated state space. The purpose of this
article is to provide some insight into
why such solutions are obtained. We pro-
vide this insight by showing that product
form and related results, such as the
arrival theorem and Norton’s theorem,
follow from four properties of queues that
satisfy partial balance. Each of these four
properties can be understood within the
context of a simple queuing system. The
algebra for how such queues can be
formed into a network while still retain-
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ing product form is shown to follow from
the four properties. These properties
unify the approach to product form, and,
since establishing them does not initially
burden intuition with excessive notation
or algebraic manipulation, they bring to
light the reasons underpinning the solu-
tion form. A by-product of this approach
is that we clear up a possible confusion
regarding the differences between re-
versible and quasireversible processes.

Networks of queues have been exten-
sively used to model computer and com-
munications networks. Work includes
models of specific computer systems such
as IBM mainframes running the VM
[Bard 1978a; 1978b] and NIVS [Buzen
1978] operating systems, subsystems
such as DASD [Bard 1980; Brandwajn
and McCormack 1984], memory and in-
terconnection networks [Brown et al.
1977; Lam 1977; Lazowska and Zahorjan
1982; Thomasian and Bay 1984; Towrdey
1983; 1986], systems that have features
of parallel or concurrent processing
[Heidelberger and Trivedi 1982; 1983; Le
Boudec 1985; Sauer 1981; Thomasian and
Bay 1986], and models that include
blocking [Hordijk and Van Dijk 1981].
Often, the difficulty in calculating sta-
tionary measures for product form net-
works lies in the complexity of the nu-
merical calculations required to calculate

normalization constants. Much research
has focused on creating new and efficient
methods for determining performance
measures [Conway and Georganas 1986;
Conway et al. 1989; de Souza e Silva and
Lavenberg 1989; Hoyme et al. 1986; Lam
and Lien 1983; Reiser and Kobayashi
1975; Reiser and Lavenberg 1980] or by
creating approximate techniques that can
be used when product form does not hold
[Bryant et al. 1984; Chandy and Sauer
1978; Chandy and Neuse 1982; de Souza
e Silva et al. 1986; Eager and Lipscomb
1988; Krzesinski and Greyling 1984;
Krzesinski and Teunissen 1985;
Schweitzer 1979; Zahorjan et al. 1988].
Modeling of communication networks us-
ing product form networks includes work
found in Henderson and Taylor [ 1989],
Nelson and Kleinrock [1985], Reiser
[ 1979], Van Dijk [1990a; 1990b; 1991],
and Wong [1978].

The subject of product form queuing
networks is mature, and there are sev-
eral surveys of the area [Disney 1975;
Disney and Konig 1985; Gelenbe and
Muntz 1976; Lemoine 1977] and books
which have sections devoted to various
aspects of the subject [Disney and
Kiessler 1987; Kelly 1979; Lavenberg
1983; Lazowska et al. 1984; Ross 1983:
Sauer and Chandy 1981; Walrand 1988;
Whittle 1986a]. The approach in this ar-
ticle is heavily indebted to Kelly’s ele-
gant treatment of the subject. Other main
sources for the material come from two
excellent books, Wah-and [1988] and
Whittle [1986a], and a thorough survey
by Disney and Konig [19851. Arguments
often rely on viewing a Markov process
in reverse time. Kolmogorov [ 1936] ap-
pears to be the first to consider such
processes, and the theory was later ex-
tended in Reich [1957]. Viewing systems
in reverse time yields important insight
into the input-output behavior of queu-
ing systems. Burke [1956] first estab-
lished that the departure process of an
M/M/ 1 queue is Poisson and is indepen-
dent of the state of the queue. Such a
queue thus produces Poisson outputs
when presented with Poisson inputs.
Muntz [1972; 1973] called this the M =
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M property and first observed that prod-
uct form solutions arise from input/out-
put properties of queues. This approach
allows one to ignore internal details of a
queuing structure. In Muntz [1972], the
M * M property was used to establish

that partial and local balance (as defined
later in the paper) hold for product form
networks and was also used to establish
algebraically that certain queues satis-
fied properties later collectively termed
quasireversibility by Kelly [1976a]. Fur-
ther work characterizing input-output
properties of queues can be found in
Burke [1972; 1976], Daley [1976], Disney
[1975], Kelly [1976b; 1983], and Kelly
and Pollett [1983], and theoretical work
on product form networks can be found
in Chandy and Martin [ 1983], Harrison
and Williams [1990], Hordijk and Van
Dijk [ 1983a; 1983b], Kelly [1982], Pittel
[1979], and Serfozo [1989]. Previous to
much of this research, Koenigsberg [ 1958]
showed that cyclic networks of queues
had product form solutions, and Jackson
[1963] established this fact for a larger
class of networks. These results were ex-
tended to closed queuing networks by
Gordon and Newell [1967] and in terms
of migration models by Whittle [ 1967;
1986a] (where the notion of partial bal-
ance was first introduced) and by King-
man [1969]. The important BCNIP pap=.
[Baskett et al, 1975] (the acronym is
composed of a concatenation of the first
letters of the last names of the authors)
established that a useful class of queuing
networks satisfied partial balance and
also satisfied product form. This had a
profound influence on computer perfor-
mance modeling and set a direction for
further work (see Barbour [1976] and
Chandy et al. [1977] for instance). Kelly
[1975; 1976a] also independently estab-
lished that product form holds for certain
classes of networks.

Two types of networks are commonly
distinguished: open networks, which have
external arrival streams for all classes of
customers, and closed net works, in which
there is a fixed population of customers
for all classes of customers. For open net-
works, product form implies that the sta-

tionary distribution is a product of indi-
vidual queue distributions obtained by
analyzing each queue with an appropri-
ately modified arrival rate to reflect the
routing of traffic in the network. For
closed networks, computational difficul-
ties emerge since a normalization con-
stant must be calculated so that proba-
bilities sum to unity over a restricted
state space [Buzen 1973; Chandy and
Sauer 1980; McKenna and Mitra 1982;
Reiser and Kobayashi 1975]. An impor-
tant property of closed networks is that
the distribution of the system seen by a
customer in transit between queues (but
not yet resident in any queue) is the
same as the stationary distribution of a
system that does not contain the transit
customer. This is a form of an arrival
theorem [Lavenberg and Reiser 1980;
Melamed 1982; Sevcik and Mitrani 1981].
This insight led to an important paper by
Reiser and Lavenberg [ 1980] that derives
a set of recurrence equations that can be
used to compute derived quantities, such
as mean queue lengths, without calculat-
ing a normalization constant. This proce-
dure, called Mean Value Amalysis, has
had a major influence on the application
of closed queuing networks to model com-
puter systems.

In this article, we concentrate on the
mathematics leading up to product form
and do not consider difficulties associ-
ated with the computational aspects of
the problem. The basic mathematical
structures that we consider are Markov
processes which satisfy a set of balance
equations called partial balance. For such
processes, the underlying mathematics
that implies product form is often ex-
pressed in terms of probabilistic relation-
ships that are found between events of
the Markov process and specified sets of
states. Such a representation does not
require an interpretation of how such sets
and transitions are reflected in the sys-
tem that is modeled by the Markov pro-
cess. In the special case of a queuing
network, one can create a correspon-
dence between states of the queues with
sets of states found in the underlying
Markov process. Such a correspondence
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can also be established between cus-
tomer events in the queuing network and
transition events in the Markov process.
Thus, the abstract theory developed for
Markov processes can be applied to that
of the actual queuing network.

As an example of this correspondence,
suppose the state of a Markov process
that models a queuing network is a vec-
torn = (nl, 72~,. ... n~), K> I,where n,,
1< i < K, is the number of class z cus-

tomers in the system. The set of all possi-
ble queuing states that can exist when a
class i customer arrives to the system
corresponds to the set of all possible
states of the Markov process that can
exist when a transition causes the value
of n, to increase by 1. Although we con-
centrate on queuing-network applica-
tions of product form networks (there are
many other applications that do not cor-
respond to queuing networks such as
polymerization models and genetic mod-
els) we fxnd it more convenient to derive
the basic mathematics of product form in
the abstract paradigm of Markov process
theory rather than in the specific terms
of queuing networks. This approach has
the advantage of presenting the underly-
ing mathematics of product form in a
general, abstract, setting. Later, when
discussing how these results can be used
to model networks, we switch over to the
ideology of queuing networks.

In Section 2 we present preliminary
results regarding Markov processes and
introduce the notions of reverse time pro-
cesses, reversibility, and quasireversibil-
ity. The four properties of partial balance
that are heavily used in product form
networks are also established in this sec-
tion. Partial balance is an important
principle behind product form, and we
fully explore its ramifications in this sec-
tion. Our emphasis is on product form as
found in networks of quasireversible
queues. Although product form can hold
when quasireversibility is not satisfied,
quasireversible networks are frequently
found in applications, and concentrating
our attention to this type of network is
not, in our opinion, unduly restrictive. In
Section 3 we show how individual

quasireversible queues can be joined into
networks that preserve quasireversibil-
ity. Such networks have product form
solutions. In Section 4 we present our
conclusions.

2. PRELIMINARY RESULTS

In this section we define our notation
and establish fundamental properties of
Markov processes and their time reversal
counterparts. We denote sets in calli-
graphic type style (i.e., ~’, %) and will
denote the union of sets %’ and Y as
{%, % }. The notation {&C}~. ~ will repre-
sent the unio~ of sets Y; over c, i.e.,

u:=l.~:, and % will denote the comple-
ment of set 1~ with respect to some uni-
versal set.

2.1 Preliminary Definitions

We let S’ be a countable set of states and
let X(t), –~ < t < M, be a Markov pro-
cess defined on j’. Throughout this arti-
cle we assume that X(t) is time homoge-
neous, irreducible, and stationary [Ross
1983]. We will sometimes suppress the
time dependency in our notation of X(t).
The state transition rate from state i to
state J, i, J“ E P, is defined as

q(l, J)

‘[

P[X(t + ~) =jl X(t) = i]
_ lim, ~ ~ i +J’,,

T

o, L=J,

(1)

and we define the total transition rate
from state i as

The stationary distribution of X is de-
noted by W( i), i G Y, and is equal to the
fraction of time that the process spends
instate i. Fortl<t2< ,.. <t~jm>l,
the joint distribution of X is defined to
be
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L7(il, iz, . . ..i.n; tl, ta, tin), tm)

-PI X(tl) = il, X(tz)

=iz, ..., X(t,n)= in,]. (3)

The joint distribution is the total proba-
bility of the set of paths where X is
found in state i at times tJ,1< j < m.

The probabihty flux from state i to

state J“ is defined as

F(i, j) = m(i)q(i, j), i GY (4)

and is equal to the time average transi-
tion rate out of state i to state j. More
generally, we define the probability flux
between two subsets of M’, ?(, and 9“, as

F(%’,y ) = ~ F(u, u). (5)
UEY[, UE7

The time reversal of a stationary
Markov process X on the state space
about the time r is defined to be the
process Xr( t ) - X(T – t) and corre-
sponds to viewing the process backward
in time about the pivot T. Under the

given assumptions of X it can be shown
that X‘ is also a time homogeneous, ir-
reducible, and stationary Markov process
[Kelly 1979]. These assumptions imply
that selection of T is arbitrary since, as
in the forward process, properties of the
reverse process do not depend on abso-
lute time. We henceforth set the pivot of
time reversal to be ~ = O and will call
process X(t) and X’(t) - X( –t) the for-
ward and reverse processes, respectively.

We let qr(i, j) and qr(i), i,j G.9’, be
the transition rates and total transition
rate, respectively, of the reverse process
and let m‘ ( i ) be its stationary distribu-
tion. In general, the transition rates of
the reverse process differ from that of the
forward process. As an example, suppose
that q(i, j) + O and q(j, i) = O for some
process. Viewing the process in reverse
time shows that q ‘(j, i) + O, and thus
the forward and reverse transition rates
are not equal. Since reversing time does
not affect the fraction of time a process
spends in a state, the stationary distribu-
tions of both the forward and reverse

process are identical, i.e., m ‘(i) = n(i),

i = S. The joint distribution of the re-
verse process and probability flux of the
reverse process are defined similarly to
that of the forward process, i.e.,

!Zr(il, iz, . . ..im. tl, tz, tnZ)tnZ)

=PIXr(tl) = il, Xr(tz)

=iz, ..., X’(tnl) = i,. ]

=PIX(–t,,, )=i~, X(–tn_l)

=i~ ~, ..., X(–tl)=il] (6)

and

Fr(i, j) - nr(i)qr(i, j)

= m-(i) qr(i, j), i,j G,Y’, (7)

with a similar form of probability flux for
sets (5), We note that, by definition, the
joint distributions for the forward and
reverse process satisfy

~(il, iz, . . ..z~. “tl, t2,... ,tnz)

=@ ’(i~l, i,~_l,... ,iz, il;

–t,,, , –tnz.l,... , –t2, –tl). (8)

It is important to note that equality of
the stationary probabilities for the for-
ward and reverse process does not imply
equivalence of the joint distribution of
these processes. The joint distribution is
a more precise characterization of the
process since it specifies the probability
of evolving along a certain set of paths
rather than simply specifying the frac-
tion of time the process spends in a given
set of states.

Processes that have the property that
the joint distribution of the forward and
reverse process are equal are said to be
reversible. Specifically, a process is re-
versible if

~(il, iz, . . ..i~. ;tl, tz, t~), t~)

=~r(il, zz, . . ..z~. ,“tl, t2, . . ..t.n)

(9)

=~(z~, i,~_l, . . .. il.

–t,n, –t ~_l,... tl)l). (10)

This definition implies that reversible
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processes are statistically identical in
forward or reverse time and implies that
n(i)q(i, J“) = Wr(i)qr(i, J“) and conse-
quently that q(i, j) = qr(i, j). We will
frequently make use of this characteris-
tic of reversible processes to derive re-
sults that are difficult to obtain through
other means. We record here that, be-
cause of this statistical equivalence, the
probability flux of the forward and re-
verse process must be equal, i.e.,

F(2Z,7 ) –F’(Y/, 7 ) = O.

Reversibility Balance Equations

(11)

2.2 Balance Equations for the Forward and

Reverse Process

To determine the stationary distribution
of the process we must find values of
m(i), i E Y’, that satisfy global balance
equations. These equations can be ex-
pressed as a conservation law of proba-
bility flux and are given by

F(z, ~) – F(Z,2’) = O,

Global Balance Equations (12)

where ?[ is any set in Y’ and where ~ is
its complement with respect to >, A solu-
tion to (12) for all Z’ that is normalized to
sum to unity is the unique stationary
distribution of the process [Ross 1983]. A
convenient way to represent ( 12) is shown
in Figure 1. An arc from state i to state j
in this figure is assumed to have a di-
rected probability flux on it equal to
F( i, j). Equation (12) shows that the
probability flux into and out of any sub-
set of states is equal. By careful selection
of set %’, we can sometimes use the struc-
ture of a Markov process to determine a
possible solution (a guess) of the global
balance equations and then normalize it
to sum to unity. The solution can then be
checked by showing that it satisfies (12).

As an example of such a procedure,
consider a birth–death process. Birth
transitions in state i occur at rate Al, i >

0, and death transitions in state i occur
at rate p,, z > 0. We will think of this

process as a queuing system in which the
action of the scheduling and servicing
policy of the queue in state i is such that
customers arrive at rate A, and depart at

rate I-L,( I.-Lo= O). One context for such a
system is a first-come first-serve, single-
server queue where customers require a
unit exponential service and the server
works at rate p, when there are i cus-
tomers in the queue. Other service and
scheduling assumptions also lead to the
same Markov process.

Setting 7/= {O, 1,..., i – 1},i >1, and
using the global balance equations (12)
show that

=F(i–l, i)– F(i, i–l)=O,

i >1, (13)

and thus that

~(i) AL–1
izl. (14)

m(i–l)– A,’

Equations (14) suggest that n(i) has the
form of a product of the ratio of transi-
tion rates. We guess a solution of the
form

Normalizing it with

implies that the guessed stationary prob-
abilities are given by

(17)

(a product with an empty range is de-
fined to be equal to 1). It is easy to check
( 17) to show that it satisfies the global
balance equations and that the probabili-
ties sum to 1. Thus (17) is the stationary
distribution of the process.

We shall shortly see that, like birth-
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Detailed Balanc~ Parhal Balance

e ●

,_#/’
i /’

Figurel. Balance equations.

death processes, all reversible Markov which, after dividing by dt and letting
processes have solutions that can be dt s 0, and using (1) implies that

written as products of the ratios of tran-
sitions rates (15), Before proceeding to 7r(i)q(i, h) = 7r(k)qr(k, i). (21)

this, we first derive equations satisfied
by the reverse transition rates. Use (8) to Summing this equation over h and using

write global balance for the reverse process also
shows that

P[X(t +dt) =k, X(t) =i]

=P[Xr(–t)=i,
q(i) = q’(i). (22)

Xr(–t–dt)=h] (18) It is convenient to record the result of

=P[Xr(t+dt) =i, Xr(t) =h]
(21) in terms of probability flux for any

~~~, two disjoint subsets ~~, z ● Y,

F(2Y,7’-F’(7, %)=O
where (19) arises from (18) by shifting
the process by 2 t + dt time units. Since Reverse Balance Equations (23)

the process is time homogeneous and sta-
tionary, this shift in time does not change Equations (21-23) must be satisfied by

the joint probability. We rewrite (19) as the reverse transition rates. They show
that we can deduce the reverse transition

~(i) P[X(t + dt) = klX(t) = i] rates after we know the stationary distri-
bution, or alternatively we can deduce

= wr(k)P[Xr(t + dt)
the stationary distribution after we know

= ilXr(t) ==k] (20) the reverse transition rates. Since both
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the stationary distribution and reverse
transition rates are not known before
hand, it might appear at first that the
reverse balance equations are not practi-
cally useful. But suppose we can simulta-
neously guess values for both the reverse
transition rates and the stationary prob-
abilities that satisfy (21) and (22 ) (and

consequently that also satisfies (23)).
Does our guess correspond to the actual
values of the stationary probability dis-
tribution and the reverse transition rates

(i.e., are the guessed values of n(i) and
q’ (i, j) correct)? To see that they are cor-
rect, we sum (21) over i

~ 7T(i)q(i, k)
lEY

= ~ m(h)qr(k, i) (24)
rEY

= n(k) ~ q(h, i) From (22),
Le-r

(25)

and thus the guessed values of n(i) and
q‘( i, j) satisfy global balance.

Often it is the case that the structure
of the reverse process is evident by imag-
ining the process running backward in
time, and we can often guess a form for
the structure of the stationary probabili-
ties. In such cases, algebraic experimen-
tation can often be used to hone in on the
solutlons for the stationary probabilities
and reverse transition rates, and then
the reverse balance equations can be used
to validate the derived solution. Al-
though it might seem futile to attempt
heuristic guessing to determine solutions
for complex processes, we will later de-
rive the stationary dlstrlbutlon for the
entire family of quasireversible queuing
networks in exactly this manner. The
surprising thing about obtaining a result
of this magnitude in this ad hoc manner
is that the proposed guess is motivated
largely by the desire to have a tractable
solution rather than by any deep, pene-
trating insight. The reader has perhaps
already anticipated, from the introduc-
tory material, the form of the guess.

2.3 Reversibility and Detailed Balance

We can deduce the reverse transition
rates for one class of Markov processes.
Comparing the reversibility balance
equations (11) to the reverse balance
equations (23) shows that for reversible
processes

F(w,7 ) =F(7 ,7/),

Detailed Balance Equations (26)

and thus that

m(i)q(z, j) = m(j)q(j, i), i,je~.

(27)

It can be shown that detailed balance is a
necessary and sufficient condition for a
process to be reversible [Kelly 1979].

The stationary probabilities for these
reversible processes can be obtained in

the same manner as in the birth-death
example. Pick a starting state s = >’, and
for each state i E 2’ find any sequence of

. .
states s=jl, l,jt, z, . . ..~t. m = i,rnl 2 1,

so that dj, h>j, /.+ I )>o, l<k< m-

1. Such a sequence exists for all states
1 e ~ since X is irreducible. Analogous

to (15) and (17) let

(28)

where

k=l,2,..., nzl ,1, (29)

is the ratio of the forward to the reverse
rate for step k along the sequence of
states selected for the i th state. Normal-
izing (28) we obtain

Thus the form of the solution for the
stationary distribution for reversible pro-
cesses is a ratio of products of rates as in
the birth–death example. Since we can
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pick any sequence of states to derive (30),

it follows that the rates along any span-

ning tree of the state space of a reversible
process are sufficient to determine its
stationary distribution. This observation
leads to some interesting conclusions. For
example, for a given spanning tree it
shows that changes to transition rates
not contained in the spanning tree that
keep the process reversible do not affect
the stationary distribution of the process.

Detailed balance is a restrictive con-
servation law that is graphically shown
in Figure 1. From it we can derive a way
to determine if a Markov process is re-
versible from inspection of its transition
rates. Let ,jl, J’z, . . . J“,)?+ ~, m > 0, be any

sequence of states that satisfies jv, + ~ =
jl. If the process is reversible, then de-
tailed balance implies that

m(jk)q(jk, J”~+l) = fiI~k+l)~(J”k+l>~k)>

I<f% <m, (31)

and

) (32)W(J”n)q(J”~, J”l) = w(jl)~~JI>Jn~ .

Multiplying the left and right-hand sides
of (31) for 1 < k < m and (32) and can-
celing the common probability factors
implies that

q(jl, j2)q(j2, j3)... q(jm, j1)

= q(jl,jm)q(~,n>~,n-l )... q(j2, j1)

(33)

are satisfied if the process is reversible.
Another argument can be used to estab-
lish that if (33) is satisfied for all se-
quences of states, then the process is
reversible. This criterion is called Kol-
mogorov’s criterion [Kolmogorov 1936]
and is often used to establish the re-
versibility of a process. Each side of (33)
can be thought of as a flow of transition
rates along one direction, and the equal-
ity thus implies that there is no net cir-
culation of this flow in the state space. It
immediately follows that all Markov pro-
cesses that have a state transition dia-
gram that forms a tree with bidirectional
arcs, regardless of transition values, are

reversible. Here Equation (33) is trivially

satisfied.
Returning to the birth–death example,

since the state space is a tree, it immedi-
ately follows that the process is re-
versible. Thus the process is statistically
identical in forward and reverse time. We
apply this result to establish that the
arrival and departure processes from the
queue are statistically identical. The ar-
rival and departure processes are defined
to be the times at which customers join
and leave the queue, respectively. Ar-
rivals and departures in the forward pro-
cess cause X to increase or decrease by
one customer, respectively. An increase
(decrease) of one customer in forward
time, however, corresponds to a decrease

(increase) of one customer in reverse time.
Thus, arrivals and departures of the for-
ward process correspond to departures
and arrivals in the reverse process, re-
spectively. Since both the forward and
reverse processes are statistically identi-
cal, the arrival process of the forward
process is statistically identical to the
arrival process of the reverse process. The
correspondence of reverse arrivals and
forward departures thus implies that the
arrival and departure processes of the
forward process are statistically identi-
cal, as claimed. There is a striking con-
trast to the difficulty in obtaining this
result using algebraic techniques [Burke
1956; 1972; 1976] with the ease of the
above argument.

To continue the above line of reason-
ing, assume that arrival rates are inde-
pendent of the state, At = A, i >0. It then
follows that the arrival and departure
processes are both Poisson with rate A
This conclusion initially appears to vio-
late intuition since it is invariant to the
selection of the values of the service rates
as long as the system permits a station-
ary distribution. Although it is clear that
the average customer departure rate
must be A since the queue is stationary,
it is not clear that the departure process
must have independent interdeparture
intervals. We are led to believe that we
could arrange service rates so as to force
departures to occur in clusters. For ex-
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ample, consider setting the service
as follows

(

e, l<i <N,~, E
p, N<i,

rates

(34)

for a given value of N, O s N < ~, and
● > 0. The system is stationary provided
that A/N <1. For any value of N and
8,0<8< 1, we can select 6 so that the
probability of having at least N cus-
tomers in the queue is greater than 8. As
an example, suppose we select N = 10134
and 6 = 1 – 10– A31. Thus the process has
fewer than 1013& customers less than
10’431 x 100 percent of the time. This
seems to imply that the departure pro-
cess would frequently consist of a series
of exponential interdeparture intervals at
rate w when the queue length is greater
than N with exponential interdepartures
at rate c during the infrequent times
that the queue length was below N. How
then can the departure process have in-
dependent interdeparture intervals and
be Poisson at rate A as we have already
shown?

Intuition leads us astray in the above
argument since it misses a subtle depen-
dency. The departure process is deter-
mined not by the stationary distribution,
but rather by the joint queue length dis-
tribution. But the departure process and
the time during which the queue length
is greater than N (which is also deter-
mined by the joint queue length distribu-
tion) are not independent of each other.
The “intuitive argument” presented
above ignores this dependency by focus-
ing only on the nature of the stationary
distribution.

2.4 Quasireversibility

One important property arises when we
consider the birth–death example in the
case where the arrival rates are indepen-
dent of the state of the system, i.e., A, =
A, i >0, Since we will have recourse to
discuss this process repeatedly in the ar-
ticle, we will call it the constant arrival

birth–death process. Suppose that, at a
random time, we observe both the state

of the system and its future-arrival
stream. Clearly these are independent
since, for all states, arrivals are Poisson
with rate A But since arrivals in the
forward process correspond to departures
in the reverse process and since the pro-
cess is reversible, it must be the case
that the state of the system at a random
time is independent of the departure pro-
cess prior to that time, and thus both the
arrival and departure processes are Pois-
son. It is important here to note that if
arrivals are state dependent, then the
state of the system at a random time and
its future arrivals are not independent

(here the probability of an arrival within
dt seconds in state i is Al dt which clearly
is state dependent).

A new property, that was first identi-
fied by Kelly [ 1976a], emerges from the
above discussion, which captures a type
of independence of both the arrival and
departure processes from the state of the
system [Burke 1956; Muntz 1972; 1973].
We will define this property within the
context of a multiple-class queue. Sup-
pose there are C, C > 1, classes of cus-
tomers that arrive and are serviced by a
queuing system. The Markov process as-
sociated with this system is said to be
quasireuersible if the state of the process,
for all c, 1< c < C, at time t is indepen-
dent of the arrival process of class c cus-
tomers after time t and is also indepen-
dent of the departure process of class c
customers prior to time t. Note that this

definition, with the identification of ar-

rivals (resp., departures) in the forward

process with departures (resp., arrivals)

in the reverse process, implies that the

reverse process of a quasireversible queue

is also quasireversible. If we think of a

queue as a filter which takes a set of

input processes and produces a set of

output processes, then, as shown below,

quasireversible queues have the property

that Poisson streams pass through such

a filter statistically unchanged (this is

the M * M! property of Muntz [1972]).

Queuing systems are typically easier to

solve if’ governed by Poisson arrival and

departure processes. This, with the fact

that the state of a quasireversible queue
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is independent of both of these processes,

suggests that a network of such queues
would also have states that were mutu-
ally independent. These observations
provide the first glimpse as to why
input-output relationships lead to queu-
ing networks that have tractable analy-
sis [Kelly 1976a; Muntz 1972; 1973].

The above arguments show that the
constant-arrival birth–death m-ocess is
quasireversible whereas the b;rth–death
process with state-dependent arrivals is
not. Both systems, it is important to note,
are reversible. It is easv to construct ex-.
amples of Markov processes that are
quasireversible but not reversible. Con-
sider the birth–death aueue with con-.
stant arrival rates where we “split” state

1 into two states, say states 1. and lb.
Set the transition from state O to state 1

(resp., state 1~) to be equal to p~ (resp~,
(1 – p) A) and the transition from state 2
to state 1,, (resp., state lfi ) to be equal to
(1 – p )p (resp., pp). The-transition rates
from state 1. and lb are similar to the
original birth–death queue (i.e., the rate
from these states to state O (res~.. 2) is
given by p (resp., A)). It is simpl~ to see
that the sum of the stationary probabili-
ties of state 1,, and 1~ in this modified
process is equal to this stationary proba-
bility of state 1 in the original birth-
death process. It is also clear that this
splitting of state 1 does not influence the
departure process from the system. The
modified process, however, is not re-
versible. This is easilv seen from Kol-
mogorov’s criteria b; comparing the
product of transition rates in both direc-
tions of the cycle O ~ 1,, ~ 2- lb e O.
Equality of these two products is only
achieved if p = 1/2. These examples
show that reversibility and quasire-
versibility are entirely separate notions
even though the word “quasireversibility”
seems to imply a superset relationship
with “reversibility.” In general, quasire-
versibility (resp., reversibility) does not
imply reversibility ( resp., quasireversibil -
it y).

We have now established that the con-
stant-arrival birth–death process is
quasireversible and also has Poisson ar-

rival and departure processes that are
independent of the state of the queue. We
now show that this input-output prop-
erty is shared by all quasireversible
queues. The details of the following
derivation were first presented by Muntz
[1972] and the approach here follows
Kelly [1979]. Let t be a random time,
and let >;(i), 1 < c s C, i =Y, be the set
of states that contain one more class c
customer than in state i with the same
number of customers of other classes. The
arrival rate of class c customers given
that X(t) = i is given by

A(c, i) = ~ q(i, k), i ●Y’, (35)
ke~, ([)

and thus the average arrival rate of class
c customers is given by

A(c) = ~ m(i) A(c, i). (36)
1EY

By definition of quasireversibility, how-
ever, the arrival process of class c cus-
tomers subsequent to t is independent of
the state at time t, and thus N c, i) is
independent of i. Using (35) and (36) we
write

A(c) = ~ q(i, k), (37)
k=/{(2)

where i is any state in .Y’. The probabil-
ity of an arrival of a class c customer
within (t, t + dt ) is independent of any
event prior to time t and is given by
A(c )dt, which shows that the arrival of
class c customers is a Poisson process.

Assume that all arriving customers
leave the system and that the queue is in
equilibrium. This, combined with the
identification of arrivals (departures) of
the forward process with departures
(arrivals) of the reverse process and the
fact that the queue viewed in reverse
time is also quasireversible, implies that
the departure process is also Poisson with
rate A(c). This argument also shows that
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We can obtain substantially more from
the above argument. The reverse balance
equations (23) show that

7r(i) ~ qr(i, k) = ~ 7r(/2)q(h, i).

ke /’([) k-~<(z)

(39)

Using (37) and (38) in (39) shows that

7r(i) ~ q(i, k) = ~ m(h)q(k, i)

k =>(z) ke.Y;(zl

(40)

and also (obtained by subtracting this
from a global balance) that

7r(L) ~ q(z, h) = ~ 7T(k)q(k, i).

k=<>.(z) k&Y;(t)

(41)

Rewriting in terms of probability flux we
have for all c, 1 s c s C,

F(i, Y;(z)) – F(.Y, (i), i) = O,

F(i,s~) - F(>;(i), i) = O, i GY’.

Partial Balance Equations (42)

These equations imply that the probabil-
ity flux due to arrivals of class c jobs
from a state i is equal to the probability
flux due to departures of class c jobs that
result in state i. In contrast to detailed
balance which was necessary and suffi-
cient for the reversibility of a process,
partial balance is only a necessary condi-
tion for quasireversibility. There are pro-
cesses that satisfy partial balance that
are not quasireversible (e.g., those that
do not have Poisson arrival and depar-
ture processes). The essence of product
form, as will be seen later, is found in the
partial balance equations. Networks of
quasireversible queues have product form
solutions because they also satisfy
partial balance. It is important to note,
however, that product form can exist in
systems that do not satisfy quasire-
versibility.

To discuss other versions of partial bal-
ance, let 7/, ( i) be the set of states that
have one less class c customer than state
z, and let ~(i) be the set of states that
have the same number of class c’ cus-

tomers as state i for c’ = 1,2, ..., C.
Transitions between state i and set ~(i)

will be termed internal transitions since
they can be viewed as transitions within
a queue that do not change the number
of its customers. We will also term exter-
nal transitions as being those that corre-
spond to external arrival or departure
events. If all transitions cause class
changes for some class, i.e., if all transi-
tions are external transitions, then set
Y(i) is empty. State transition from i are
contained in the set {~(i), Y~(i), %~(i)}~= ~.

Global balance implies that

F(i, {jY(i), ~(i),7<(i)}~=1)

– F({~(i), >~(i), Y~(i)}~=l, i] = O,

i G&’. (43)

Summing (42) over all c implies that
partial balance holds for the set

{~;(i)}~. ~ and that

F(i, {.y;(i)}~=l ] - F({5(i)}~=l, i] = O.

Using this in (43) shows that for systems
that satisfy partial balance, the following
balance equation also holds

F(i, {&’(i),’7j(i)}~=1)

–F({~(i),7’’~(i )}~~1, i) = O,

i G Y. (44)

The partial balance equations (42) along
with (44) are sometimes collectively
termed local balance equations. Equa-
tion (44) implies that the probability flux
due to internal transitions and depar-
tures of customers from state i is equal
to the probability flux due to internal
transitions and arrivals that result in
state i.

A more restrictive form of balance holds
when station balance equations are sat-
isfied. These equations are given by

F(i, Z(i)) –F(Y(i), i) = O (45)

F(i,7C( i)) –F(7C(i), i) =0 i ● >’.

(46)

Station Balance Equations
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Equation (45) implies that the probabil-
ity flux due to internal transitions is bal-
anced, and (46) implies that the proba-
bility flux due to departures of class c
customers from state i is equal to the
probability flux due to arrivals of class c
customers that result in state i. It is
clear that if either partial balance or sta-
tion balance is satisfied then (44) holds.
Equation (44), however, can hold without
either partial balance or station balance
being satisfied. Station balance (resp.,
partial balance) does not imply that par-
tial balance (resp., station balance) holds.

As an example where partial balance is
satisfied but station balance does not
hold, consider a multiple class M\ M/K
queue with C classes of customers. As-
sume that class c customers arrive with
a rate of AC and have an exponential
service rate of ~. The state of the system
can be written as g where ~ = ( SI,
S2, ..., ‘K,s~+;,... ) represents classes of
customers resident in the system. Here
the first K components of ? correspond
to the classes of customers that are being
served, and the remaining components
correspond to the classes of customers
that wait in the queue (we set s, = O if
no customer exists in position i). Let the
total arrival rate of customers of all
classes be given by A = E~_ ~AC, and let
pi = A</A be the probability that an ar-
rival is of class c. Let a(n) be the sta-
tionary probability of having n cus-
tomers in a single class M/M\K queue
with an arrival rate of A. Then a simple
calculation shows that the stationary
probability is given by

m-(:) = a(l:l) fipc, (47)
~=1

where I: I is the number of customers in
state s. It can be shown algebraically
that tiis queue satisfies partial balance.
Station balance, however, is not satisfied.
To see this consider a state

S=(:, c,-...,— C, SIC+@K+~,... ). (48)

K

In this state all servers are processing a

class c customer. A departure of a class c
customer then results in a state

J=(c, c,... c, L$K+l, sK+ ~>... ). (49)

K–1

It is clear that if SK+ ~ + c no arrival of a
class c can result in a s’ ~ s transition,— —
and thus station balance cannot be satis-
fied.

Product form solutions, as we will later
see, arise from systems that satisfy par-
tial balance. We show that one such class
of networks are those consisting of
quasireversible queues and in the next
section explore the properties of partial
balance that will allow us to develop such
results. Consequences of station balance
include insensitivity of the stationary
distribution to higher moments of service
time. These results lie outside the scope
of this article and can be found in Chandy
et al. [ 1977], Disney and Kiessler [ 1987],
and Jansen and Konig [1980].

2.5 Partial Balance

The notion of customer classes is a useful
paradigm within which to couch partial
balance, but it can be expressed for arbi-
trary sets. More generally (see Whittle
[1967; 1968] for the first definition of
partial balance) we say that partial bal-
ance holds on set 7/ if

F(i,7/) –F(//, i) = O

F(i, ~) –F(~, i) = O Vi =?/. (50)

Observe that global balance for state i

results by summing these two equations.
It is important to note that if partial
balance holds over set 7/ then it does not
necessarily hold over all possible sets.
We will always specify which sets we
mean when discussing partial balance
and make it the convention that for
quasireversible systems we mean partial
balance as given by the sets >,(i) as
specified in (42). The relationship be-
tween partial, local, and station balance
for a two-class system is shown in Figure
2. Since partial balance and quasire-
versibility play key roles in the rest of
the article, we spend some time here to

ACM Computing Surveys. Vol 25, No 3, September 1993



352 ● Randolph D. Nelson

s
t
a
t
I

o

n

B

a

I

a

n

c

e
\.

\
\

I V2(1) I S2(1) ~

/ I
/

\ /’
,/ /

‘ —“
—“

Figure 2. Partial, local. and station balance equations

explore some of their properties. The first arrival of a class c customer to a quasire-
property below requires that the process versible queue that is in state i. We know
is quasireversible. The following three that this arrival causes a state transition
properties hold generally for all pro- to some state i’ ● ~,( i ), and here we wish
cesses that satisfy partial balance. We to derive its distribution. This probability

is written as

P[X(t + dt) = i’l X(t) = t, Arrival of class c in CZt]

P[X(t + dt) = z’, X(t) = i, Arrival of class c in dt]
——

F’[ X( t ) = i, Arrival of class c in dt ]

n(z)q(z, z’)dt q(z, i”)
—

m-(i) ~(c)dt – A(c) ‘ (51)

make the convention that when we say a
quasireversible queue satisfies partial
balance, we mean that for all states i, i
E Y’, Equation (42) is satisfied. When
partial bal ante is said to hold over a set
2/ c> we mean that Equation (50) is
satisfied over Y[.

The Distribution Property

The first property requires that quasire-
versibility, and thus also that partial bal-
ance, is satisfied. Suppose we observe an

where we have used the fact that the
arrival rate of class c customers is inde-
pendent of the state of the system (37).
We call this the distribution property of
quasireversible queues. Notice that this
property holds only for quasireversible
queues and does not hold in general for
processes that satisfy partial balance.

App/icat/on of the Distribution Properly

This property is, in some sense, the
mechanism that allows us to join quasi-
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reversible queues together into a net-
work and still preserve that fact that the
resultant network is quasireversible. We

will see in Section 3 that this implies
that the network has a product form so-
lution.

The State Truncation Property

The second property of partial balance
arises when we truncate the state space
of the process. Let 7/ be a set of states
and consider the process & that restricts
X to ?? by setting

(52)

If partial balance holds over ?/ and if Y
is irreducible then

F(i,7/) –F(?/, i) = O, i ● Yz’, (53)

and it is easy to see that (53) is un-
changed if W(i) is replaced by

7rY(i) = Cm(i), i = ?/, (54)

where C = l\Zl. ~,T( i ) is a normalizing
constant. Since Y is restricted to 1/, this
shows that n-y(i) is its stationary distri-
bution. Conversely, suppose that (54) is
Y’s stationary distribution and thus sat-
isfies the global balance equations,

Global balance for X can be written as

Substituting (52 and 54) into (55) and
subtracting it from (56) shows that par-
tial balance is satisfied. Thus, stationary
probabilities are identical (up to a nor-

malization) if a process is truncated to a
set ?/ if and only if partial balance holds
over Y/. We call this property the state

truncation property of processes that sat-
isfy partial balance.

Application of the State Truncation Property

Two applications of the state truncation
property are finite-buffer models for com-
munication networks (see Henderson and
Taylor [1989] for an interesting example
in communications) and closed, fixed-
population queuing networks. As an ex-
ample of a finite-buffer model, consider
an infinite-server queue with Poisson ar-
rivals at rate AC and exponential service
times with expectations of I/pc for
classes c = 1, 2, ..., C (the results pre-
sented here also hold if the service times
are generally distributed with expecta-
tion l\pC; see Kelly’s [1979] treatment of
symmetric queues for a sketch of a proof).
It is well known that this finite-buffer
system satisfies partial balance and that
the stationary distribution that there are
n, class c customers in the system is
given by

where p, = A,/P, and z = (nl, nz, ...,
n(,). Suppose we restrict the total num-
ber of customers in the system, regard-
less of class, to be not greater than N.
Customer arrivals to the system when
there are N servers busy are assumed to
be lost. Let w be the set of all feasible
states that contain N customers or less.
The stationary distribution for this sys-
tem is then given by

The difficulty of analyzing truncated sys-
tems, as demonstrated in the above ex-
ample, arises from the complexity of cal-
culating the normalization constant over
the truncated state space (i.e., the de-
nominator in (58)).
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For applications of the state truncation
property to closed systems, consider an
open multiple-class queuing network; let
1:( nC) c>’ be a subset of states having
nc, nC>l, class c,c=1,2, . . ..C. cus-
tomers; and let Y be the process X re-
stricted to the set of states having n,, 1
s c g C’, class c customers. This restric-

tion corresponds to a closed network
where the underlying Markov process is
truncated to the set

c
3 = n.$C(nC). (59)

~=1

Notice that (59) implies that

Uy(i)=z. (60)
L●2

Suppose that Y is irreducible on & and
that X satisfies partial balance on set 2.
Using (60) this is equivalent to having
(45) satisfied, which follows if station
balance holds, Then the state truncation
property implies that the stationary dis-
tribution of the closed system Y is a
renormalization of the stationary distri-
bution of the open system X.

Application of the D/str/bution and State

Truncation Properties

We continue the closed-network applica-
tion of the state truncation property. If
the process Y defined on set Y is not
irreducible or if X does not satisfy par-
tial balance on 2 then we cannot imme-
diately apply station truncation. A closed
system, however, can be thought of as
being derived from an open system by
modifying the open system’s external
state transitions while retaining the in-
ternal transitions of the open system. In
particular, transitions in the open sys-
tem that result in having more than n,

class c customers are assumed to be lost
in the closed system; departures of class
c in having more than n, class c cus-

tomers are eliminated; and transitions
that reduce the number of class c cus-
tomers to be less than nC are modified so
that they keep the number of class c
customers equal to n, in the closed sys-

tem. We can thus think of arrivals in the
open system as being “lost” in the closed
system and departures of class c cus-
tomers in the open system as causing an
immediate arrival of a class c customer
in the closed system. We require a pre-
cise specification of the transition rates
of these immediate arrivals in the closed
system. To do this, assume that the open
system satisfies partial balance, and thus
specifically that (44) is satisfied, and de-
fine the sets consisting of one less class c
customer as

Observe that in terms of the sets 7;(i)
we can write U ,.z~~(i)=~,. We as-
sume the immediate arrivals of the closed
system, being similar to external arrivals
of the open system, satisfy the distribu-
tion property. This implies that transi-
tions for these immediate arrivals, which
are denoted by qY ( ), are given by

qY(i, k)=q(i, k)

In words, (62) can be explained as fol-
lows. The value q( z, k) in the first part of

(62) corresponds to the internal transi-
tion rate found in the open process which
is retained in the closed process. The
second part of (62) accounts for external
departure transitions from the open sys-

tem which are altered in the closed pro-
cess. Class c transitions from state i, z G
S, must first enter some state j in set -ZC
which occurs at rate q( i, j). This reduces
the number of class c customers to n ~ – 1
and in the closed system causes an im-
mediate arrival of a class c customer.
Using the distribution property, the
probability that this new arrival causes a
transition into state k, k G S?”, is given by

q(.j, k )\N c ). Summing over all possibili-
ties yields (62).
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The closed network can thus be thought
of as a truncation of the open process
with modified external transitions that
satisfy the distribution property. We now
show that, as in the state truncation
property, the stationary distribution for
the closed process is simply a renormal-
ization of the stationary distribution for
the open process, i.e., that (54) is satis-
fied with ?/ being set 2. From (54) then
it suffices to show that

m(i) ~ qy(i, k) = ~ m(k)qy(k, i),
k E1 k s_Z

i ● s. (63)

Using (62) we write the left-hand side of
(63) as

T(i) ~ qy(i, k)
kE/

=%-(i) ~ q(i, k)
k ●_Z

Product Form Queuing Networks ●

q(j, k)
+ f’ m-(i) ~ q(i, j) ~ —

‘=l J &?, k=z A(c)

(64)

—— m(i) ~ q(i, k)

k c-Z

c

+ ~ n-(i) ~ q(i, j) (65)
<=1 J •~<

= F(i,{2,2c}~= l). (66)

Equation (65) follows from Equation (64)
by an application of (37).

Using (62) we can write the right-hand
side of (63) as

~ 7r(k”)qy(k, i)
k =.2’

= ~ n(k)q(k, i)

f?Gz

(67)

= ~ m(k)q(k, i)

ksz

355

(68)

(69)

(70)

Equation (68) follows from (67) from the
reverse balance equations (21), and
Equation (69) follows from (38). Equation

(63) thus follows from the fact that (44) is
assumed to hold in the original process.
We call such a system a closed quasire-
versible queue.

The Arrival-Departure Property

The equation given in (50) permits an
interesting probabilistic interpretation.
Suppose one defines the point process Y~
by observing X just before making a
transition that leaves a set 7/. Let
~Y(/ i ), i ● 7/, be the probability that the
system is in state i just prior to the
transition. Similarly we let Y. be the
point process formed by observing X just
after a transition into z and let ~Y,(i ), i
● 7/, be its distribution. We will speak of

the distribution of Y~ and Y. as being
the distribution of states as seen by a
transition out of and into set Z, respec-
tively. What is the relationship between
these two distributions?

We can write the following equations
for i G Y/,

(71)
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4Y{(i ) =

— ..-
F(~,2’) “

Global balance ( 12) shows that the de-
nominators of (71) and (72) are equal.
Partial balance shows that the numera-
tors are also equal, and thus XY,J i ) =
~Y ( i), i G Y’. It is easy to see, conversely,
that if the above two distributions are
equal then partial balance must hold.
Thus the distribution as seen by transi-
tions out of set ?/ is identical to that seen
by transitions into set Y/ if and only if
partial balance holds on set Z.

We call this property the partial bal-
ance arrival-departure property. Note
that, in general, the distributions seen by
transitions out of and into a set % that
satisfies partial balance are not equal to
the stationary distribution of the process.
As a simple counterexample, assume that
only one state in W, say u = %’, permits
transitions out of 7/. Then it must be the
case that YY ( u) = 1 which is clearly not
equal to T( ul.

Quasireversible queues inherit the
partial balance arrival-departure prop-
erty since they satisfy partial balance.
They also have the additional property
that the distributions seen by transitions
out of and into set ~?’ are equal to the

stationary distribution. We show this by
recasting the above argument in terms of
customer classes and will talk of distri-
butions seen by transitions out of (resp.,
into) a set /2’ in terms of distributions
seen by customer departures (resp., ar-
rivals) that leave (resp., enter) set Z. Let
2(,( z), i = Y’ be the point process seen by
an arriving class c customer which, simi-
lar to above, has a distribution given by

From equation (37) however

A(c) = ~ q(i, h)
/?=/,(2)

= x m(i) ~ q(i, k) (74)
lE/ /?=> (2}

and substituting this into (73) shows that
4ZJZ) = n-(i) as claimed. A similar argu-
ment shows that departing class c cus-
tomers also see the system in equilib-
rium. Analogous to (73) we write

which, using (38), shows that ~z~(i ) =
n(i) from the partial balance arrival-de-
parture property. Thus for quasire-
versible queues, arrivals and departures
of class c queues see the system in equi-
librium. We call this property, the ar-
rival-departure property of open quasi re -
uersible queues. We will sometimes refer
to this as the arrival theorem for open
networks (see Lavenberg and Reiser
[ 1980] and Sevcik and Mitrani [ 1981] for
theorems of this type).

Appl/cat/on of the State Truncation and

Arriva/-Deparlure Properties

Suppose the system has a fixed popula-
tion as in the closed-network application
of state truncation property or the
closed-network application of the distri-
bution and the state truncation proper-
ties. The process Y corresponding to a
quasireversible queue restricted to >-
thus has a stationary distribution equal
to

7ry(i) = C7r(L) i G=, (76)

where C = l/Z~ ~ _ rr(k). What are the
distributions seen by a class c arrival or
departure from this system? When we
talk about such a customer, we are as-
suming the customer is in transit be-
tween queues (i.e., not resident at any
queue). Consider a departing class c cus-
tomer and denote the distribution it sees
at time of departure by $~( i ). We first
note that there must be a class c cus-
tomer for one to depart and that there is
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one less class c customer in the system
after departure. Thus the states that can
be seen by the departing customer are in
set 2C. We can write the distribution as

where we have used (38) and (39). This
has to be normalized over SC, and thus
the class c departure sees the system in
equilibrium with one less class c cus-
tomer. Considering the process in reverse
time shows that this is also true for an
arriving class c customer, and thus ar-
rivals or departures of class c customers
see the system in equilibrium with one
less class c customer. We call this prop-
erty the arrival-departure property of
closed quasireuersible queues.

Mean Value Analysis

Consider a closed quasireversible queu-
ing network that consists of J different
service centers, and suppose that there
are n customers of a single class. Sup-
pose that service center j is a single-
server FCFS queue with exponential ser-
vice times with expectation 1/~1 and that
fll is the frequency with which a cus-
tomer visits queue j relative to the fre-
quency with which it visits queue 1. Let
RJ(n), L,(n), and A~(n) be the expected
response time, expected queue length,
and throughput, respectively, for service
center j when the population of the net-
work is n. Note that Al(n) = O~Al(n).
Now consider an arrival to queue J. From
the arrival-departure property of closed
quasireversible queues it follows that the
expected number of customers in queue .j
found by this arrival (while in transit
and not in any queue) is equal to the
expected number of customers in queue j
when the population is equal to n – 1.
Using this we can write the expected
response time for the newly arrived cus-

tomer as

R,(n) = :(l+L$~t - l)). (79)

Applying Little’s [1961] result to the in-
dividual queues implies that

Lj(n) = tl~Al(n)R~(rz), (80)

and summing (80) over all queues yields

n
(81)‘l(n) = ~:=loJRj(n)

Equations (80) and (81) are a special case
of the celebrated Mean Value Analysis
(MVA) equations [Reiser and Lavenberg
1980]. These equations, with the obvious
boundary condition of LJ(0) = O, can be
used to recursively calculate the expected
response time and queue length for in-
creasing values of n without the difficul-
ties of calculating a normalizing con-
stant.

The State Aggregation Propetfy

The last property of partial balance is
related to state truncation. Suppose we
partition >’ into sets tin, n = O, 1,...,
N, N > 1, and let X n denote X trun-
cated to Z’n. We assume that X n is irre-
ducible and let n‘( i), i G %’, denote the
stationary distribution of X n analyzed in
isolation. Also assume that the sets sat-
isfy nearest-neighbor transitions, i.e.,

q(i, k) = O,i ● ?/n, k ~ ?/’”, if In – ri >
1. We call each set an aggregated state
and define a birth–death process with
transition rates, Q( n, m), given by

Q(n, rn) - ~ ~ m“(i)q(i, k),
1 G ?/” 1? G //’”

n,m>O, ln–ml=l. (82)

Let 11(n), n >0, be the stationary distri-
bution of this birth–death process. These
values satisfy the following detailed bal-
ance equations

ll(n)Q(n, n + 1)

–II(n+ l)Q(n+ l,n) =0,

n >0, (83)
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and thus can be easily solved using

Q(n, m).
What relationship does the distribu-

tion of this aggregated birth–death pro-
cess have to the original process? We
claim that if partial balance holds on sets
Y“ then II(n) = Z , ~ ,/,n-(i). To show this,
observe that if partial balance is satisfied
then the state truncation property im-
plies that

and thus substituting this into (82) shows
that (83) is satisfied with TI(n ) =

Z, ~ ~,tdi). Note that, if partial balance
holds, Q( n, m) is equal to the average
transition rate from states in set 7/’ to
states in set Z’m in the original process.
Summarizing this result, we say that if
partial balance holds on sets ?/’ then the
distribution of the aggregated process is
identical to what would be obtained in
the original process by summing the sta-
tionary distribution of the aggregated
states. We call this property the state

aggregation property of processes that
satisfy partial balance.

Viewing this in terms of an open
quasireversible network with customer
classes, note that partial balance among
classes (42) implies that

F(. fj(n),. J~(n + 1))

– F(.fij(n + l),.%(n)) = O, 0< n.

(85)

Let states in the aggregated system cor-

respond to the number of class c cus-
tomers, and let !dC(n) - )11G , ~~~m(i) be
the probability that there are’ n class c
customers in the original system. Since
we assume the process is quasireversible,
the arrival rate of class e customers, A(c),
is independent of the state of the system.
Let PC(n) be the average departure rate
of class c customers conditioned on n
class c customers being in the queue.

This is given by

n >0. (86)

Thus the detailed balance equations sat-
isfied by the aggregated process (analo-
gous to (83)) are

IIc(n)Ac – Hc(rL + l)y, (n, + 1) = O,

n > 0. (87)

Notice that (17) implies that we can write
the solution to (87) as

Ac
IIc(rL) a ii —

J=l w,(j) ‘
(88)

and thus, as in the birth–death example
with state-independent arrival rate, the
arrival rate and departure rates of the
aggregated process determine its station-
ary distribution. Thus, if some property
of a given quasireversible queue depends
only on the distribution of its aggregated
process, then the stationary statistics for
that property are identical to that of a
system where we replace the given queue
by a simple birth-death queue that has
the appropriate state-dependent service
rates. This result has been termed Nor-
ton’s theorem [Chandy et al. 1975;
Krzesinski and Teunissen 1985] and will
be discussed below.

Apphcatton of the State Aggregation Properfy

The main application of the state aggre-
gation property is to create a fZow-equiu-

alent server for a complex set of queues
in a network. The flow-equivalent server
is equivalent to the birth–death queue
with state-dependent service rates men-
tioned above. For example, suppose we
consider a model of a computer system
consisting of a CPU subsystem and a
disk subsystem. Assume that the disk
subsystem consists of K M/M/1 queues,
each corresponding to a disk with a queue
of work, and assume that customers are
routed with uniform probability to any
one of the disks. Let customers at the
disks be of class c; define IIC( n) to be the
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probability that there are a total of n
class c customers in the system (i.e., at

the disk subsystem); and let ~C(n) be
defined as in (86). Suppose now that we
wish to study the changes in perfor-
mance of the entire system as a function
of parameters of the CPU subsystem.
Since there are no changes in the disk
subsystem, the parametric study can be
computationally facilitated by replacing
the disk subsystem with a flow-equiv-
alent server consisting of a single-server
FCFS queuing system with a state-de-
pendent service rate of ~,(n).

We review in words the above proper-
ties.

e Distribution Property. In an open
quasireversible network, the probabil-
ity that an arriving class c customer
causes a state transition to a given
state is equal to the ratio of a transi-
tion rate to the arrival rate of class c
customers.

* State Truncation Property. The sta-
tionary distribution for a system re-
stricted to a subset of the states is a
normalization of the unrestricted sta-
tionary distribution if partial balance
holds on the subset. When open
quasireversible queues are closed such
that external transitions of the corre-
sponding open system satisfy the dis-
tribution property, then the closed sys-
tem is a truncated version of the open
system and has a stationary distribu-
tion which is a normalization of the
open system’s distribution.

● Arrival-Departure Property. The
distribution seen by transitions out of a
set w is identical to that seen by tran-
sitions into set ?[ if and only if partial
balance on set 7/ holds. If partial bal-
ance holds on set 7/ and if the queue is
quasireversible then for open systems,
arriving (resp., departing) class c cus-
tomers that enter (resp., leave) set ?/
see the stationary distribution, and for
closed systems, arriving (resp., depart-

ing) class c customers that enter (resp.,

leave) set 7/ see the stationary distri-
bution, calculated as if they were not in
the system.

. State Aggregation Property. The
stationary distribution of an aggre-
gated system Yn, for n= O,l,..., N,
with constant arrival and departure
rates is the same as would be found by
summing up stationary probabilities of
the aggregated states in the original
process if partial balance holds on sets
?/’.

We have already seen one queue that
is quasireversible, the birth–death pro-
cess with state-independent Poisson ar-
rivals. Other queues that are useful in
computer modeling and are quasire-
versible are the classical BCMP queues

[Baskett et al. 1975] which allow general
service time distributions and include the
following scheduling policies: last-come
first-serve preemptive resume, processor
sharing, and infinite server. Symmetric
queues [Kelly 1979] include these queu-
ing disciplines as special cases. We refer
the reader to Kelly [1979] and Walrand
[1988] for the proofs that these queues
are quasireversible. We just mention here
a typical way to establish that a queue is
quasireversible is to use the form of the
reverse process. Assume that the forward
process has Poisson arrivals that are in-
dependent of the state of the system. Of-
ten it is the case that the reverse process
has a queuing structure that is a mirror
image of the original system. If this is
the case then the correspondence be-
tween arrivals (resp., departures) of the
forward process and departures (resp.,
arrivals) of the reverse process implies
that the departure process of the forward
process is also independent of the state of
the system and is also Poisson. This es-
tablishes that the queue is quasire-
versible, and typically the stationary dis-
tribution of the process can be guessed
and checked using the reverse balance
equations (21) and (22).

We close this section by reviewing the
differences between reversible and
quasireversible queuing systems in the
context of a queuing system with C cus-
tomer classes. Reversible systems satisfy
detailed balance and have arrival and
departure processes that are statistically
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Table 1. Charactenzatlon of Reversible and Quaslreverslble Processes

Property Quasu-everslble Reversible

Arrival Rates Exponential Interarrlval Times

a(c) M Independent of State a(c, L) can be State Dependent
(Stronger Condltlon) (Weaker Condltlon)

Balance Equations Partial Balance Detaded Balance

(Weaker Condltlon) (Stronger Condltlon)

identical. The arrival and departure pro-
cesses of class c customers, a(c, i), i = Y’,
are generally state dependent. A re-
versible system is quasireversible only if
arrivals of customers to the queue are
Poisson with state-independent rates.
Quasireversible queues satisfy partial
balance, a less restrictive condition than
detailed balance, and always have Pois-
son arrival and departure processes. A
queuing system can be reversible with-
out being quasireversible (as in the
birth-death queue with state-dependent
arrival rates), and a quasireversible
queue is not necessarily reversible since
partial balance does not imply detailed
balance. We summarize these statements
in Table 1.

3. NETWORKS OF

QUASIREVERSIBLE QUEUES

The previous section established four
properties of queuing systems that satis-
fied partial balance and quasireversibil-
ity. Suppose that we join a set of quasire-
versible queues into a network so that
the resultant system is also quasire-
versible. This network would then also
satisfy these properties, namely, it would
satisfy the distribution, state truncation,
arrival-departure, and state aggregation
properties. Clearly we cannot join queues
in an arbitrary fashion and still preserve
quasireversibility, but the algebra for
how such queues can be joined is surpris-
ingly flexible. In this section we fh-st ana-
lyze two simple models of quasireversible
networks to derive properties of their
stationary distributions. This allows us
to derive basic properties of such systems
without being burdened with excessive
notation. We then indicate how all of the

results found in these simple models gen-
eralize to more complex models.

3.1 Tandem Queues

Suppose we consider an open network
consisting of two quasireversible queues
in tandem. Suppose arrivals to the first
queue are Poisson with rate A. The state
of the system is (xl, .rz) where xl, t =
1,2, is the state of queue i. What are the
stationary state probabilities, W( .t ~, Xz )?

To answer this, we note that because
the first queue is quasireversible, x I( t)is
independent of the departure process
from queue 1 prior to time t.Departures
from queue 1, however, form the arrivals
to queue 2 and thus determine the value
of .~2(t).Thus xl(t) and XZ(t) are inde-
pendent and act as if it were in isolation.
The stationary probabilities satisfy a
product form, T(xl, Xz) = Z-l(xl)nz(xz),
where T,( ) is the stationary distribution
for queue i analyzed in isolation. The
arrival-departure property of open
quasireversible queues implies that an
arriving customer to the second queue
sees the same distribution of ( x ~, Xz ) that
is seen by a departing customer from the
second queue. Both of these distributions
are equal to the stationary distribution of
the process.

Recall that we specified no scheduling
or service policy for the birth–death
model with state-dependent servicing
rates. The existence of product form de-
pends on external properties (the input-
output properties) of queues rather than
internal properties (scheduling disci-
plines for example) [Kelly 1979: Muntz
1972]. The fact that is is quasireversible
does not require any notion of the opera-
tion of the queue. To show that a system
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is quasireversible we must first define a
system state and then specify which
transitions correspond to class c arrivals
and departures and then demonstrate
that the conditions for quasireversibility
are satisfied. This procedure permits
great flexibility and creativity in defining
such processes [Kelly 1979]. It is some-
times misleading, however, to speak of
such systems as “queues” since very little
queuing in the traditional sense takes
place in many quasireversible systems.
For example, the arrival and departure
processes, from the tandem queuing sys-
tem are Poisson streams that are inde-
pendent of the state of the system. Thus,
considering the tandem as one unit shows
that it is also a quasireversible queue.
This would hardly qualify as a “queue” in
the normal sense of the word.

Within the above arguments are the
seeds for an algebra of quasireversibility
in which quasireversible queues can be
joined in a manner that preserves quasi-
reversibility. It is easy to see, in the above
system, that joining queues in series can
be performed any number of times and
still lead to a quasireversible queue. The
stationary distribution after such opera-
tions is a product of terms where each
term is the stationary distribution of the
individual queues analyzed as if they
were in isolation. It is intriguing to ques-
tion the generality under which such
properties hold. Before we address this
issue, we first consider the tandem model
under slightly different assumptions.

Assume now that the network is closed
and thus that there are a fixed number of
jobs in the queuing system, N > 1, so
that once a job finishes executing at the
second queue, it immediately cycles back
as an arrival to the first queue. Let n,( x, ),
i = I, 2 be the number of customers in

queue i when that queue is in state Z,.
Observe that several states of a queue
could correspond to having the same
number of customers. Clearly, now the
states of the queues are dependent since
nz( Xz) ==N – nl(xl). We are compelled
here to perpetuate the existing nomen-
clature for such a system and call it a
closed network of quasi reversible queues.

Clearly, the notion of Poisson arrival and
departure processes does not exist in a
closed network. and also the arrival and
departure processes from a queue of this
system are not independent of its state.
Each queue of the network thus violates
the properties of quasireversibility. What
we mean by calling the system a closed
network of quasireversible queues is that
the network consists of aueues that would
be quasireversible if ~ach queue were
considered in isolation with Poisson in-
put processes.

Here we view the system as a network
of quasireversible queues that is re-
stricted to have only N customers, The
state truncation property combined with
the solution for the open system immedi-
ately yields a product form solution,
n(xl, X2) = Cn-l(xl)nl(xl), where C is a
normalization constant calculated over
all (xl, XZ) so that nl(xl) + nz(xz) = N.
Without knowirw the state truncation
property, it woul~ be surprising to have
such a solution. Let us take this moment
to clear up a possible confusion regarding
the solution. We know that the aueues
are mutually dependent, and yet the so-
lution is of product form which might
seem to imply independence. There is no
contradiction, however, because the nor-
malization constant implies that the fac-
tors of the product do not correspond to
the distributions of the individual queues.
In other words, there is no way to sepa-
rate the normalization term into a prod-
uct of factors, say C = Cl Cz, so that
Cl Tl( x, ), i = 1,2 is the stationary distri-
bution for aueue i.

Continui~g the discussion of the closed
system above, we now revisit the state
aggregation property of partial balance.
Suppose we consider queue 2 in isolation
and aggregate its states according to its
number of customers. State n here thus
corresponds to the aggregation of all
states Xz satisfying nz(xz) = n. If we
solve for the stationary distribution of
tbe aggregated states then (88) shows
that
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where II Z(n ) is the stationary probability
of aggregated state n and where Wz( n ) is
the average departure rate of customers
calculated for aggregated state n. Sup-
pose now that one replaces queue 2 with
a queue that processes customers at rate

Kz( n) when it contains n customers. This
is the flow-equivalent server previously
mentioned and corresponds to replacing
the original process by a birth-death
process with queue-dependent service
rates. Clearly, this has the same station-
ary distribution as (89), and thus, as
stated in Section 2, any function that
depends on queue 2 only through its ag-
gregation will not change with this re-
placement of a flow-equivalent server.
One such function is the probability of
observing queue 1 in state x ~, denoted by
n~(xl). Let 7/z(.xl) = {.x21 r22(x2) = N –

n I( xl )} be the set of states of queue 2
that contain the customers not found in
queue 1 when in state x ~. Then we can
write the probability as

T:(xl) a E non, (90)
t2 E//2(x1)

a VI(XI)HZ(N – nl(xl)) (91)

N–nl(rl) ~

a ml(. zl) n — (92)
,=0 v2(j) “

Thus n~( xl) depends only on the flow-
equivalent rates Pz( n ) of queue 2. This is
an application of Norton’s theorem men-
tioned in Section 2.

3.2 Feedback Queues

lVe next consider a simple modification
of the routing scheme given above. Sup-
pose we have a single queue with two
classes of customers. Customers of both
classes are assumed to be served in the
order in which they enter the tail of the
queue. Arrivals to the queue are of class
1 and are Poisson with rate A After re-
ceiving service, a class 1 customer re-
turns to the tail of the queue as a class 2
customer. Class 2 customers leave the
system after receiving service, and we
assume that the service times for both
classes of customers are exponential with

rate ~. The state of the system is the
sequence of classes in the queue, c =

(c~, c~, . . ..cn. ) where c1 is the class of the
customer in position i in the queue, and
n is the number of customers in the
queue. We denote the state correspond-
ing to an empty system by O and will let
IcI be the total number of customers found
in state c. The transition rates for this
system a~~egiven by

(~,~’ = (c,l), (Arrival)

Ip,g=(2, g’), (Departure)
q(~, g’) =

p>! = (l><)!C’ = (j,2),

[ (Feed Back).

(93)

We claim that this process is quasire-
versible. To see this we first guess the
form of the stationary distribution and
the reverse transition rates and then
show that (21) and (22) are satisfied.

What would the reverse process look
like? The obvious guess is that customers
arrive at the system at rate A as class 2
customers, are fed back, and then leave
the system as class 1 customers. This
implies transition rates given by

(
p,<’ = (g, 1), (Departure)

IA, g = (2, g’), (Arrival)
q’(g’, g) =

W,g = (l, j), g’ = (j.2),

~ (Feed Back).

(94)

Thus we have interchanged arrivals and
departures for the reverse transition
rates.

Since both classes of customers arrive
at an average rate of A and have the
same service time distributions, it is
plausible that states with the same num-
ber of total customers have the same
probability, i.e., that n(g) = w(g’) if Icl =

Ic’1. We thus aggregate states accor~ing
to their number of customers. Let 7/’ =
{gin = IcI} be the set of states with n

customers, and let H(n) be the probabil-
ity of aggregated state n. Since each state
c E V’ is assumed to have the same
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probability, it follows that

1 Icl

()m-(~) = ~ rI(lgl). (95)

Suppose that we then make a guess that
the distribution of the aggregated states
are identical to that of an M\M\ 1 sys-
tem with an arrival rate of 2 A Thus we
guess that

II(n) = (1 – p)p”, n. >0, (96)

where p G 2 A/p.
It is clear that the transition rates (93)

and (94) satisfy (22), and thus we only
have to show that the reverse balance
equations are satisfied (21) to show that
the values (95) are correct. For forward
arrivals (reverse departures) this implies
that

(1’ ()
~kl+l

(l–p)~lLA=(l–p)z ~ (97)

which is clearly true. It similarly follows
that (21) is satisfied for forward depar-
tures (reverse arrivals) and for fed back
customers, and thus (95) is correct. The
nature of the reverse process shows that
the departure process is Poisson and sim-
ilarly that the queue is quasireversible
as claimed.

We make an important observation
about this system. In the open tandem
system considered in Section 3.1, the in-
put process to each queue was Poisson,
and thus it was not surprising that the
queues were quasireversible. Although
the external arrival process to feedback
queue is Poisson its input process is not
Poisson. We will now provide a proof of
this by creating a mapping between our
feedback model, henceforth called the
fixed-feedback model and that of a model
of Bernoulli feedback. In Bernoulli feed-
back, each customer is fed back with
probability p, O s p < 1, after receiving
service. Burke [1976] considered such a
model and showed that the stationary

distribution of states as seen by any ar-
riving customer (external or fed back) is
the same as that of an M\M\ 1 queue
with an arrival rate given by A\(l – p)
and also that the total arrival stream of
customers to the queue is not Poisson.
We show here that the total arrival
stream of customers in the feedback
model is statistically identical to that of a
Bernoulli feedback system with p = 1/2,

and thus it follows from Burke’s result
that the total arrival stream is not Pois-
son as claimed. Equation (96) shows that
the stationary distributions for the num-
ber of customers in the system are identi-
cal for the fixed feedback and Bernoulli
feedback models when p = 1/2.

Consider now the fixed-feedback model.
Since the queue is quasireversible; the
arrival-departure property of quasire-
versible queues shows that the probabil-
ity distribution seen by any arriving cus-
tomer (either external or fed back) is
equal to the stationary distribution. Sup-
pose now that we randomly select an
arriving customer, customer J, and as-
sume that at the time of its arrival it
sees n, n > 0, customers in the system.
Note that J joins the queue in position
n + 1. Since every customer that arrives
externally will be fed back exactly once,
the probability that J is of class 1 (exter-
nal arrival) or class 2 (fed back) is identi-
cal and equal to 1/2. Thus, the probabil-
ity that the customer in position n + 1
(i.e., customer J) is of class 2 is equal to
1/2. We claim that this is also the case
for the customer in position j, 1 s j s n,
of the queue. This follows the fact that all
states in ?/’ are equally likely with prob-
ability given by (95). Thus, the probabil-
ity that any customer in the queue after
J’s arrival is of class 2 is given by 1/2 so
that the system is equivalent to a
Bernoulli feedback system with p = 1/2
as claimed. Thus, the total arrival stream
of customers to the queue is not Poisson.
This result can be established more gen-
erally (see Walrand [1983]). It is still the
case, however, that the external arrival
and departure processes are Poisson. The
non-Poisson flow within the queue do not
violate the notion of quasireversibility.
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3.3 Product Form or Quasireversible
Queuing Networks

The algebra hinted at in the previous
examples suggests that quasireversible
queues can be joined together so as to
form new quasireversible queues. More
general routing mechanisms also pre-
serve quasireversibility. For example, in
Markov routing [Walrand 1988] class c
customers at queue i depart and become
class c’ customers at queue Z’ with prob-
ability r(c, i; c’, i’). This routing is said to
be Markovian because routing decisions
for a customer depend only on its current
class and queue and are independent of
the rest of the state of the network. More
general routing decisions that still pre-
serve quasireversibility and allow certain
types of state dependencies can be found
in Kelly [ 1979], Krzesinski [1987], and
Towsley [ 1980]. Any network created us-
ing such routing policies leads to a net-
work of queues that is quasireversible
and thus will have product form solu-
tions and will satisfy the four properties
derived in Section 2. The proof of these
claims is obscured by the notations
needed to define the general process and
by the algebra needed to establish that
global balance is satisfied. In keeping
with the tenor of this article, we content
ourselves with investigating a simplified
case that illuminates the procedures used
to prove the general case.

We consider an open network consist-
ing of M quasireversible queues and C
customer classes. Suppose that we know
the stationary distribution m-~(.x) and the
forward and reverse transition rates,

qn,( ) and q~( 1, respectively, of queue m
when analyzed in isolation. In the net-
work, external arrivals of class c cus-
tomers are Poisson with rate y(c). Class
c customers start at queue r,(1) and se-
quentially visit queues r,.(j), 1 S j S
1,, 1, > 1, and then leave the system.
There are three different types of transi-
tions: external arrivals and external de-
partures, each of which causes a state
change at only one queue, and internal
transitions, where a departure from one
queue corresponds to an arrival to an-

other queue. Internal transitions change
state values of two queues in the net-
work. The state of queue m is a vector
containing the number of class c cus-
tomers resident in the queue, and the
state of the network is a concatenation of
all the states of all the queues. For a
given transition that causes queue m to

change state, we denote its state before
the transition by x~ and its state after
the transition by y.,.

To analyze the process we must specify
transition rates for each of the above
transitions. To do this we expand our
previous notations to include a queue in-
dex. Let Y;’” (x) be the set of states for
queue nz that have one more class c
customer than state x with the same
number of customers of other classes.
Transition rates for queue m will be de-
noted by q~l( ), and the arrival rate of
class c customers to the queue is given
by Am(c). It is clear that Am(c) =jy(c), j
> 0, if class c jobs visit queue m exactly

,j times.
We now specify the rates for each of

the above types of transitions. External
arrivals of class c customers to queue
m = rC(1)occur at rate q,~( ~n,, y,,, ) where
-,. ● >~”’( x~, ). Similarly, external depar-Y
tures occur at rate q,,,( x~, y., ) where x~
● :~~~( y~ ), m = r,( 1, ). Internal transi-
tions of a class c customer from queue
m = rC(7), 1 < j < 1, – 1, to queue n2’ =

r,( j + 1)are assumed to occur at rate

and thus satisfy the distribution prop-
erty of quasireversible queues (51). It is
important to note that the rates (98) are
defined for the process in such a way
that they satisfy the distribution prop-
erty. If we arbitrarily join quasireversible
queues together in a network, it is not
true that they necessarily satisfy this
property.

We are now in the position to make
good our previous promise to “guess” the
correct solution for networks of quasire-
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versible queues. We guess the only
tractable solution, that the distribution
of the network is the product of the dis-
tributions of the individual queues ana-
lyzed in isolation,

r(xl, x2, . ..M. Mt)

= m1(x1)7r2( x2). ..7rM(xM). (99)

We next guess the transition rates for
the reverse process. It seems natural to
suppose that, in the reverse process, class
c customers backtrack on the forward
route, i.e., they enter the system at queue
rC(lC ) according to a Poisson process with
rate y(c), sequentially visit queues rC(lC
– 1),7-C(1C – 2),..., rc( 1), and then exit
the system. The reverse transition rates
are then just the “reverse” of that given
above, i.e., qj,(~~j ~~), xm ~~;(Ym), m
= rC(l C), for reverse external arrivals,

9;~Y,., ~~), Yn ~ .~~(x~), m = r,(l), for
reverse external departures, and for m’

=rC(j+ l), m=rC(j), l <j <l, – 1,

q:(ym, xn)
q;, ( Ym , Xm)

Am(c) ‘

Xm =$’;m(ynL), yml =~c~’(xnj), (loo)

for reverse internal transitions.
To show that our guess is correct, we

must show that the reverse balance
equations, (21) and (22), are satisfied,
and this is a matter of algebra. For exter-
nal arrival (reverse departures) transi-
tions this implies checking that

%(~m)9m(~nL2 Ym)

— )Wm(Ym)q~(Ym> ‘m >

Yrn =~cm(~m)> (101)

which is clearly satisfied since the sta-
tionary distribution and reverse transi-
tion rates for queue m in isolation are
given. External departures (reverse ar-
rivals) are just as easily checked. For
internal transitions we must show that

qmixm,,Ym)
m-m(xm)%-mr(xml)qm(xm, ym)

Am?(c)

x ~1•y;~(ym), yvtf GJ@(xm).

(102)

But this follows from the fact that (21) is
satisfied for each individual queue. We
have only (22) to check. The total transi-
tion rate from a network state for the
forward process is given by

f q(xm) + E -y(c).
~=1 ~=1

Equation (22) is thus satisfied

(103)

since
q;-(xm) = qm(xm).

The above derivation embodies the
methodology that is used to establish that
product form holds for more general net-
works. Specifically, we set up routing be-
tween queues so that the distribution
property holds. The “obvious” reversed
routes are then guessed as is a product
form solution for the stationary distribu-
tion. We then use the reverse balance
equations, (21) and (22), to show that the
guess is correct. The state truncation
property is invoked if the network is
closed. The resultant network is itself
quasireversible and thus possesses the
properties derived in Section 2. Thus,
closing the system leads to a product
form solution: the arrival theorem holds.
For some systems a generalized form of
Mean Value Analysis can be developed,
and Norton’s Theorem can be applied to
create flow-equivalent servers.

Although, externally, an open quasire-
versible network has Poisson arrival and
departure processes, the internal flow of
customers within the network is not nec-
essarily Poisson [Kelly 1979; Walrand
1983]. This does not violate the property
of quasireversible since, as previously
mentioned, such a notion requires no
specification of the internal workings of
the queue.

4. CONCLUSIONS

The fact that networks of quasireversible
queues have product form solutions fol-
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lows from fundamental properties of par-
tial balance in general and quasire-
versibility in particular. Properties such
as the arrival-departure property are
preserved when queues are joined into
networks in a manner that preserves
quasireversibility, and we have seen that
the algebra for joining such queues is
flexible. The results derived in this arti-
cle can be used as a starting point for
studying more general forms of product
form networks. Properties derived from
the four properties established in Section
2 are summarized in Figure 3. The impli-
cations in this figure should be inter-
preted within the context of this article,
and the assumptions used in their
derivation can be found in the body of the
article. There are many properties and
features of product form networks that
lie outside the scope of this article. For
example, it can be shown that if partial
balance is satisfied for set % then the
equilibrium dlstrlbutlon of the system
depends only on the mean of the distri-
bution of time that is spent in states ?/
[Whittle 1985; 1986b]. This property is
called insensitivity, since the stationary
distribution is insensitive to higher mo-
ments of sojourn time in Z“,

Our focus was to develop the mathe-
matics of product form from first princi-
ples. In so doing we have had to bypass a
rich body of work devoted to using these

results to model computer systems. As
many applications do not satisfy the as-
sumptions needed for product form, nu-
merical or approximate solution tech-
niques are required, and often these
methods are based on intuition gained
from exact solutions. Several sources
[Lavenberg 1983; Lazowska et al. 1984;
Sauer and Chandy 1981] provide a good
starting point for investigating work
along these lines.
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