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Due to data spreading among processors and due to the cache coherence problem,

private data caches have not been as effective in reducing the average memory delay in

multiprocessors as in uniprocessors. A wide variety of mechanisms have been proposed

for mamtammg cache coherence m large-scale shared-memory multiprocessors, makmg

it difficult to compare them perform ante and implementation implications To help the

computer architect understand some of the trade-offs involved, this paper surveys

current cache coherence mechanisms and identifies several issues critical to then-

deslgn These design issues include: (1) the cokerence detection strategy, through which

possibly incoherent memory accesses are detected either statically at compile-time, or

dynamically at run-time; (2) the coherence enforcement strategy, such as updating or

mvalidatmg, used to ensure that stale cache entries are never referenced by a processor;

(3) how the preczslon of block-sharzng znformatzon can be changed to trade-off the

Implementation cost and performance of the coherence mechamsm; and (4) how the

cache block szze affects the performance of the memory system. Trace-driven simulations

are used to compare the performance and implementation impacts of these different

issues, Additionally, hybrzd strategies are presented that can enhance tbe performance

of the multiprocessor memory system by combining several different coherence

mecb anisms into a single system.

Categories and Subject Descriptors: B.3.2 [Memory Structures]: Design

Styles—Cache Menzorle.s; C 12 [Computer Systems Organization]: Multiple Data

Stream Architectures: MZMD; C.5. 1 [Computer System Implementation]: Large

and Medium Computers

Additional Key Words and Phrases: Adaptme, block size, cache cobercnce, comparison,

consistency, du-ectory, memory disambiguatlon, shared memory, tagged du-ectory,

vers] on control

1. INTRODUCTION

The sequence of memory addresses gen-
erated by a program typically exhibits
the properties of temporal and spatial
locality [Smith 1982]. Temporal locality,
or locality in time, means that memory
addresses recently referenced by a pro-
gram are likely to be referenced again in

the near future. Spatial locality means
that the addresses referenced by a pro-
gram in a short period of time are likely
to span a relatively small portion of the
entire address space, For example, some
programs frequently operate on large
data structures in which the consecutive
elements of the structure are located in
sequential memory locations. Thus, the
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memory addresses generated by a pro-
gram to access such structures are likely
to be clustered into a small range of the
address space. Private data caches, which
are small, fast memories physically lo-
cated near a processor, exploit these
memory-referencing properties to reduce
the average time required to access the
larger main memory. By temporarily
storing in the cache a copy of a value
from the main memory that is being ac-
tively referenced by a program, caches
amortize the time required to copy the
memory location from the slower main
memory into the faster cache over sev-
eral references to the same (temporal lo-
cality) and nearby (spatial locality) mem-
ory locations.

In a shared-memory multiprocessor
such as that shown in Figure 1, private
data caches have been shown to be quite
effective in reducing the average delay to
access the shared memory [Gottlieb et al.

E%?
I M 0000 I M II I I

P = processor C = private data cache M = memory module

Figure 1. Shared-memory multiprocessor archi-
tecture.

1982; Pfister et al. 1985]. Caches have
not provided the same level of memory
performance improvement in multipro-
cessors as in uniprocessors, however,
since the data referenced by a program
in a multiprocessor is distributed among
the processors. This data spreading re-
duces the processors’ locality of refer-
ence, thus reducing the effectiveness of
the caches. Additionally, since multiple
copies of a shared-memory location can
be resident in several different caches
simultaneously, the private data caches
introduce a coherence problem in which
it is possible for the different cached
copies to have different values at the
same time. It is the responsibility of the
cache coherence mechanism to ensure
that whenever a processor reads a mem-
ory location, it receives the correct value.

This paper examines mechanisms for
maintaining cache coherence in large-
scale shared-memory multiprocessors,
such as the New York University Ultra-
computer [Gottlieb et al. 1982], the Uni-
versity of Illinois Cedar [Kuck et al.
1986], the IBM RP3 [Pfister et al. 1985],
the Alliant FX-series [Perron and Mundie
1986], and the Stanford DASH [Lenoski
et al. 1992]. The remainder of this section
defines the cache coherence problem and
presents an overview of three different
types of mechanisms proposed to solve
this problem. Additionally, a new frame-
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work is presented that identifies the pri-
mary factors affecting the implementa-
tion cost and the performance of
the cache coherence mechanisms, Section
2 describes a trace-driven simulation
methodology that is used to illustrate the
performance effects of these different fac-
tors. Since large-scale parallel machines
frequently are used to execute numerical
application programs, the simulation
comparisons presented in Section 3 use
memory traces produced by a multipro-
cessor emulator executing several differ-
ent numerical programs. While the use of
these applications may bias the simula-
tion results, the issues presented are im-
portant to any shared-memory multipro-
cessor system, regardless of the applica-
tion programs executed by the system.

1.1 Problem Definition

There are two important, related aspects
to the cache coherence problem. The first,
which is briefly discussed next, is the
model of the memory system presented
to the programmer. The second impor-
tant aspect, and the primary focus of the
remainder of this survey, is the mecha-
nism used by the system to maintain
coherence among the caches and the main
memory.

1.1.1 Consistency Models

One definition of a system with coherent
caches is a system that guarantees that
“the value returned on a Load instruc-
tion is always the value given by the
latest Store instruction with the same
address” [Censier and Feautrier 1978].
The difficulty with this definition is that
the meaning of “latest” is not precisely
defined when the loads and stores occur
on different processors that are running
asynchronously with respect to each

other. Due to delays and buffering in
different portions of the processor-
memory interconnection network, and
within the processors and memories
themselves, each processor and each
memory module can observe a different
ordering of events. The consistency model
of a multiprocessor defines the program-

mer’s view of the time ordering of events

that occur on different processors. These

events include memory read and write

operations, and synchronization opera-

tions. As fewer assurances are made by
the system to the programmer regarding
the order of events, there is a greater
potential to overlap operations from dif-
ferent processors with each other, and
with other operations within the same
processor, and thereby increase the sys-
tem performance. However, the cost of
this greater performance is the added
burden on the programmer (or on the
compiler) to ensure that any depen-
dence between operations are not vio-
lated.

From the programmer’s view of the
memory system, the sequential consis-
tency model defines a strict ordering of
the execution sequence of memory opera-
tions allowed within a processor and
among processors. Specifically, a multi-
processor system is said to be sequen-
tially consistent if “the result of any exe-
cution [of the program] is the same as if
the operations of all the processors were
executed in some sequential order, and
the operations of each individual proces-
sor appear in this sequence in the order
specified by its program” [Lamport 1979].
With this consistency model, each access
to the shared memory must complete be-
fore the next shared-memory access can
begin. Also, all memory operations are
executed in the order defined by the pro-
gram. This strong ordering of memory
accesses imposes a severe performance
penalty by greatly limiting the allowable
overlap between memory operations is-
sued by an individual processor, and by
other processors.

The weak-ordering consistency model
[Dubois et al. 1988] relaxes the guaran-
teed ordering of’ events of the sequential
consistency model to allow for greater
overlap of memory reads and writes. With
the weak model, only memory accesses to
programmer-defined synchronization
variables are guaranteed to occur in a
“sequentially consistent” order. All mem-
ory references by different processors to
shared data variables between accesses

ACM Computmg Surveys, Vol 25, No 3, September 1993



306 ● David J. Lilja

to synchronization variables (i.e., be-
tween synchronization points) can occur
in any arbitrary order. Thus, in a system
with a weak-ordering model, the pro-
grammer can make no assumptions about
the ordering of events between synchro-
nization points. To prevent nondetermin-
istic operation, each processor must
guarantee that all of its outstanding
shared-memory accesses are completed
before issuing a synchronization opera-
tion. Similarly, the synchroniza-
tion operation must be completed before
any subsequent shared-memory opera-
tions can be issued.

In addition to relaxing the ordering
constraints on data references. the re-
lease consistency model [Gharachorloo
et al. 1990] weakens the ordering con-
straints on synchronization variables by
splitting the synchronization operation
into separate acquire and release opera-
tions. The acquire operation is issued by
a processor when it wishes to obtain ex-
clusive access to some shared-memory
object. To prevent interference with an-
other processor that may currently have
exclusive access to the shared object, the
processor must wait for the acquire oper-
ation to complete before initiating any
references to the shared memory. The
release operation, on the other hand, is
used to give up exclusive access to a
shared-memory object. To ensure than
any changes made by the processor to
the shared object are actually performed
in the shared memory before exclusive
access is surrendered, the processor must
wait for all of its shared-memory ac-
cesses to complete before issuing the re-
lease operation. This splitting of the syn-
chronization operation into two separate
phases allows this consistency model to
achieve a greater overlap of the memory
operations issued by all of the processors
than either the weak or sequentially con-
sistent models. To quantify the effect of
this additional overlap, several studies
have examined the performance improve-
ment that can be obtained by using these
relaxed consistency models [Ghara-
chorloo et al. 1991; Gupta et al. 1991;
Torrellas and Hennessy 1990; Zucker and
Baer 1992].

1.1.2 Cache Coherence

A related problem to the memory consis-
tency model, and the primary focus of
this survey, is the mechanism used by
the system to ensure that processors do
not access stale data. In a shared-memory
multiprocessor, each of the processors can
directly access any location in the com-
mon memory address space using a sin-
gle read (load) or write (store) instruc-
tion. Since each processor has a private
data cache, a copy of the same shared-
memory location may be present in one
or more of the caches at the same time.
When a shared-memory location is writ-
ten by any processor, the fact that the
value in that location has been changed
must be propagated to all of the proces-
sors with a cached copy of the location to
ensure that none of them uses a stale
version.

For example, consider a system with
three processors, each with a private data
cache, in which the sequence of reads
and writes shown in Figure 2(a) are per-
formed. After the first two reads have
been completed at t2,the caches of both
processors PO and PI will contain the
value of 12 for the variable stored at
memory location X, as shown in Figure
2(b). At time t3,processor PO writes to
this memory location changing its value
to 16. In a system without a cache coher-
ence mechanism, this value will be up-
dated only in PO’S cache so that when PI

rereads X at time t4,it will read the old
value 12 from its cache, as shown in
Figure 2(c). Similarly, processor Pz also
will read the old value since the main
memory has not been updated with the
latest value written by PO. The cache
coherence mechanism is necessary to en-

sure that the stale values of X in the

other processors’ caches and in the main

memory (i.e., the value 12) will not be

propagated to future read operations.

1.1.3 Relationship between Consistency Models

and

A useful
between
and the

Coherence

way of viewing the relationship
the memory consistency model
cache coherence mechanism is
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E
(a) Sequenceof readsandwrites.

Memory

x: 12

, t

(b) Cachecontents after the read at time q

Memory

I x: 12 I1 1

(c) Cachecontentsafterthereadsattimer,.

Figure 2. An example of the cache coherence prob-
lem.

that the coherence mechanism ensures
that all of the caches see all of the writes
to a s~ecific block in the same lotical
order. ‘ Th~ consistency model, on” the
other hand, defines for the programmer
the order of writes to different blocks as
perceived by each of the ‘processors. That
is, if the programmer follows the rules of
the consistence model for the svstem be-.
ing used, the coherence mechan~sm forces
the value returned by any load operation
to be the value guaranteed by the consis-
tency model.

In a system that guarantees sequential
consistency, for instance, the coherence
mechanism ensures that the effects of

each write operation to a shared-memory
location are propagated to all of the
caches before the next write to that same
location by any processor can proceed.
These accesses are said to be strongly
ordered [Dubois et al. 1988]. In a system
with a weakly ordered consistency model,
on the other hand, only accesses to pre-
define synchronization variables are
strongly ordered. The ordering of ac-
cesses to shared-data memory locations
by different processors can occur in any
order. The processors must then ensure
that they do not proceed across a syn-
chronization point until all of the mem-
ory accesses they have issued have been
acknowledged by the coherence mecha-
nism. Thus, this weak-ordering consis-
tency model ensures that the data values
in the caches are coherent only at syn-
chronization points. Examples of the re-
lationship between different consistency
models and different coherence mecha-
nisms are presented next.

1.2 Overview of Cache Coherence

Mechanisms

A variety of mechanisms have been pro-
posed for solving the cache coherence
problem. The optimal solution for a given
multiprocessor system depends on sev-
eral factors, such as the size of the sys-
tem (i.e., the number of processors), the
anticipated usage of the system, and the
desired system cost. The following three
subsections present an overview of the
operation of the three main types of co-
herence mechanisms.

1.2.1 Snooping Coherence

Snooping coherence mechanisms rely on
a low-latency, shared interconnection
among the processors and the memory
modules, such as a common bus, that
allows each processor to monitor all
transactions to the shared memory. As a
processor “snoops” on the other proces-
sors’ memory references, it can detect
when a block that it has cached has been
changed by another processor. It then
invalidates [Goodman 1983; Katz et al.
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1985: Papamarcos and Patel 1984] its
cached copy so that its next reference to
the block will force a cache miss, and
thus the current value will be obtained
from memory, or from another cache. Al-
ternatively, it can directly update [Mc-
Creight 1984; Thacker et al. 1988] its
cached copy with the new value available
on the bus. Since the shared bus typically
broadcasts the effects of each write oper-
ation to a shared-memory location to all
of the caches in the same cycle as the
write itself, these snooping coherence
mechanisms typically implement a
strongly ordered consistency model.

While these snooping mechanisms are
relatively simple to implement,
the shared bus can become a severe per-
formance bottleneck. To reduce the
contention on a single bus, the Wisconsin
Multicube [Goodman and Woest 1988]
proposed an n-dimensional grid of buses
with the processors located at the cross-
points of the buses and the memory mod-
ules at the ends. The additional buses
provide greater memory bandwidth at the
expense of a more complicated coherence
protocol. Another approach [Archibald
1988; Wilson 1987] clusters the proces-
sors on smaller, separate buses, and
maintains coherence among processors
within each cluster. An additional hierar-
chy of buses is introduced to maintain
intercluster coherence. Yet another ap-
proach adds a special coherence bus
[Bhuyan et al. 1989; Marquardt and Al
Khatib 1989] to remove the coherence-
updating data traffic from the normal
data read operations on the primary
memory bus.

Since all of these schemes use addi-
tional buses to increase the bandwidth
between the processors and the shared
memory, their performance ultimately
will be limited by the bus contention
when there are too many processors, and
by the difficulty of physically construct-
ing these long, high-speed buses. Conse-
quently, it appears that the snooping CO-
herence schemes are limited to use in
relatively small-scale multiprocessor sys-
tems. Since the focus of this survey is
primarily on large-scale multiprocessors,

the snooping coherence schemes are not
considered further.

Another method of avoiding the bus
saturation problem is to replace the bus
with an interconnection network, such as
a multistage Omega network, a mesh, a
fat tree, or a hypercube. These networks
provide higher bandwidth between the
processors and the memory modules than
a shared bus, but they also increase the
delay to access memory. This longer de-
lay intensifies the need for the private
caches, but by eliminating the mecha-
nism through which processors monitor
the shared-memory transactions, the
networks compound the coherence prob-
lem. Both hardware directory mecha-
nisms and compiler-directed approaches
have been suggested for maintaining co-
herence in these systems.

1.2.2 Directory Coherence

With a directory-based coherence scheme
[Tang 1976; Yen et al. 1985], a processor
must communicate with a common direc-
tory whenever the processor’s action may
cause an inconsistency between its cache
and the other caches and memory. The
directory maintains information about
which processors have a copy of which
blocks since several processors may have
a copy of the same block cached at the
same time. Before a processor can write
to a block, it must request exclusive ac-
cess to the block from the directory. Be-
fore the directory grants this exclusive
access, it sends a message to all proces-
sors with a cached copy of the block forc-
ing each processor to invalidate its copy.
After receiving acknowledgments from all
of these processors, the directory grants
exclusive access to the writing processor.
When a processor tries to read a block
that is exclusive in a different processor,
it will send a miss service request to the
directory. The directory then will send a
message to the processor with the exclu-
sive copy telling it to write the new value
back to memory. After receiving this new
value, the directory sends a copy of the
block to the requesting processor. Direc-
tory schemes differ in how much infor-
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mation they maintain about shared
blocks, where that information is stored,
and whether invalidating or updating is
used to ensure coherence, resulting in
differences in memory requirements and
performance. These trade-offs are dis-
cussed further in Section 3.

By waiting for the invalidation and
write-back acknowledgments for
all writes to a shared-memory location
before letting a processor proceed with a
write, the directory implements a
strongly ordered consistency model. A
weakly ordered consistency model can be
implemented with a directory by having
the directory delay the writing processor
only when it is accessing a synchroniza-
tion variable. This approach then puts
the burden on the processor to ensure
that before it proceeds across a synchro-
nization point it has received acknowl-
edgments from the directory for all of the
writes it has issued to shared-data mem-
ory locations. Since this weakened con-
sistency model delays processor writes
only to synchronization variables, it will
produce higher performance than the
strongly ordered model.

1.2.3 Compiler-Directed Coherence

Compiler-directed coherence mechanisms
determine at compile-time which cache
blocks may become stale. Special in-
structions then are inserted into the gen-
erated code to be executed by each of the
processors to prevent them from using
this possibly stale data. One of the sim-
plest of these compiler-directed coher-
ence mechanisms [Veidenbaum 1986]
uses indiscriminate invalidation of the
data caches to enforce coherence with a
weakly ordered consistency model. This
coherence mechanism assumes a doall
parallel loop model of execution [Poly-
chronopoulos 1988] in which there are no
dependence among the iterations of the
loop. Thus, all of the iterations can be
executed simultaneously on multiple in-
dependent processors. The parallel loop
terminates when all of the iterations have
completed executing. Processors may be
reassigned to iterations at the entry and

exit points of the parallel loop. These
points are called the loop boundaries.

At the start of each parallel loop, each
processor first executes a cache-
inualidate instruction to begin the execu-
tion of the loop with an empty cache.
Each processor also executes a cache-on

instruction to allow all references to
shared-writable variables to be cached
during the execution of the loop. The
caches are write-through so that all
writes to shared-memory locations are
propagated directly to the global shared
memory. At the end of the parallel loop,
each processor again invalidates its en-
tire cache to prevent stale entries from
propagating into the next section of the
program. Incoherent accesses are thereby
prevented since the weakly ordered con-
sistency model used with this coherence
mechanism guarantees coherent caches
only at loop boundaries. Since the caches
are invalidated at the loop boundaries,
and since the current value is only in the
main memory, coherence is assured. Sim-
ilar schemes have been suggested for the
RP3 machine [Brantley et al. 1985] and
the Ultracomputer [13dler et al. 1985].
These simple approaches tend to invali-
date more cache entries than are neces-
sary to maintain coherence, and thus they
may reduce the memory system perfor-
mance when compared to a directory
mechanism. More sophisticated compiler-
directed mechanisms with better perfor-
mance than this simple mechanism are
described in Section 3.1.2.

1.3 Factors Affecting Coherence

Mechanisms

The most important consideration in
choosing a cache coherence mechanism
for a multiprocessor usually is its perfor-
mance, or how effective it allows the
caches to be in reducing the average de-
lay when fetching data from memory.
Another important consideration is the
implementation cost, typically measured
by how much memory is required to store
the cache block sharing information, and
by the complexity of the control logic.
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The different coherence schemes have
significantly different trade-offs in cost
and performance, making it difficult to
evaluate the alternatives. The primary
issues affecting the cache coherence
mechanisms can be summarized as:

(1)

(2)

(3)

(4)

The coherence detection strategy, that
is, the strategy by which the coher-
ence mechanism detects a possibly
incoherent memory access, which can
be done either dynamically at run-
time, or statically at compile time.

The coherence enforcement strategy,

such as updating or invalidating, that
is used to ensure that stale cache
entries are never referenced by a pro-
cessor.

How the precision of block-sharing

information can be changed to trade-
off the implementation cost and the
performance of the coherence
mechanism.

How the cache block size affects the
performance of the memory system,

This paper surveys the state of the art in
cache coherence mechanisms in the con-
text of the above issues. Trace-driven
simulations are used to compare how
these different issues affect the perfor-
mance and implementation costs of the
different coherence mechanisms. Addi-
tionally, hybrid strategies are discussed
that combine several different coherence
mechanisms into a single system to im-
prove the memory-referencing perfor-
mance. These comparisons should help
the computer architect understand some
of the trade-offs involved in the various
coherence alternatives.

2. COST AND PERFORMANCE MODELING

The most accurate method of determin-
ing the performance of a specific com-
puter design, or for proving the validity
of a new architectural approach, is to
build it. Unfortunately, actually building
a complete computer system is very time
consuming and expensive. It also re-
quires the designer to select specific val-
ues for architectural parameters, such as

the data cache size and the cache block
size, without knowing what reasonable
values of the parameters may be for the
new system. Therefore, before actually
committing an idea to hardware, it is
desirable to explore the limits of the de-
sign space using mathematical analysis
or simulation. A large number of poten-
tial design options can be quickly exam-
ined by analytically modeling the system
and varying the desired parameters. An-
alytic models are of limited usefulness
when comparing cache coherence mecha-
nisms, however, due to the assumptions
that must be made concerning memory-
referencing patterns and data sharing.
To provide more realistic results while
still maintaining flexibility in choosing
system parameters, the performance
evaluations presented in this survey use
trace-driven simulations.

2.1 Trace-Driven Simulation

An address trace for a multiprocessor is
a record of the sequence of memory ad-
dresses generated by the processors as
they execute a program. There are sev-
eral different methods of generating these
traces [ Stunkel et al. 1991]. For example,
it is possible to instrument an actual
computer system to record the memory
references as they are generated by the
program. This approach has the advan-
tages of being very accurate, very fast,
and able to monitor operating system ex-
ecution as well as a user program. Its
main disadvantages are the cost and dif-
ficulty of building the hardware monitor,
and the complexity of instrumenting all
of the processors in a multiprocessor sys-
tem. It also limits the simulation to using
traces from a specific implementation of
a computer system, which may be sub-
stantially different from the system to be
studied.

Another method that has many of the
advantages of hardware monitoring to
generate traces is to alter the microcode

of a processor to generate traces as it
executes the instructions. This approach
also can trace operating system activity,
and it is relatively fast; but it requires a
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substantial effort to rewrite the mi-
crocode. Also, it is not applicable to pro-
cessors without microcode, or to those
that have their microcode in read-only
memory. As more parallel computer sys-
tems use hardwired processors, this tech-
nique will become less useful.

Software-based techniques have been
suggested to avoid some of the difficul-
ties of the hardware-monitoring and
microcode-based approaches. In some
processors, it is possible to generate an
interrupt after the execution of every in-
struction. The interrupt routine then pro-
duces the trace information for the cur-
rent instruction. Another approach is to
modify a program’s source code or exe-
cutable object code to produce a trace as
the program executes. Both of these
methods can generate traces without sig-
nificantly slowing down the traced sys-
tem, but they can introduce significant
timing distortions into the trace due to
the interrupts and due to the additional
trace generation instructions. They also
are limited to the instruction set of the
specific processor used to execute the
program.

The most flexible method of generating
traces, and the one used in this survey, is
to simulate the execution of the entire
multiprocessor system. The primary dis-
advantage of this approach is that it is
quite slow since the simulator must
model all of the operations of all of the
hardware elements of the processors. This
explicit modeling of all operations, how-
ever, produces accurate traces, and it al-
lows the simulation of any architectural
feature, especially those that may not
exist in a real machine.

Starting with application programs
written in Fortran (described in Section
2.3), the Alliant compiler [Perron and
Mundie 1986] is used to automatically
find the parallel loops and to generate
parallel assembly code. This assembly
code then is executed by a multiprocessor
emulator to produce a trace of the mem-
ory addresses generated by each of the p
processors. This multiprocessor system
uses an execution model in which each
parallel loop is followed by a sequential

section of the program so that execution
alternates between p processors execut-
ing a parallel section of the program and
a single processor executing a sequential
section. The memory traces from the p
processors are completely interleaved
into a single trace such that during the
execution of a parallel section of the pro-
gram, an address generated by processor
i is followed by an address generated by
processor i + 1, and so on, modulo p.
During the execution of sequential sec-
tions of the program, processor O gener-
ates all of the memory references. In an
actual system, timing differences be-
tween the processors due to cache misses,
network and memory contention, and
synchronization delays may produce a
different ordering of the references, but
this interleaving, which represents a
valid ordering, highlights the effects of
data sharing in the cache coherence
mechanisms used in these simulations.
Thus, this ordering provides a rigorous
test of the different coherence mecha-
nisms.

Since the simulation is very time con-
suming, it is limited to executing rela-
tively short programs compared to those
that could be executed on actual hard-
ware. Additionally, these simulations are
for one program running at a time, thus
ignoring the effects of multiple programs
sharing the system and the effects of the
operating system. The simulations also
prohibit task migration. In spite of these
limitations, this trace-driven methodol-
ogy provides an adequate means of com-
paring the performance of the different
coherence mechanisms.

2.2 Machine Model

The interleaved memory trace drives a
multicache simulator to determine the
miss ratio and the cache-memory net-
work traffic. A fully associative data
cache with a random replacement policy
is used in each processor to eliminate the
confounding effects of set associativity
conflicts. The long execution time re-
quired to perform the simulations limited
the size of the application programs’ data
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sets. To maintain a realistic relationship
between the size of the data set and the
size of the data cache, a data cache of 8
KB is used in each of the 32 processors,
unless otherwise noted.

Since this system assumes that all in-
structions are only read, they can never
cause coherence problems. Consequently,
all instruction references are ignored.
This multiprocessor architecture uses a
separate synchronization bus for dis-
tributing the next available iteration val-
ues when scheduling loop iterations and
for performing the barrier synchroniza-
tion at the end of the parallel loops. With
this architecture, synchronization vari-
ables are never cached with the data,
and, since this study is concerned pri-
marily with the effect of the cache coher-
ence mechanism on data references, ac-
cesses to synchronization variables are
not considered in these simulations. It
should be noted, however, that synchro-
nization variables stored in memory can
be heavily shared. Heavy sharing of a
single memory location by many differ-
ent processors can cause memory hot

spots [Pfister et al. 1985], which may
make it undesirable to cache synchro-
nization variables [Dubois et al. 1988].
Special hardware or software can be
added to the system to improve access to
synchronization variables [Anderson
1990; Goodman et al. 1989; Kruskal et al.
1986], but tbe analysis of these tech-
mques is beyond the scope of this survey.

The p = 32 processors are connected
to the shared memory via a packet-
switched multistage interconnection net-
work. Network traffic from a processor to
the memory, such as a miss service re-
quest or write-back data, uses the for-
ward network, while traffic from the
memory to a processor, such as an invali-
dation command or fetched data, uses
the separate reverse network. Both the
forward and reverse networks use 32-bit
data paths. Each packet between the
memory modules and the processors re-
quires a minimum of two words (eight
bytes ). The first word contains the source
and destination module numbers plus a
code for the operation type, and the sec-

ond word contains the actual memory
address. Additional words are needed for
the actual data values fetched and writ-
ten. Table 1 details the actions required
for each type of memory reference, along
with the generated network traffic, when
using the p + l-bit full directory [Censier
and Feautrier 1978]. This directory
structure is described more fully in Sec-
tion 3.3.1.

2.3 Test Programs

Six numerical application programs writ-
ten in Fortran were used to generate the
parallel memory traces for these simula-
tions. Arc3d and fi!052 both analyze fluid
flows. The trfd program uses a series of
matrix multiplications to simulate a
quantum mechanical two-electron inte-
gral transformation. Simple24 is a
hydrodynamics and heat flow problem
using a 24-by-24-element grid. The pic

program uses a particle-in-cell technique
to model the movement of charged parti-
cles in an electrodynamics application.
The lin125 program is the Linpack
benchmark using a 125-by-125-element
matrix. The problem sizes and outer loop
counts were reduced in these programs
so that the entire program could be simu-
lated in a reasonable period of time.

The memory-referencing characteris-
tics of the test programs are summarized
in Table 2 for p = 32 processors, and a
cache block size of b = 1 word. The blocks
were classified by examining the traces
and determining how many processors
accessed each block. The priz)ate blocks
are those that are referenced by the same
processor throughout the program’s exe-
cution with no references by any other
processor. The shared-writuble blocks are
referenced by two or more different pro-
cessors, at least one of which writes the
block. Finally, the shared read-only

blocks are blocks that are referenced by
more than one processor, but are never
written. The percentages do not sum to
100 since the table does not show the
statistics for the shared read-only blocks.

As shown in this table, fewer than 407c
of the unique blocks referenced by arc3d,

ACM Computmg Surveys, Vol 25, No 3, September 1993



Cache Coherence: Issues and Comparisons ● 313

Table 1. Memory Operahons and Resulhng Network Traffic (b = Number of Words per Block
Word Size = 4 Bytes)

Memory Forward traffic Reverse traffic
Operation (bytes) (bytes)

Read hit.

(none)

Read miss, block shared in one or more caches,or only in memory.

miss service 8 8+4b

Read miss, block exclusive in another cache.

miss service 8 8+4b

write-back 8+4b 8
Write hit, block shared in one or more caches.
processor requests exclusive accessfrom directory 8
direetory sendsinvalidation messages 8 * #cach~

processors acknowledge invalidations 8 * #cached
directory acknowledges writing processor 8
Write hit, block exclusive m this cache.

(none)

Write miss, block only in memory,
miss service 8 8+4b

Write miss, block shared in one or more caches.
processor requests exclusive accessfrom directory 8
directory sendsinvalidation messages 8 * #cached
processorsacknowledge invalidations 8 * #cached
directory acknowledges writing processor 8
Write miss, block exclusive in another cache.
miss service 8 8~4b
write-back 8+4b 8

Table 2. Memory-Referencmg Charactershcs of the Test Programs (Blocks = Number of
Uruque Single-Word Data Blocks Referenced by the Program. Refs = Number of

Memory References Made to the Blocks)

Prog ‘Total Private Shared-
writable

blocks refs %blks %refs %blks YOrefs
arc3d 53733 6603772 55.6 48.9 38.1 489
pic 1CO087 8765261 77.0 57.0 22.9 34:8
simple24 10759 4251420 10.7 56.5 88.8 43.1

trfd 1478 5877557 11.2 14.9 88.8 70.5
flo52 115331 looQOOOo 82.3 77.1 17.7 22.3
lin125 21041 1ooOooOO 21.7 1.2 78.3 94.4

fZo52, and pie are shared-writable, and of the blocks referenced by simple24,

fewer than half of their total references lzn125, and trfd are shared-writable, al-
are made to these blocks. Most of their though only trfd and lin125 have more
references are to private and read-only than half of their references to these
blocks, and thus do not cause any coher- blocks. These different sharing charac-
ence actions. In contrast, more than 78?4 teristics provide for a broad range of
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memory performance in the simulations
to highlight the strengths and weak-
nesses of the different coherence
mechanisms.

2.4 Performance Metrics

The two most important measures of per-
formance for a memory system are the
latency and the bandwidth. The average
memory latency is the time from when a
processor issues a memory read opera-
tion until the data requested is available
to the processor, averaged over all mem-
ory references. If the requested data is
resident in the cache, the latency is sim-
ply the cache access time, which typically
is one cycle. If the data is not in the
cache, however, a miss service request is
generated and sent to the memory sys-
tem. The average memory delay can be
approximated as T,, o, = (1 – m) TC.,l,, +
mT,~L,, where m is the cache miss ratio
(O < m < 1);T,.Ckc is the time required
to access the cache on a hit; and T~,,, is
the time required by the memory system
to service the miss. The value of this
miss service time is a function
of the intrinsic delay in the memory mod-
ules, the time required to propa-
gate the request through the network,
and the additional time required to per-
form any necessary coherence operations.
The network delay is a function of the
total traffic in the network. High net-
work traffic increases the probability that
there will be collisions in the network,
which then can increase the miss service
time. Because of the dependence of the
miss service time on specific parameters
of the system. such as the memory access
delay, this survey uses the miss ratio as
a first-order mdlcatlon of the expected
memory performance.

The bandwidth of the interconnection
network determines how many data bytes
per unit time can be transferred between
the memories and the processors. To pre-
vent the network from becoming a per-
formance bottleneck, it is important to
provide sufficient bandwidth, but it can
be expensive to provide the wide data
paths and the fast components needed

for a high-bandwidth network. Maintain-
ing coherence in this type of system can
require many messages for each memory
request, which can put a significant load
on the network. As a result, the cache
coherence protocol should try to minimize
the network traffic by maintaining a low
miss rate and by reducing the number of
messages required to maintain coher-
ence. The simulations presented in this
survey use the average number of bytes
transferred per memory request as an
indication of the network bandwidth re-
quirements for the different coherence
mechanisms.

The total execution time of a program
takes into account the trade-offs between
the miss ratio and the network traffic,
and it is the performance measure that is
most interesting to the user of a multi-
processor system. To understand the im-
pact of architectural decisions on the per-
formance of the different coherence
mechanisms, however, it is useful to sep-
arate the overall performance into the
individual factors that contribute to this

performance. As a result, the miss ratio
and the average network traffic are the
metrics used in this survey to compare
the different design factors that comprise
a cache coherence mechanism. This au-
thor feels that examining these two met-
rics directly provides greater insight into
the trade-offs in the coherence mecha-
nisms than by simply comparing total
execution times.

3. PERFORMANCE IMPACTS

This section uses the trace-driven simu-
lation model described in the previous
section to examine the impact on perfor-
mance and on implementation cost of the
primary design factors affecting cache co-
herence mechanisms. Descriptions of the
different coherence mechanisms are also
provided.

3.1 Coherence Detection Strategy

There are several interrelated factors
that determine the performance of a
cache coherence mechanism. One of the
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most important factors is when the
mechanism performs coherence detection

—either dynamically at run-time, or

statically at compile-time. The dynamic
coherence detection strategies solve the
coherence problem by examining the ac-

tual memory addresses generated by a
program at run-time and by dynamically
keeping track of which processors have a

copy of which blocks. In contrast, the
static coherence schemes try to predict
which memory addresses may become
stale by analyzing the program’s refer-
encing behavior when it is compiled.

It is important to distinguish the im-
plementation of a coherence mechanism
from its method of determining when a
shared-memory location is stale. While
the statically detected coherence mecha-
nisms necessarily are software based
since they rely on a compiler, they also
need some hardware support to maintain
the current state information about the
memory locations. Thus, it is not pre-
cisely correct to refer to these mecha-
nisms as “software-only” coherence
mechanisms. Similarly, mechanisms that
dynamically detect the need for coher-
ence actions use hardware to monitor the
actual memory addresses, but they also
can be augmented with compilers and
other software to produce hybrid
schemes, as described in Section 4. This
survey distinguishes the two major
classes of coherence mechanisms as dy -
nam ically detected and statically de-
tected instead of as hardware and soft-
ware mechanisms.

3.1.1 Memory Disambiguation

The ability to disambiguate memory ref-
erences, that is, the ability to determine
if two different memory accesses actually
refer to the same physical location in
memory, is critical to providing a high-
performance cache scheme. The primary
advantage of the dynamic detection
schemes is that by examining the actual
memory addresses being referenced, they
are able to perfectly disambiguate these
accesses. Statically detected coherence
schemes, however, must rely on the im-

precise disambiguation performed by the
compiler. For example, consider the fol-
lowing sequence of references to the ar-

ray A( ):

S1. PI read: . . = A(f(.))

s,. Pz write: A(g(.)) = . . .

. . .

S3 . PI read: . . . = A(h(.))

In this sequence of memory references,
the read in statement S1 loads an ele-
ment of array A( ) into processor Pi’s
cache. The particular element read is de-
termined by the value of function ff.),
which may be anything that produces a
valid index into the array. Typically it is
some function of the loop count. If func-
tions f(.) and g(.) map into the same
memory location, the write in statement
S’g causes the corresponding element in
Pi’s cache to become stale since it no
longer contains a copy of the current
value. If function h(.) in statement S~
also maps to the same memory location,
PI will attempt to read this stale value,
unless it is first invalidated or updated.
Determining whether or not some action
is required in this case is the crux of the
cache coherence problem [Cheong 1988b].

For static coherence detection, a data
dependence test [Banerjee 1988; Lich-
newsky 1988; Li 1990] can be used to
determine if the three functions never
refer to the same element, in which case
no coherence action is necessary, or to
determine if the same element is always
referenced by the three statements so
that some coherence action must be
taken. Unfortunately, the data depen-
dence tests often are too imprecise to
determine whether the elements are al-
ways the same or always different. In
this case, static coherence mechanisms
must err on the conservative side by as-
suming that they are the same element
and then inserting the appropriate coher-
ence actions into the generated code.

A related memory disambiguation
problem for static coherence detection
mechanisms occurs with procedure calls,
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functions, and subroutines. The name of
a variable inside of a procedure most
likely will be different than the name of
the variable passed to the procedure. To
provide precise dependence analysis, the
compiler must perform interprocedural
analysis to track variable names across
procedure boundaries and thereby deter-
mine if a particular memory reference
may cause a coherence problem. In many
programming languages, this interproce-

dural analysis can be very difficult to
perform, in which case the coherence
mechanism may have to take an ex-
tremely pessimistic approach and invali-
date the entire data cache at the entry
and exit points of each procedure [Cheong
and Veidenbaum 1988a; 1989]. Proce-
dure calls provide no problem for the
dynamic coherence detection schemes
since they examine the actual memory
addresses at run-time and have no indi-
cation that a procedure call has even
occurred.

3.1.2 Static (Compi/e-Time) Coherence

Detect/on Mechanisms

The indiscriminate invalidation schemes
discussed in Section 1,2.3 [Veidenbaum
1986; Brantley et al. 1985, Edler et al.
1985] are more conservative than is nec-
essary to ensure coherence in that they
invalidate cache entries that are not ac-
tually stale. This overinvalidation then
produces unnecessarily high miss ratios.
More complex schemes determine at
compile-time which particular cache
blocks may become stale, and when they
may be stale, and then invalidate these
specific entries before they are accessed.
Subject to the memory dlsamblguatlon
limitations of the compiler, these schemes
are able to preserve at least some tempo-
ral locality between parallel loops.

For example, the fast, selective invali-
dation scheme [Cheong and Veidenbaum
1988a] associates a change bit with each
cache block. This bit is set true by the
cache-invalidate instruction inserted by
the compiler at each parallel loop bound-
ary to indicate that the block may have
been changed during the current loop.
The memory-read instruction forces a

cache miss when it references a block
with its change bit set to true. This miss
ensures that the current copy of the block
is fetched from the main memory. The
change bit then is reset to false when the
data block is loaded into the cache. Sub-
sequent memory-read references to the
same block will see this reset change bit
and will generate a cache hit since the
cached copy is now assured of being up to
date.

Another memory-referencing instruc-
tion, called the cache-read instruction,
ignores the change bit when it accesses a
memory location. It is used to reference a
shared-writable location that is guaran-
teed by the compiler to be up to date in
the cache in the current parallel loop,
and therefore can be treated as a cache
hit. In addition to the change bit, this
coherence mechanism requires a ualid

bit for each cache block, but no dirty bit
is required since it uses a write-through
strategy. Because each processor
is responsible for maintaining coherence

in its own cache, no state information is
required in the main memory.

Improvements to this fast, selective in-
validation scheme use version numbers
[Cheong and Veidenbaum 1989] or times-
tamps [Min and Baer 1989] to determine
whether or not a cache entry is up to
date when it is referenced. In the version
control mechanism [Cheong and Veiden-
baum 1989], for instance, each processor
mamtains a current version number

(CVN) in a separate local memory within
the processor for each variable used in a
program. For each parallel loop, the com-
piler predetermines which variables may
have been written by any processor dur-
ing the loop. It then generates instruc-
tions that are executed by each processor
at the end of a parallel loop to increment
the CVN values for these variables. This
change in the CVN value indicates to
subsequent memory references that a
new version of this variable may have
been created,

In addition to maintaining one CVN
entry per program variable, each cache
entry has an associated birth version

number (h’VN). The BVN value is set
equal to the corresponding CVN value
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when the referenced variable is first
loaded into the cache from the shared
memory. When a variable is written, its

BVN is set to the new version number,
CVN + 1. Because of this defined rela-
tionship between the BVN and CVN val-
ues, a read reference to a memory loca-
tion will be a cache hit if and only if
BVN > CVN. If BVN < CVN, however,
the cached copy may be stale, and the
current value must be loaded from the
main memory.

3.1.3 Dynamic (Run-Time) Coherence

Detection Mechanisms

With dynamic coherence detection, the
memory addresses actually generated by
the program are examined at run-time to
provide perfect memory disambiguation.
An example of a coherence mechanism
with dynamic detection is the p + l-bit
full directory (Censier and Feautrier
1978]. (Other directory configurations are
discussed in Section 3.3.) With this direc-
tory, two bits per cache block encode one
of three states for each of the blocks in
the caches. The inl)alid state means that
the block is empty and will cause a cache
miss when it is referenced. When a block
is shared by several processors, it must
be in the shared read-only state in each
processor to prevent any processor from
modifying the block without first re-
questing exclusive access from the direc-
tory. A processor is free to update a block
in the exclusive state since it is assured
of having the only copy of the block. The
directory in each memory module main-
tains p Lalid bits and a single exclusive
bit for each block in the module. If the
exclusive bit is reset, up to p valid bits
may be set to indicate which processors
have a copy of the block in the shared
read-only state. If the exclusive bit is set
for a block, a single valid bit will be set
to point to the processor that has the
only copy of the block, which must be in
the exclusilye state.

3.1.4 Performance Comparisons

The trace-driven simulation methodology
described in Section 2 is used to quantify

the effect of the coherence detection
strategy on the memory system perfor-
mance. Specifically, the performance of

the p + l-bit full directory [Censier and

Feautrier 1978] is compared to the com-
piler-directed version control coherence
mechanism [Cheong and Veidenbaum
1989]. The range of performance of the

version control scheme is estimated us-
ing three different levels of compiler
technology, as summarized in Table 3.
The simple compiler has imprecise mem-
ory disambiguation in that it maintains
one version number (i.e., one CVN entry)
for an entire array. With this compiler, a
write to any element of an array creates
a new version of the entire array. Fur-
thermore, this compiler cannot track
variable names across subroutine bound-
aries so that the entire data cache is
invalidated at the entry and exit points
of each subroutine.

The other extreme of compiler perfor-
mance for the version control mechanism
assumes an ideal compiler with perfect
memory disambiguation and perfect in-
terprocedural analysis. This compiler
maintains a unique CVN entry for each
element of every array, and it never in-
validates the caches at subroutine
boundaries. It models the best possible
performance of the version control

scheme, but it is probably impossible to
implement this perfect memory disam-
biguation in an actual compiler. The re-
alistic compiler compromises between
these two extremes with imprecise mem-
ory disambiguation, but perfect interpro-
cedural analysis. It should be pointed out
that at the end of every parallel loop, the
CVN values of every variable that may
have had a new version created in that
loop must be incremented. The ideal com-
piler may perform significantly more
CVN updates at the end of each parallel
loop than the other two compilers since it
has to update a CVN value for every
array element that was written, instead
of a single CVN update per array. The
time required to perform this updating
adds directly to the average memory de-
lay, which may be significant for large
arrays.

Because of the imprecise nature of

ACM Comrmtlng Survevs. Vol 25 No 3. Seutember 1992



318 ● David J. Lii’ja

Table 3. Compilers Used for the Version Control Slmulatlons

Compiler Action at subroutine boundaries Number of CVN entries

simple clear caches one per array
realistic ignore subroutine boundaries one per array

ideal ignore subroutine boundaries one per array element

Table 4. MISS Ratio (Percent) for Static and Dynamic DetectIon Strategies

Program Directory Version Control

simple realistic ideal
read write overall overall overall read write overall

10arc3d 15.0 8.0 J. 41.6 30.2 19.3 8.3 27.6

pic 8.8 8.9 17.7 32.9 25.9 8.0 8.1 16.1
simple24 9.4 3.1 12.5 63.5 56.0 12.6 3.2 15.8
trfd 10.9 1.5 12.4 42.0 18.0 13.9 4.1 18.0
flo52 1.1 0.8 1.9 44,2 44.1 2.7 1.1 3.8
lin125 5.7 4.2 9,9 9.5 9.4 5.9 0.2 6.1

compile-time data dependence tests, and
because of the information hiding in pro-
cedures, coherence mechanisms that rely
exclusively on the compiler to disam-
biguate memory references tend to inval-
idate more cache entries than are actu-
ally necessary to maintain coherence. By
tracking the actual memory addresses,
dynamic directory mechanisms can inval-
idate only those blocks that are actually

stale, which, as shown in Table 4, can
cause the dwectory mechanism to have a
lower overall miss ratio than the ideal
compiler-directed version control mecha-
nism for the arc.3d, simple24, trfd, and
flo52 programs. The directory has
slightly higher miss ratios than the ideal
implementation of version control for pie

and lin125 primarily due to the high
number of write misses produced with
the directory.

These extra write misses occur because
in these two programs, a large, shared
array is repeatedly written by different
processors during different portions of the
programs’ execution. When the array is
written for the fh-st time, it is marked as
exclusive in the writing processor’s cache.
When another processor tries to over-

write this same location, it misses and
must request exclusive access from the
directory. These misses can be prevented
by allocating a new array so as not to
overwrite the same array multiple times,
but this approach will require additional
memory space. With the version control
mechanism, the compiler detects that
these write references will not cause co-
herence violations, and thereby reduces
the number of write misses. The perfor-
mance of the su-nple compiler tends to be
poor compared to the other compilers and
compared to the directory since it invali-
dates all of the caches at every subrou-
tine boundary. The realistic compiler has
slightly better performance than the sim-
ple compiler because it can look beyond
subroutine boundaries, but its miss ratio
generally still is higher than that of the
ideal compiler due to its imprecise mem-
ory disambiguation.

A major advantage of the static coher-
ence detection mechanisms is that by
making each processor responsible for
maintaining coherence in its own cache
using self-invalidation, interprocessor
communication is limited to that re-
quired to service the cache misses. The
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Table 5. Network Trafhc for Stahc and Dynamic DetectIon Strategies (Bytes Per Reference)

Program Directory Version Control
miss invalidate total simple realistic ideal

arc3d 4.59 5.40 9.98 8.32 6.04 5.52
pic 3.53 4.47 8.00 6.58 5.18 3.23
simple24 2.43 2.44 4.87 12.7 11.2 3.17
trfd 2.48 2.27 4.75 8.40 3.61 3.61
flo52 0.39 0.40 0.79 8.83 8.81 0.76
Iin125 1.99 1.99 3.98 1.90 1.87 1.22

dynamic mechanism, on the other hand,
sends many messages between the direc-
tory and the processors which increases
the congestion in the interconnection
network compared to the static mecha-
nism and thereby may increase the mem-
ory latency. As shown in Table 5, the
total network traffic for the ideal com-
piler in the version control mechanism is
approximately the same as the network
traffic required to service only the misses
with the directory. These similar traffic
requirements are expected since these
two approaches have similar miss ratios.
However, this table also shows that the
network traffic required by the directory
for the invalidation messages approxi-
mately doubles the total network traffic
over that required for servicing only the
misses. The simple and realistic compil-
ers in the version control approach pro-
duce higher network traffic than the ideal
compiler since they have significantly
higher miss ratios. Even with these
higher miss ratios, though, the network
traffic they produce can be less than the
total network traffic produced by the di-
rectory since they generate no invalida-
tion messages.

In summary, the primary advantage of
dynamic coherence detection is its per-
fect memory disambiguation. By knowing
precisely those addresses being refer-
enced, the dynamic mechanism invali-
dates only those cache blocks that are
actually stale. This exact invalidation
generally produces lower miss ratios than
a mechanism that statically detects co-
herence violations. Additionally, the dy-
namic detection mechanism is completely

transparent to procedure boundaries,
while the static coherence detection
mechanism requires good interprocedu-
ral analysis to match the performance of
the dynamic mechanism. The primary
advantage of static detection mecha-
nisms is that they produce lower network
traffic than the dynamic mechan-
isms since they do not require any invali-
dation messages. Similar results to the
simulations presented here have been re-
ported in other studies comparing com-
piler-directed and directory-based coher-
ence mechanisms [Adve et al. 1991; Lilja
1991; Min and Baer 1990].

3.2 Coherence Enforcement Strategy

Another factor affecting the performance
of a multiprocessor memory system is the
actual method used by the coherence
scheme to ensure that no processor ac-
cesses a stale-memory location. The sim-
plest approach is to make all shared-wri-
table memory locations noncacheable so
that there can never by multiple copies
[Lilja et al. 1989]. However, since refer-
ences to shared-writable variables can
constitute a large fraction of the refer-
ences made by a program (see Table 2),
bypassing the cache for all references to
these memory locations can significantly
reduce performance. Two other coherence
enforcement strategies always allow
shared-writable memory locations to be
cached, but either update or mvahdate
stale-cache entries before they are refer-
enced again. With an update approach,
the new value of the shared location is
distributed to all processors with a copy
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of the block whenever it is written by any
processor. The advantage of this ap-
proach is that it prevents an additional
miss if the cache block is reused by a
processor with a cached copy after it has
been written by another processor. A sig-
nificant disadvantage is the additional
network traffic produced by the poten-
tially large number of update messages.

Instead of updating cached copies when
they are changed, the invalidation strat-
egy marks all cached copies as in c’slid

within the cache to force the processor to
miss the next time it references that
block. This approach reduces the net-
work traffic compared to the update
strategy, but it does introduce the extra
delay of another miss if the block is
reused. Invalidation schemes can be clas-
sified as either self-invalidation or di-

rected-m validation. With self-invalida-
tion, the compiler inserts extra instruc-
tions into the generated code to force the
processor to invalidate some or all of its
data cache before it accesses a stale en-
try. With directed-invalidation, some out-
side agent, such as a directory, forces a
processor to invalidate a specific block in
its cache at a specified time.

3.2.1 Performance Comparisons

In a system in which all of the processors
are connected with a shared bus, an up-
date protocol is implemented by having
each write to a shared-memory location
write-through to the bus to broadcast the
new value to all of the processors [Mc-
Creight 1984; Thacker et al. 1988]. In
the system used in this survey, however,
the bus is replaced by a multistage inter-
connection network. Since this type of
network does not support broadcasting,
coherence updates are implemented us-
ing individual messages. For example,
when a processor writes to a shared-
memory location, a message containing
the new value is sent to the directory.
The directory then sends a message con-
taining the new value to each processor
with a cached copy of the block instruct-
ing the processors to update their copies.
The processors respond with an acknowl-

edgment to the directory, which then ac-
knowledges the processor that performed
the initial write. With this approach, up-
dates of written blocks are sent only to
processors that actually have a cached
copy instead of being broadcast to all of
the processors. The invalidation-based
directory coherence simulator described
in Section 2.2 is modified to use this
update-based protocol.

Table 6 compares the miss ratios pro-
duced by a directory coherence scheme
using either updating or invalidating for
three different cache sizes. In the infinite
cache, blocks are never replaced due to
lack of cache space. Consequently, with
an update strategy in an infinite cache,
once a block is moved into the cache, it is
never removed. The number of misses in
this configuration then is simply the
number of misses required to bring each
block into the cache the first time. That
is, the number of misses is the same as
the number of unique blocks referenced,
and it is the minimum number of misses
that can be produced for the given pro-
grams. Comparing the invalidation strat-
egy in the infinite cache with the update
strategy shows how the invalidations re-
quired to maintain coherence increase the
miss ratio due to the sharing of cache
blocks by different processors. In particu-
lar, it demonstrates the performance ef-
fect of requiring exclusive access to a
block in order to write to the block. Since
updating allows writes to blocks that are
shared, updating typically produces a
lower miss ratio than invalidating. As
the cache size is reduced, the miss ratio
increases for both updating and invali-
dating since there is no longer enough
space in the caches to store all of the

referenced blocks.

The network traffic statistics in Table

7 show that the cost of the lower miss

ratio with updating is the considerably

higher network traffic it produces com-

pared to the traffic produced by invali-

dating. This table separates the network

traffic into that required to move the

data into a cache on a miss, and into that

required to maintain coherence, which is

either the update traffic or the invalidate
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Table 6. MISS Ratio (Percent) for Updating and Invalidating Coherence
Enforcement Strategies

Program Cache size (bytes)

4K 16K cc

inv up inv w inv up
WC3d 26.8 16.0 19.9 6.73 18.0 1.7
pic 28.6 26.9 8.4 6.8 7.8 1.4
simple24 13.5 6.4 11.2 3.6 9.3 0.73
trfd 12.4 0.39 12.4 0,38 12.4 0.38
flo52 2.1 1.7 1.9 1.4 1.8 1.4
lin 125 10.0 1.7 10.0 1.6 10.0 1.6

Table 7. Network Trafhc (Bytes Per Reference) Due to Cache Misses and
Due to Coherence Enforcement for Updating and Invakdahng

Program Strategy Cache size (bytes)
4K 16K

miss coh miss coh miss coh
arc3d invalidate 53 6 55 6 397 517 3.61 513

update 3:21 12:6 1:34 15:0 ().34 16:2
pic invalidate 5.72 3.35 1.68 2.26 1.56 2.78

update 5.39 7.69 1.36 8.87 0.29 10.1

simple24 invalidate 2.69 2.39 2.23 2.49 1.86 2.68
update 1.27 7.37 0.71 .7.54 0.15 7.96

trfd invalidate 2.49 2.27 2,49 2.27 2.49 2.27
update 0.08 52.? 0.08 52.3 0.08 52.3

flo52 invalidate 0.43 0.45 0.37 0.42 0.36 0.31
update 0.35 5.23 0.29 .5.40 0.27 6.39

lin125 invalidate 1.99 1.88 1.99 1.88 1.99 1.89
update 0.34 27.1 0.32 27.3 0.32 27.4

traffic. The miss traffic for updating is
always less than that generated by inval-
idating since its miss ratio is lower than
the miss ratio with invalidating. How-
ever, the component of the network traf-
fic due to coherence actions is roughly 2
to 25 times greater for updating that
invalidating since updating produces
some network traffic on every write to a
shared-memory location. The invalida-
tion strategy, on the other hand, pro-
duces coherence traffic only when a pro-
cessor first requests exclusive access to a
block, or when a write-back is required.
Subsequent writes to the same block by
the same processor generate no addi-

tional traffic.

Ilow the differences in network traffic

and miss ratios translate to overall mem-

ory delay depends on the implementation

details of each individual system. For in-
stance, given a high-bandwidth network,
an updating strategy probably will pro-
duce lower average memory delays than
invalidating since updating has the low-
est miss ratio. The high traffic produced
by updating may be easily handled by
the network without increasing the
memory delay. However, if the intercon-
nection network is the system bottleneck,
as it is likely to be in many systems, then
invalidating may produce the best over-
all performance in spite of its relatively
higher miss ratio since it produces the
lowest network traffic.

3.2.2 Adaptive Coherence Enforcement

In addition to the effect these implemen-
tation details have on performance, the
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sharing characteristics of a program also
can affect the relative performance of up-
dating and invalidating. In some pro-
grams, an invalidation strategy may pro-
duce the best performance, while in other
programs, an updating strategy may be
best [Eggers and Katz 1989b; Karline et
al. 1986]. For instance, if a shared block
tends to be written by only a single pro-
cessor, but read by many processors, dis-
tributing the new values of the block pro-
duced by each write using an updating
strategy will reduce the miss ratio when
compared to an invalidating strategy. If a
block is written many times by a single
processor between reads by other proces-
sors, however, an invalidating strategy
will tend to reduce the unnecessary net-
work traffic that would be produced by
an updating strategy. Furthermore, the
sharing characteristics of a single block
may change over the course of a
program’s execution making updating the
best choice for some references to the
block, while other references to the same
block may produce better performance
using invalidating. To adjust the coher-
ence enforcement strategy to the poten-
tially changing sharing patterns of each
block, several adaptiue coherence
schemes have been proposed.

The competitive snoopy cache [Karline
et al. 1986] initially updates all shared
copies of a block by broadcasting writes
to these blocks over the shared bus. If a
processor has not referenced its copy of
the block after a specified number of
writes, it invalidates its cached copy so
that it no longer requires the block up-
dates. Similarly, the EDWP coherence
scheme [Archibald 1988] dynamically
switches from an updating strategy to an
invalidating strategy by keeping track of
the number of writes made to each block.
After three writes are made to a block by
the same processor with no intervening
reads by other processors, the block is
assumed to be no longer actively shared,
and all of the cached copies are invali-
dated. These two approaches thus at-
tempt to dynamically adjust the coher-
ence enforcement strategy based on the
program’s run-time behavior.

The Munin system [Bennett et al. 1990]

implements a coherence mechanism that
uses the compiler to categorize each ob-
ject referenced by the program into a
coherence type, and it then adjusts the
coherence enforcement strategy to each
particular type. For example, a data ob-
ject that is determined to be mostly read
is copied to each processors’ cache as it is
referenced, but an object that is alter-
nately read and written may have a sin-
gle copy moved among the processors in-
stead of being copied. Another adaptive
coherence strategy [Mounes-Toussi 1993]
examines the program at compile-time to
estimate the cost of using updating or
invalidating for each write reference
to a shared memory block. Each refer-
ence then is tagged with the lowest-cost
coherence enforcement strategy to be
used at run-time. Simulation studies of
this approach indicate that by switching
enforcement strategies for each shared
block, it can obtain the low miss ratios of
an updating coherence strategy while
generating the low network traffic of an
invalidating strategy, thereby achieving
the best of both enforcement strategies.
Additionally, since the compiler can look
ahead in a program to predict future
memory-sharing patterns, this compiler-
assisted adaptive scheme tends to pro-
duce lower miss ratios and lower net-
work traffic than the adaptive schemes
that switch enforcement strategies using
only run-time information.

3.3 Precision of Block-Sharing Information

Coherence schemes that dynamically de-
termine which memory references need
coherence actions have access to the
memory addresses only as the program
generates them. Since it is impossible for
the hardware to predict how the blocks
will be shared, the coherence mechanism
must track the state and sharing charac-
teristics of every memory block refer-
enced by the program. The number
of memory bits needed to store this
information can be enormous. Exact

mechanisms, such as the p + l-bit full
directory [Censier and Feautrier 1978],
maintain enough state information about
the sharing of blocks to know exactly
which processors have a copy of which
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blocks. When a block needs to be invali-
dated, these exact mechanisms send in-
validation messages only to those proces-

sors that actually have a cached copy of
the block. Imprecise mechanisms, such
as the n-pointer plus broadcast directory
[Agarwal et al. 1988], reduce the amount
of stored information, but occasionally
must resort to broadcasting invalidation
messages to all processors, even those
without a cached copy of the affected
block. These broadcasts can significantly
increase the memory traffic in the inter-
connection network. Some recently pro-
posed tagged directories further reduce
the directory memory requirements by
maintaining sharing information only for
blocks that are actually cached. The fol-
lowing subsections describe the various
directories, and present current models
[Lilja 1991] for comparing the number of
memory bits needed by each directory to
maintain the cache-block-sharing infor-
mation.

3.3.1 Traditional D/rector/es

In the traditional directories, memory
bits are associated with each block in the
memory modules to maintain the current
state of the block and to store informa-
tion about which processors have a
cached copy of each block. The p + l-bit
full directory [Censier and Feautrier
1978], for example, encodes three states
for each cached block using two state bits
per cache block. In the inualid state, the
block is empty or not up to date. In the
shared, read-only state, the block is
shared and can only be read by all pro-
cessors. A processor with a block in the
exclusive state is assured of having the
only copy. Thus, it can both read and
write the block. The directory maintains
an additional p valid bits and a single
exclusive bit for each block in the mem-
ory, where p is the number of processors.
The total number of bits dedicated to
storing coherence information in this
scheme is p[rn(p + 1)+ 2c], where m is
the total number of blocks in the memory
modules, and c is the total number of
blocks in the caches.

The broadcast directory [Archibald and

Baer 1984] maintains only the valid and
exclusiue state bits for each block in the
memories and the caches, for a total of

2P( m + c) bits. Because it maintains

only this limited information, this direc-
tory must broadcast all of its invalidation
messages to all of the processors. These
broadcasts can be very time consuming
in a system with a complex interconnec-
tion network, such as a multistage net-
work, since these networks typically do
not support broadcasting. Additionally,
these broadcasts increase the average
memory delay compared to the full direc-
tory due to the increased network con-
gestion. The primary advantage of this
directory structure is its low memory re-
quirements for storing the block-sharing
information.

The n-pointers plus broadcast scheme
[Agarwal et al. 1988] reduces the need
for broadcasting by maintaining n point-
ers with each memory block to point to
the first n processors that request a copy
of the block. When a block needs to be
invalidated, invalidation messages can be
sent only to the processors with a cached
copy of the block. If more than n proces-
sors attempt to simultaneously share the
same block, the directory sets a broad-
cast bit to indicate that invalidations
must be broadcast to all of the proces-
sors. This approach thereby trades-off
memory requirements with the need to
broadcast. Each of the n pointers in each
of the entries in this directory requires

logz p bits to point to any processor, plus
a bit for each pointer to indicate if it
contains a valid processor number. Addi-
tionally, each entry requires the single
broadcast bit plus an exclusive bit. Fi-
nally, each block in the data caches re-
quires two state bits, making a total of
p[2c + m(2 + n + n logz p)] bits dedi-
cated to maintaining coherence for this
directory structure.

The linked-list directory [James et al.
1990] reduces the size of the directory
compared to the full-directory structure
without requiring broadcasts by main-
taining a linked list from the directory to
each of the processors having a cached
copy of a block. A doubly linked list typi-
cally is used so that normal cache block
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replacements may be performed within a
processor without communicating with
other processors. When a block is invali-
dated due to a coherence operation, the
invalidation command is propagated from
one end of the list to every processor that
has a copy of the block. This single-ended
propagation eliminates the potential race
condition that exists if invalidations were
propagated simultaneously from both
ends. The total number of coherence bits
required in this linked list directory is

P[3C + 2m + 2(c + rn)logz p] since each
pointer in each memory block and in each
cache block requires log ~ p bits to point
to a processor, plus an extra bit to point
back to memory. Additionally, two state
bits are used in each cache block, and an
exclusive bit is needed for each memory

block.

3,3,2 Tagged D/rector/es

In the traditional directories described in
the previous section, memory bits for
pointing to a processor with a cached
copy of a block are statically associated
with each block in the main memory.
Thus, the total number of coherence bits
is proportional to the size of the memory.
The tagged directories take advantage of
the observation that only blocks actually
cached in one or more processors need to
be allocated pointers. In these directo-
ries, pointers are dynamically associated
with memory blocks using an address tag
field only as the blocks are moved from
the memory to a cache. With this ap-
proach, the number of coherence pointers
is proportional to the size of the data
caches, which are significantly smaller
than the main memory. A variety of dif-
ferent configurations can be used to
maintain the coherence pointers them-
selves, such as those used in the ftdl
p + l-bit directory, the n-pointers direc-
tory, or the linked-list directory dis-
cussed in the previous section. Addi-
tionally, several other possible tagged-
directory structures are described below.

The pointer cache tagged directory
[Lilja 1991] maintains one pointer of
log ~ p bits with each address tag of
logz m bits. This structure allows multi-

ple entries in the directory to have the
same address tag. When n processors
share the same block, n distinct pointer
entries will be allocated in the directory
with the same address tag, but pointing
to different processors. The maximum
number of processors that can share a
block with this scheme is limited by the
associativity, a, of the pointer cache it-
self. When more than a processors try to
share a block, or when the entire pointer
cache overflows, a free pointer is created
by randomly choosing an active pointer
and invalidating the selected block in the
indicated processor.

The total number of bits needed to store
sharing information with this pointer
cache is [r(logz m + logz p + 2) + ZC]P,

where r is the number of entries in each
pointer cache. Typical values of r re-
quired for good performance are dis-
cussed in the next section. This bit count
includes the logz m address tag bits, the

log ~ p processor pointer bits, the pointer
valid bit, and the exclusive state bit
needed for each pointer, plus the two
state bits needed for each block in the
data cache. No additional coherence bits
are needed in the shared memory since
the tagged directories store this sharing
information only when a block is actually
cached.

The tag cache directory [0’Krafka and
Newton 1990] is a variation of the pointer
cache idea that uses two levels of caches
m the dmectory. The first level of the tag
cache associates n pointers with each
address tag. When a block is shared by
more than n processors, the correspond-
ing entry in the tag cache is overflowed
to the second-level tag cache. This sec-
ond-level cache uses the p + l-bit struc-
ture of the full dmectory for each address
tag. Overflows of this second-level tag
cache are handled by invalidating a ran-
domly selected entry to be reused by an-
other block. The number of bits dedicated
to maintaining coherence with this direc-
tory structure is p[ rl(logl m + n log~ p

+ 2) + rz(logz m + p + 2) + 2c] where
r, and rg are the number of entries in
the two levels of the tag cache.

The coarse vector tagged directory
[Gupta et al. 1990] incorporates a mode
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bit into each pointer entry to force the
directory controller to interpret
the pointer in one of two different ways.
If the mode bit is reset, then the u
pointer bits are interpreted as n direct
pointers to processors. Since logz p bits
are required to uniquely identify a pro-
cessor, each entry can point to n =

1U\logz P 1 Unique processors. If more
than n processors attempt to simultane-
ously share the same block, the mode bit
is set to indicate that the pointer bits
should be interpreted as pointing to one
of the p/g clusters, where there are g
processors per cluster. That is, when the
mode bit is set, the i th bit of the u pointer
bits will be turned on to indicate that at
least one of the processors in the ith
cluster has a copy of the shared block.
Invalidation messages then will be sent
to all of the processors in each cluster
that has its corresponding bit set in the
tag cache entry. The total number of bits
needed for coherence with this directory
structure is rC,,p[logz m + max( p/g,
logz p) + 3] + 2cp, where r,, is the
number of entries in the tag cache. The
max function is needed to ensure that at
least one complete processor number of
logz p bits can be stored in the u bits.

The LimitLESS directory, which was
proposed as part of the Alewife project

[Chaiken et al. 1991], uses hardware and
software to implement a combination of
the n-pointers per address tag structure
of the previously discussed tag cache, plus
the p + l-bit full directory. Specifically,
when more than n processors attempt to
share a block, an interrupt service rou-
tine is invoked to emulate the complete
sharing information of the full directory.
Since it is assumed that more than n
processors will attempt to share
the same block infrequently, the perfor-
mance of this combined hardware/
software approach should be comparable
to that of the other tagged directories.

3.3.3 Cost and Performance Comparisons

There are two primary components of the
hardware implementation cost of a cache
coherence mechanism: (1) the control
logic required to implement the mecha-

nism and (2) the number of memory bits
needed to store the cache-block-sharing
information. It is difficult to quantify the

control logic cost of the different coher-
ence mechanisms without detailed circuit
designs since the complexity of this logic
can vary considerably. With detailed de-
signs, the implementation cost can be
measured as the VLSI chip area needed
to implement the control logic, for in-
stance, but this comparison is beyond the
scope of this survey. Instead, the amount
of memory used to store coherence infor-
mation is used for an approximate com-
parison of the implementation cost since
it can be a significant portion of the total
cost of implementing the mechanism.

To compare the memory requirements
of the different coherence mechanisms,
the memory overhead is defined to be the
ratio of the total number of bits dedi-
cated to coherence functions divided by
the total number of data bits in both the
main memories and the data caches [Lilja
1991]. The total number of data bits in
the system is D = pbw(m + c), where p
is the number of processors; b is the
number of words in each block; zu is the
number of bits per word; m is the num-
ber of blocks in each of the p memory
modules; and c is the number of blocks
in each of the p caches. If iVX is the
number of bits dedicated to coherence
functions for a particular coherence
scheme, the corresponding overhead is
OX = N,/D.

Table 8 shows the memory overhead
for several different directories that
maintain different amounts of block-
sharing information. In this table, the
memory overhead is normalized to the
number of blocks in the data cache, c.
The ratio of the number of pointer cache
entries in each memory module, r, to the

number of blocks in each data cache is
s = r/c, and k = m/c is the ratio of the
number of blocks in memory, m, to the

number of blocks in the data caches.
A 4-way set associate pointer cache is

used to provide a fair comparison of a
realistic pointer cache implementation.
An invalidation on overflow policy is used
to create free pointers when the pointer
cache overflows. A random replacement
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Table 8. Normalized Memory Overhead for the Directory Mechanisms

Scheme

1. (p+l)-bit full directory

2. 2-bit broadcast directory

3. n-pointer+ broadcast directory

4. Linked list directory

5. Pointer cache directory

policy is used in both the pointer caches
and in the fully associative data caches.
The word size is w = 32 bits with p = 32
processors, and the data cache block size
is b = 1 word. Typical cache memory
sizes are in the range of 64 KB (2 lb )
words to 256 KB (218) words, and a typi-
cal memory module may contain from 2
MB (2Z1) words to 16 MB (2ZJ) words.
Thus, typical values of h = m/c, which is
the ratio of the number of blocks in each
memory module to the number of blocks
in each data cache, are in the range of 8
to 256. The following simulations use k,
= 256. The data cache again is c = 8 KB
in each of the p = 32 processors.

The network traffic generated by the
different directories is shown in Figure
3(a–f) plotted against their respective
overheads. The number of pointer entries
available in the pointer cache tagged di-
rectory, r, relative to the number of
blocks in the data cache, c, is varied from
s = r/c = 1/32 to s = 2/1, doubling
with each data point. When s is small,
there are not enough pointers available
to point to all of the processors that try to
share cache blocks. As a result, pointers
frequently must be reused by randomly

Overhead, 0.

Me.Q!2
bw(k+l)

k(2+n+nlog@)+2

bw(k+l)

2(k+l)logfl+2k+3

bw(k+l)

s [log*(kc)+log#+3]+2

bw(k+l)

choosing an active pointer and invalidat-
ing the block in the processor to which it
points. These frequent pointer invalida-
tions produce a large number of invalida-
tion messages, which then generate a
large amount of network traffic. In all of
the programs tested, a pointer is usually
available when one is needed when the
number of pointers available in the
pointer cache is the same as the number
of blocks in the data caches (i.e., s = 1).
This one-to-one ratio usually is adequate
because the memory references tend to
be uniformly distributed among all of the
memory modules. Thus, requests for
pointers also tend to be uniformly dis-
tributed.

Even with this pointer cache size of
S=l, the memory overhead of the
pointer cache directory is significantly
smaller than the overhead of the other
directories. The 2-bit broadcast directory
has the next lowest memory overhead
since it stores only 2 bits for each block
in the memory. However, it does not
maintain precise information about
which processors have cached copies of
blocks, forcing it to broadcast all of its
invalidation messages. These broadcasts
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produce extremely high network traffic
compared to the other directories. The
overhead of the n-pointer directory in-
creases in direct proportion to n, the
number of pointers it has available per
block. It produces very high network traf-
fic when n = 1 since it must resort to
broadcasting whenever more than one
processor attempts to share the same
block. Since fewer than four processors
typically attempt to share the same block
at the same time in most of these traces
(and in many other programs [Agarwal
et al. 1988; Eggers and Katz 1988; Weber
and Gupta 1989]), n = 4 pointers often is
sufficient to reduce the network traffic of
this mechanism to be approximately the
same as that of the full directory. The
network traffic of the linked-list direc-
tory is the same as that for the full direc-
tory since both send invalidations only to
those processors that actually have a
cached copy of the block. Its memory
overhead is less than that of the full
directory, however, since it maintains
fewer total pointers.

The miss ratio of the pointer cache
tagged directory follows a curve similar
to its network traffic. With a small
pointer cache, many active blocks are in-
validated to obtain free pointers. When
these active blocks are again referenced,
they force the processor to miss. When
the size of the pointer cache increases to
s = 1, the data cache miss ratio improves

to be the same as the full directory. The
other directories all produce identical
data cache miss ratios since they all al-
low up to p processors to simultaneously
cache the same block. The precision of
block-sharing information each main-
tains (i.e., the memory overhead) affects
only the number of invalidation mes-
sages they need to generate, and thus
affects only the total network traffic and
not the miss ratio.

While the network traffic and the miss
ratio produced by the linked-list scheme
is the same as that produced by the full
directory, the average memory latency of
the linked-list scheme is expected to be
higher than that of the directory. This
longer delay occurs because the entire

linked list for a shared block must be
traversed when the block is invalidated.
This list traversal time adds directly to
the delay for the write that triggered
the invalidation when a strongly ordered
consistency model is used. With
a weakly ordered model, however, much
of this delay may be hidden. With a full-
directory scheme, on the other hand, the
generation and sending of all of the in-
validation messages can be pipelined to
further reduce the memory delay.

These simulations demonstrate that
the memory overhead of the direc-
tory mechanisms is directly related to
the precision of the block-sharing
information they maintain and is in-
versely related to the corresponding
memory traffic. That is, more informa-
tion must be stored in order to reduce the
network traffic. However, a tagged cache
directory can provide the low network
traffic of a full directory while using very
little memory since it maintains the
sharing information only for blocks that
are actually cached. The additional cost
of the tagged directory compared to a
traditional directory is the relatively
more complex control logic it requires.

3.4 Cache Block Size

The cache block size, also called the line

size, is the number of consecutive mem-
ory words updated or invalidated as a
single unit. The fetch size, on the other
hand, is the number of words moved from
the main memory to the cache on a miss.
While these two parameters do not have
to be the same, the following discussion
assumes that a single block is fetched per
miss. Increasing the number of words in
a cache block can reduce the miss ratio
because of the high probability that
memory locations physically near re-
cently referenced locations will be refer-
enced in the near future (i.e., spatial lo-
cality). When the block size becomes too
large, the miss ratio increases since the
probability of using the additional fetched
data becomes smaller than the probabil-
ity of reusing the data replaced. The block
size that minimizes the average memory
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delay generally is smaller than the block
size that minimizes the miss ratio be-
cause the additional time required to
transfer the larger blocks can overwhelm
the latency to receive the first word
[Przybylski et al. 1988; Smith 1987].

In addition to allowing a cache to ex-
ploit spatial locality, another advantage
of blocks larger than a single word is
that they reduce the memory overhead of
the directory coherence mechanisms.
Since pointer information is maintained
only for blocks and not for individual
words, Table 8 shows that the cache co-
herence memory overhead is inversely
related to the block size. For example,
doubling the block size will cut the over-
head in half. This relationship is not true
for the compiler-directed coherence
mechanisms, such as version control,
however, since they still need a dirty bit
per word, independent of the block size.

Unfortunately, cache blocks larger than
a single word can introduce false sharing

in which two nonshared words end up
occupying the same block. For instance,
when a loop scans through an array, the
stride is the array subscript increment
from one iteration to the next. If the
stride is one, consecutive elements of the
array will be accessed by consecutive it-
erations of the loop. If the iterations are
distributed sequentially across the pro-
cessors, consecutive array elements will
be referenced by different processors.
When the cache block size is greater than
one array element, and the array ele-
ments are arranged linearly in memory,
many processors will need a copy of the
same block, causing a large amount of
sharing. This type of sharing is referred
to as false sharing since the processors
are not actually sharing data, but are
sharing memory blocks due to the place-
ment of the array elements in memory.
As long as the processors only read the
array, this sharing is not harmful, but
when a processor attempts to write to an
element when using an invalidation pro-
tocol, all the copies of the written block
will be invalidated, even though not all of
the elements are changed. In the worse
case, every write to the shared block will

cause an invalidation, and every read
will be a cache miss, so that blocks will
ping-pong between caches. As a result,
the processor miss ratios and the mem-
ory network traffic increase compared to
a system with a block size of one word,
thereby increasing the average memory
delay.

To eliminate the false-sharing prob-
lem, many dynamic coherence schemes
use small blocks, in which case they lose
the potential benefits of exploiting spa-
tial locality [Agarwal and Gupta 1988;
Eggers and Katz 1989a; Goodman 1983;
Lee et al. 1987]. The statically detected
coherence schemes also tend to favor
small block sizes. With block sizes larger
than one word, the compiler must know
the block size, and it must control the
placement of the data in the memory. If
the compiler ignores the block size, false
sharing can introduce dependence be-
tween otherwise independent program
statements. These hidden dependence
then can cause incorrect program execu-
tion since coherence will not be correctly
maintained. The solution to this problem
is to use one-word blocks or to restrict
data placement so that each block
containsonly one unique variable name.
For arrays, this restriction has little ef-
fect beyond some fragmentation in the
last block allocated to the array, but if
large blocks are used, a substantial
amount of memory space may be wasted
on scalar variables since only one vari-
able can be assigned to a block.

3.4.1 Performance Effects

Figure 4 demonstrates how the cache
block size affects the network traffic and
miss ratio for the p + l-bit full directory.
The other directory schemes are not
shown since they have similar behavior,

and the version control scheme is not
simulated with block sizes larger than
one word due to compiler limitations.
Each word is four bytes, and the block
size is varied from 1 to 16 words (4 to 64
bytes). The fetch size is set to one block,
so that one complete block is fetched on a
miss. The parallel loop iterations are
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Figure 4. Effect of cache block size on miss ratio and network traffic (bytes/reference)

scheduled with iteration 1 executing on
processor O, iteration 2 on processor 1,
and so on. (The effects of different
scheduling strategies have been dis-
cussed elsewhere [Lilja 19921. )

The lowest miss ratios for arc3d and
simple24 occur with a block size of four
words, indicating that there is some spa-
tial locality that can be exploited in these
programs when using this scheduling
strategy. As the block size is increased,
however, the larger blocks begin to evict

blocks that are still in use, which then
increases the miss ratio. For the other
programs tested, the lowest miss ratios
are produced with single-word blocks due
to significant amounts of false sharing
with blocks larger than a single word.

Figure 4 also shows that the total net-
work traffic increases as the block size
increases. Figure 5 separates this net-
work traffic into the component required
to move the blocks into the caches on a
miss and into the component required to
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send the invalidation messages from the
directorv to the individual m-ocessors. For
the arc~d and sintple24 ‘programs, the
network traffic due to misses is relatively
flat as the block size increases from 4 to
16 bytes. Since in these two programs
the miss ratio decreases as the block size
increases to 16 bytes, there are fewer
blocks fetched, but each block is larger.
The result is that the miss traffic re-
mains approximately constant until the

miss ratio begins to increase when the
block size is greater than 16 bytes. The
invalidation traffic produced by these two
programs decreases slightly as the block
size increases from 4 to 16 bytes indicat-
ing that there is little false sharing until
the block size is larger than 16 bytes.
This reduction in invalidation traffic
shows that the caches are exploiting the
available spatial locality, which also is
reflected in the reduced miss ratios.
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In the other programs, the miss traffic
increases significantly as the block size is
increased due to the combination of
higher miss ratios and the fetching of
larger blocks. The increases in the invali-
dation traffic with the larger blocks for
these programs shows that the increases
in the miss ratios are due, at least in
part, to the false-sharing effect. That is,
as the block size is increased there is
more false sharing, which then requires
more invalidations to maintain cache co-
herence. It is interesting to note that the
invalidation traffic generally contributes
about half as much to the total traffic as
does the miss traffic. Thus, the larger
blocks tend to cause more network traffic
than the traffic produced by the addi-
tional invalidation messages from the
false-sharing effect,

4. HYBRID TECHNIQUES

The use of the different cache coherence
mechanisms is not mutually exclusive in
that several of the different mechanisms
can be combined into a single system.
This section presents several such hybrid
mechanisms.

4.1 Compiler Assistance for Reducing the

Directory Size

By allocating pointers to blocks only as
they are referenced, the tagged directo-
ries can significantly reduce the memory
requirements of a directory-based cache
coherence scheme. They still waste some
directory resources, however, by allocat-
ing pointers to blocks that cannot cause
coherence problems, such as blocks that
are never written or are never shared. To
reduce the number of pointers allocated,
it is possible to use the compiler to mark
all private and read-only blocks as not
needing coherence enforcement. Several
studies [Agarwal and Gupta 1988; Eg-
gers and Katz 1988; Lilja et al. 1989;
Weber and Gupta 1989] have shown that
a substantial fraction of all blocks refer-
enced by a program may be private or
read-only, and thus they could be marked
as not needing coherence enforcement.

When used with a tagged directory,
this compiler marking can significantly
reduce the number of pointers needed in
a given program and can thereby sub-
stantially reduce the required directory
size [Lilja and Yew 1991]. More complex
compile-time analysis techniques can
mark each individual memory reference
as needing a pointer allocated or not
[Nguyen et al. 1993]. This more precise
marking can reduce the time a pointer is
needed for a specific shared-memory lo-
cation, thereby allowing pointers to be
reused more frequently than with no
marking. This frequent reuse further re-
duces the size of the directory needed to
maintain a given level of memory perfor-
mance.

4.2 Combining Multiple Coherence
Mechanisms

The DASH distributed shared-memory
multiprocessor prototype developed
at Stanford University [Lenoski et al.
1990; 1992] incorporates two differ-
ent dynamic coherence mechanisms, a
snooping bus and a directory, and
two different coherence enforcement
mechanisms, invalidating and updating,
into a single system. The processors in
this system are divided into groups, or
clusters, with four high-performance
MIPS R3000 processors in each cluster.
Cache coherence within each cluster is
maintained using a bus-based snooping
protocol [Papamarcos and Patel 1984].
Coherence among clusters, in contrast, is
maintained using a directory-based in-
validation protocol where the directory
appears to be another processor on the
snooping bus in each cluster.

An interesting feature of this directory
is that, in addition to the standard inval-
idation protocol, it also supports two dif-
ferent update mechanisms. The first is
an update-write operation in which the
new data produced by the write is di-
rectly distributed to all processors with a
cached copy of the block being written.
The sharing information stored in the
directory is used to determine which pro-
cessors need to be updated. The second
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update mechanism is called the deliver
operation. With this operation, the pro-
cessor writing to a block writes into the
cache using the invalidate protocol. When
it has completed its sequence of writes, it
issues a deliver instruction specifying
which clusters should receive a copy of
the block. The directory then sends a
copy to each of the specified clusters, and
the directory is updated appropriately.
This write mechanism is useful when the
desired destination clusters are unlikely
to have a copy of the block already cached,
thereby making the update-write inade-
quate.

4.3 Compiler-Pius-Directory Coherence
Mechanism

While the version control [Cheong and
Veidenbaum 1989] and timestamp [Min
and Baer 1989] coherence mechanisms
keep extra state information in each
cache to help preserve temporal locality
between parallel tasks, another mecha-
nism that combines static and dynamic
coherence detection [ Chen and Veiden-
baum 1991] keeps this extra state infor-
mation in a directory in the memory
modules. The directory monitors the
memory references generated by the pro-
gram and dynamically updates its state
to precisely determine which caches con-
tain which memory blocks, and whether
the blocks have been modified. At the
parallel task boundary, each processor
sequentially scans through its cache and
invalidates the cache entries that the
stored directory information specifies
should be invalidated. Of course, this se-
quential scan could significantly increase
the execution time of the program, but
this coherence mechanism may be able to
reduce the network traffic compared to a
conventional directory. Unlike a conven-
tional directory-based coherence mecha-
nism, this approach uses the directory
only to ensure that all cached blocks are
updated with the correct state at the par-
allel-task boundary, and not to perform
dynamic invalidations. Consequently, it
implicitly implements a weakly ordered
consistency model.

4.4 Extending the Memory Hierarchy into the

Network

Instead of using the interconnection net-
work for only moving data between the
memory modules and the caches, it is
possible to extend the memory hierarchy
into the network itself. It may be possible
to simplify the cache coherence mecha-
nism and to simultaneously improve per-
formance by caching data within the

switches of the network. For example,
the Memory Hierarchy Network (Mizrahi
et al. 1989] adds a local memory to each
switch in the network to cache the data
being referenced by the processors that
are connected to the switch. Additionally,
the switches maintain a distributed di-
rectory of where data is stored in the
system. To simplify the coherence mecha-
nism, only a single copy of a block is

allowed in the system. This single copy
then migrates through the network as it
is referenced by the different processors.

One of the critical parameters in this
type of system is the block migration
policy. This policy determines when a
shared block should migrate and how far
up the network it should move. Simula-
tions of this network with different mi-
gration policies have indicated that dis-
tributing the directory throughout the
network can significantly improve the
performance of the memory system, while
storing data at intermediate levels of the
network has much less of an impact on
performance. Additional research is
needed to fully evaluate this idea of ex-
tending the memory system into the in-
terconnection network, but early results
suggest that it is an approach that may
be able to significantly improve multipro-
cessor memory performance.

5. CONCLUSIONS

Using private data caches in a shared-
memory multiprocessor can significantly
reduce the average time required to ac-
cess memory, but these private caches
introduce the complexity of the cache
coherence problem. This survey has iden-
tified several important architectural is-
sues that affect the performance and im-
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plementation cost of a cache coherence
mechanism. Trace-driven simulations
have been used to quantify the perfor-
mance impact of these different issues.
These architectural issues affecting the
cache coherence mechanism are the co-
herence detection strategy, the coherence
enforcement strategy, the precision of’
block-sharing information, and the cache
block size.

5.1 Coherence Detection Strategy

The coherence detection strategy deter-
mines when and how memory references
are disambiguated to detect that a possi-
ble incoherence exists among the data
caches and the main memory. The dy-
namic coherence detection mechanisms
examine the actual memory addresses
generated at run-time. The resulting per-
fect memory disambiguation produces
low miss ratios, but the dynamic mecha-
nisms tend to have relatively high net-
work traffic due to the messages required
to maintain coherence. The static co-
herence detection schemes, in contrast,
examine memory references at compile-
time. Since these techniques rely on im-
precise compiler-based data dependence
tests to disambiguate memory refer-
ences, they tend to invalidate more cache
entries than are necessary to maintain
coherence, and thus produce miss ratios
that are higher than the dynamic mecha-
nisms. The self-invalidation used by the
static mechanisms tends to compensate
for their lower miss ratios by reducing
the network traffic compared to that pro-
duced by dynamic coherence detection
strategies.

5.2 Coherence Enforcement Strategy

After detecting a possibly incoherent
memory access, the cache coherence
mechanism must prevent the stale data
value from being referenced by a proces-
sor. The invalidation coherence enforce-
ment strategy forces processors to invali-
date blocks within their caches. If the

block is referenced again, a miss will be
generated which will cause the processor
to fetch the current value of the block
either from the main memory or from
another processor. With an update en-
forcement strategy, the new value of a
block created by a write operation is au-
tomatically distributed to all processors
with a cached copy of the block. When
these processors reference the block
again, they do not generate another miss
service request. As a result, the update
strategy tends to produce lower miss ra-
tios than the invalidate strategy. The
lower miss ratio of updating comes at the
expense of its significantly higher net-
work traffic when compared to invalidat-
ing, however.

5.3 Precision of Block-Sharing Information

The amount of block-sharing information
that is maintained by the coherence
mechanism has a direct impact on the
implementation cost of the mechanism,
as measured by the number of memory
bits required to store the sharing in-
formation, and a direct impact on the
performance of the memory system. To
reduce the memory requirements, the co-
herence mechanism, such as the n-
pointer plus broadcast directory, can
store a relatively small amount of infor-
mation about which processors have a
copy of a cached block. The mechamsm
then must resort to broadcasting of the
invalidation messages when the number
of processors sharing a block overflows
the available resources. This approach
trades-off lower memory overhead with
higher network traffic when compared to
a directory that stores complete shar-
ing information. However, recently pro-
posed tagged-directory schemes can
achieve very low memory overhead by
storing sharing information only for those
blocks that are actually cached. These
directories still can maintain low net-
work traffic since they are able to store
sufficient sharing information for each
cached block.
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5.4 Cache Block Size

An important factor affecting the perfor-
mance of the memory system is the cache
block size, which is the number of words
stored in the cache as a single unit. The
use of cache blocks larger than a single
word may allow the processors to exploit
the spatial locality typical of memory-ref-
erencing behavior. However, memory ref-
erences in a multiprocessor system tend
to be spread out among the processors
which reduces the available spatial local-
ity compared to a uniprocessor system.
Additionally, blocks larger than a single
word introduce the false-sharing problem
which tends to make multiprocessor sys-
tems favor small cache block sizes. In
some application programs, it may be
possible to reduce the miss ratio by using
multiword blocks, but simulation studies
suggest that single-word blocks minimize
the network traffic by reducing both the
miss service traffic and the invalidation
traffic.

5.5 Summary

Finally, it is important to point out that
it is possible to incorporate several differ-
ent cache coherence mechanisms into a
single system. For instance, the DASH
prototype has demonstrated a coherence
mechanism that incorporates both a
bus-based snooping coherence mecha-
nism and a directory-based coherence
mechanism, and it gives the programmer
a choice of both updating and invalidat-
ing coherence enforcement strategies.
Additionally, it is possible to use
compile-time information to augment the
performance of a coherence mechanism,
for instance, to reduce the size of the
dn-ectory by reducing the number of co-
herence pointers that need to be allo-
cated and by reducing the time they need
to be active. Since each of the factors
affecting the cache coherence mechanism
produce different trade-offs in terms of
miss ratios and network traffic, it is likely
that these hybrid approaches will pro-
vide the best opportunity for increasing
the performance and reducing the imple-

mentation cost of the cache coherence
mechanism in large-scale shared-mem-
ory multiprocessors.
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