Determining Initial States for
Time-Parallel Simulations

Jain J. Wang and Marc Abrams

TR 92-53

Department of Computer Science
Virginia Polytechnic Institute and State University
Blacksburg, Virginia 24061

October 22, 1992

e e T

Determining Initial States for Time-Parallel
Simulations

Jain J. Wang and Marc Abrams

Department of Computer Science, Virginia Tech
Blacksburg, VA 24061-0106
{jaywang,abrams }@vtopus.cs.vt.edu

Abstract

Time-parallel simulations exploit parallelism by partitioning the time demain
of a simulation model. Exploiting temporal parallehism requires predicting future
states of a simulation model. A poor prediction of future states may cause exten-
sive recomputation so that a time-parallel simulation requires more real time to
execute than a corresponding sequential simulation. Recurrent states of a simu-
lation model provide potential temporal parallelism. In this paper, we propose a
time-parallel simulation method which uses a pre-simulation to identily recurrent
states. An approximation technique is suggested to extend the the class of simula-
tton models which can be simulated efficiently using our time-parallel simulation.
A central server system and a virtual circuit of a packet-switched data communi-
cation network modeled by closed queueing networks are experimented with the
proposed time-parallel simulation. Experiment results suggest that the proposed
approach can exploit massive parallelism while yielding accurate results.

1 Introduction

Time-parallel simulations decompose the time domain of simulation models. The
maximum degree of parallelism in space-parallel simulations, such as the Time Warp
and Chandy and Misra approaches, is often constrained by the topology of a simulation
model. Time-parallel simulations, in contrast, poses no inherent upper bound on
parallelism. However, partitioning the time domain of a simulation model is often
difficult and application dependent [14].

Time-parallel simulations partition the simulation time interval into a number of
sub-intervals. A processor is assigned to simulate the simulation model for each sub-
interval with a guessed initial state. The simulation terminates when the initial state of
each sub-interval and the final state of its preceding sub-interval have met a pre-defined
matching condition. A simulation which requires all states to be matched is referred to
as a full state maiching simulation, otherwise, a partial state matching simulation [18].

Therefore, exploiting temporal parallelism requires prediction of future simulation
states. For some time-parallel simulation approaches, a poor prediction of future
states may cause extensive recomputation and results in a time-parallel simulation
that requires more real time to execute than a corresponding sequential simulation
[19].

Lin and Lazowska [15] propose a time parallel approach which partitions the time
domain at time points where a pre-determined recurrent state occurs. A state s,
is said to be recurrent if it is guaranteed that the simulation model when starting
from s, will eventually return to this state. Let P denote the number of processors
available. Lin and Lazowska’s algorithm can achieve linear speedup given that the
pre-determined recurrent state occurs no less than (P-1) times and these occurrences
are evenly distributed in the simulation time interval. However, Lin and Lazowska do
not discuss how recurrent states are identified.

In this paper, we propose using Markovian modeling and a pre-simulation to iden-
tify recurrent states to obtain temporal parallelism. The rest of this paper is orga-
nized as follows. In section 2, we discuss a mapping of simulation models to Markov
chains. Section 3 describes the use of Markov chain models and a pre-simulation o
explore temporal parallelism by identifying the most frequently occurring states. Sec-
tion 4 presents the algorithm of the proposed time-parallel simulation. Experiments
with a central server system and a virtual circuit in a communication network with
sliding-window flow control using the proposed time-parallel simulation are described
in section 5. Experiment results are also compared with sequential simulations as well
as multiple-replica simulations. Finally, a summary is given in section 6.

2 Markovian Modeling

It is well known that if {X (¢}, > 0} is an irreducible, aperiodic, and positive recurrent
Markov chain with a state space § € {1,2,...}, then there exists a random variable X
with a probability distribution 7 = {m;,i € S}, such that X () = X, where => denotes
wealk convergence [5, 8]. Here, 7 represents the stationary distribution of {X (£),¢ > 0}.
A discrete event simulation can be viewed as a stochastic process {X(t),t > 0} with
state space S and a discrete time parameter ¢ and each event is represented by a state
transition. I the purpose of the simulation is to study the long term behavior of
the target system, then the goal of the simulation is to estimate the expected value
Ef(X), where f: § — R is some real valued function on §.

Let N be the number of events to be simulated and let t;,1 < i < N, be the
simulation time at which event i occurs. If the simulation model has a discrete state
space and the probability distribution of X{t;),1 < i< N, depends only on X(tie1),
then the simulation model can be directly modeled by a discrete-time Markov chain.
A mapping from such a simulation model to a discrete-time Markov chain. is described
as follows. For each state of the simulation model, create a corresponding state for the
Markov chain. Let u and v be any two states in the Markov chain which correspond

to state v’ and v’ in the simulation model, respectively. Then the occurrence of each
event can be modeled by a single state transition in the Markov chain. Let ey, denote
an event upon whose occurrence the simulation model changes its state from o’ to »'
and p(e,) denote the probability that €y 4 0ccurs when the simulation model is in
state . Then transition probability of the corresponding Markov chain from state w
to v is given by:

Puw = p(eu’,v")-

Let n denote the number of states in the resulting Markov chain. If N > ¢n for
any integer ¢ > 1, then some state(s) will occur at least ¢ times in a sequence of N
state tramsitions. Assume that the resulting Markovian chain is ergodic {(i.e. each
state of the Markov chain is positive recurrent and aperiodic). Let A be the m x m
transition probability matrix of the Markov chain. Then the stationary distribution
of the Markov chain 7 can be determined by solving the following equations [2]:

TAd=n7 and
1
E}cnzl T = 1. ()
For ergodic Markov chains, the limiting distribution is asymptotically equivalent to
the stationary distribution and can be determined by the following:

lim A™ =

=00

(2)

q e & 8 3

L .

Here, (1) provides a set of linear equations. Parallel algorithms for solving linear
equations are given in [1]. Let A4;; denote the j™ element of row i in 4. Then for
(2), a lower bound »', where 7’ is a positive integer, can be found such that for all
k>n1 <4,5 <m, }Agfj — A7S] < ¢ for some small vajue € > 0 [2, pp.90-92].
Computing A" is a prefiv problem [12]. Greenberg et al. have proposed efficient
parallel algorithms for prefix problems [7]-

When the state space of the target system is very large (or even infinite in many
cases), using equations (1) and (2) to solve the stationary distribution is too compu-
tationally prohibitive. For this case, simulation becomes an attractive alternative to

estimate E(f(X)).

3 Temporal Decomposition Using Recurrent States

Direct solution of Markov chains to obtain stationary distribution discussed in the
last section is feasible for small simulation models. In this section, we describe tem-

poral decomposition of a simulation model using recurrent states and propose using a
simulation approach to obtain an estimated state distribution.

Let Tj(s),1 < j < N +1, denote the simulation time of the j** occurrence of state
s € 5 and let r,(s) denote T{(s)my1 — T(8)m,0 < m < N, which is the simulation
time between the mt® and the {m + 1)** occurrence of state s. Assume that for each
5 € 8§, 7(s) are identically and independently distributed random variables for all m.
Then the recurrence period of state s is defined to be:

E(rn(s)) = 7- ()

State s is said to be positive recurrent when E(rm(s)) < oo. If there exist some
¢ > 1 such that E{rn,(s)) < I—X—, then temporal parallelism may be obtained through
partitioning the simulation time interval into sub-intervals at the time points where
state s occurs. Hence, the initial and the final states (in this case, state s) of these sub-
intervals are determined. The states used for partitioning the simulation time interval
are called matching states (since they determine the matching condition between sub-
intervals). To obtain a high degree of parallelism, we are interested in finding the most
frequently occurring state(s) (MFOS), which is the state with the minimum recurrence
period.

When a numerical or an analytical solution to find the MFOS is not feasible, we
propose to use a pre-simulation to obtain an estimated MFOS. The pre-simulation
algorithm is described by the following steps.

Algorithm PS (Pre-Simulation):

1. For each processor p;,1 < i < P, simulate the entire system with a randomly
chosen initial state until N/P events have been simulated. During simulation,
record the number of occurrences of each state that p; generates. (Each p;
chooses a different random state.)

2. For each p;, identify the MFOS and its occurrence rate among the states that p;
has generated. If there are more than one MFQS, pick one randomly.

3. Sum the occurrence rates for state(s), if any, which is (are) selected by more
than one processor. Identify the state which has the highest over-all occurrence
rate. If this results in more than one state, choose one randomly.

The state obtained in step 3 will be used as the matching state for the time-parallel
simulation. This heuristic algorithm does not guarantee selecting the actual MFOS
which has the minimum recurrence period. However, for our time-parallel simulation,
it is not crucial that the real MFOS be selected as long as the selected state has a
relatively high occurrence rate. Note that, in this algorithm we use only one matching
state. For a simulation model which has a large state space and the occurrences of

Figure 1: A Central Server System. The number associated with each arc represents
the probability of the trausition corresponding to the arc.

states are uniformly distributed, multiple matching states can be used to obtain a
higher degree of parallelism.

4 Combinatorial Method

The pre-simulation algorithm is applicable only to those simulation models with a
discrete-state space. In this section, we present a time-parallel simulation algorithm
(algorithm C) which allows simulation models with continuous-state space by combin-
ing the imbedded Markov chain method [11] and the partial state matching technique
[18].

Consider a FCFS M/G/1 queue model. Let) and F RST denote the queue length
and the first job remaining service time of queue at simulation time ¢, respectively.
Then the simulation model is described by a stochastic process: {Y(¢),¢ > 0}, where ¥
is a 2-tuple: (@, FRST). Kleinrock shows that the model can be described equivalently
by the imbedded (queue length) Markov chain [11, pp.174-180]. However, computing
the transition probabilities for the imbedded Markov chain is not always possible. In
the next section, we discuss an approximation technique which allows the method of
imbedded Markovian chain to be applicable to a larger class of models.

4.1 Approximate Markovian Modeling

Consider a central server system {Figure 1) which consists of a CPU, two disks, and
a set of jobs which circulate around the system. Each job is associated with a length,
which is a constant defined to be the product of the job’s service time and the device’s
service rate. The lengths of the jobs follow some probability distribution and remain
unchanged as the jobs travel around the system. Thus, this model does not have a
product form solution. Fach job after being served by the CPU is routed to one of the
two disks or back to the CPU for service. The buffer sizes of the devices are infinite
and the time required for the job to move between devices is ignored.

A queneing model with feedback causes both optimistic and conservative algo-
rithms to perform poorly {13]. For this central server model, Wanger and Lazowska
[19] have shown that for any conservative parallel algorithms, 3.67 is the upper bound
of speedup. A mumber of researchers [6, 10, 16, 20} have used this model as a bench-
mark for their parallel simulation protocols and none of them could achieve a speedup
better than 3.

Let {Q1(1), @2(%), Q3(t), FRST(t), FRST,(t), FRST3(t), 1 > 0} be the stochastic
process which describes the central server model. Then Q(t) = {Q1(t}, @2(t), @3(t)} is
an imbedded queue length process. Let p; denote the job service rate of queue ¢, and
Q:(n) denote the queue length of queue i immediately after the occurrence of event n,
respectively. To simplify Q(#), we make the following assumptions:

Assumption 1: The departure processes of all queues are mutually independent
such that the probability that the next job departure will occur at queune 1,
denoted p;, is given by:

0 Qi(n) =0, @
P = i ; > O’
Yooy i @i(n)>0 Qi(n)
where M is the number of queues in the system.

Assumption 2: The state holding time (i.e. simulation time between any two con-
secutive departure events) is the same.

With assumption 1, @(¢) can be easily modeled by a Markov chain. With assump-
tion 2, the computation of job arrival and departure times is not required. Also, the
pre-simulation does not require an event list because the newly created event is always
the next event to be execnted. These assumptions largely simplify and will reduce the
real execution time required for the pre-simulation.

4.2 Algorithm C (Combinatorial)

The proposed combinatorial algorithmm can be described by the following steps:

The Combinatorial Algorithm:

1. Model the target simulation model with a stochastic process using the mapping
algorithm discussed in section 2.

2. If the process produced by step 1 has a continuous-state space, identify an imbed-
ded Markov chain for the process, possibly using the approximation technique
of section 4.1.

3. If the state space of the discrete-space process produced in step 1 or 2 is small, use
(1) or (2) to solve the MFOS; else execute algorithm PS5 to obtain an estimated
MIOS.

4. Implement a time-parallel simulation with partial state matching using the (es-
timated) MFOS obtained from step 3 as the matching state.

The execution time of the pre-simulation is O(N(a + 1)/ P), where a is the cost
for recording the system state and is a function of the number of state variables of the
system. The execution time of the time-parallel simulation (Step 4) is O(N/P).

5 Applications

In this section we apply algorithm C to two examples, a central server system and a
virtual circuit of a data communication network with a sliding-window flow control.

5.1 Central Server System

We use the central server system described in section 4.1 as the simulation model for
our first experiment. We first let the system contain only 3 jobs. The job lengths
are generated by an exponentially distributed random variable with a mean of 0.01.
All three devices have the same job service rate. Since there are only 3 jobs, the
service times are effectively 3 small numbers. Using the approximation technique of
section 4.1, the embedded queue length process Q(n) = {Q1(n), Q2(n), Qa(n),n =
1,2,...,N} can be modeled by a Markov chain of 10 states. Figure 2 shows the state
transition matrix of the resulting Markov chain. Solution of equations (1) or (2) yields
the stationary distribution: (%, s &, e = s). State 0 (all three jobs
are in the CPU’s queue), which has the the smallest recurrence period, is hence chosen
as the matching state.

To validate the accuracy of the occurrence frequencies obtained from the approx-
imate Markov chain, we execute the original simulation model 10 times using a se-
quential simulation. Each run uses a different seed and simulates 10° arrival events. A
comparison of these state probability distributions is given in Table 1. It shows that
solution of the approximate Markov chain generates a very close probability distribu-
tion to the results of an exact simulation.

In our experiment, we implement the time-parallel simulation on a single proces-
sor workstation such that each processor is emulated by a process which executes
sequentially. That is, a new process starts only when the current process has reached
its termination condition and stopped. In the rest of this paper, the term process is
equivalent to processor in a real multiprocessor implementation.

Initially, each device has a job in its queue. Because state 0 is chosen to be the
matching state, it serves as the final state of each simulation sub-interval as well as
the initial state of each simulation sub-interval except the first one. Therefore, a final
state is considered to be reached when all three jobs are in the CPU’s quete regardless
of the remaining service times (hence it is partial state matching as described in [18]).

In the experiment, welet P = 102 and N = 105. Therefore, for a perfectly balanced
loading, each processor should simulates 10® events. Because the expected number of

Figure 2: The State Transition Matrix of the Central Server System. Fach state of
the Markov chain corresponds to a state {(Q1,Q2, @3), where @1, @9, and ¢a are the

0:
5:

[} 1
13 13
i2 16
12]

0 113

0 1/2

0 o}

0 0

o]

[0

0 0
<3,0,0>
<]1,0,2>

13

2

176

113

0

1/2

0

o]

a

0

1:<2,1,0>
6:<0,2,1>

1/6

1/6

1712

1/2

201>
Ti<0,1,2>

1/2

1/9

1/6

o

o]

3:<lll>
8: <0305

queue lengths of the CPU, Diskl, and Disk2, respectively.

Table 1: A comparison of the stationary probability distributions obtained from solu-
tion of the approximate Markov chain and an exact simulation.

1/9

178

3

4:<1,2,0>
9:<0,0.3>

| States | Approximate Markov Chain | Exact Simulation |

0 30% 28.6%
1 20% 21.4%
2 20% 21.1%
3 10% 9.9%
4 6.7% 6.8%
5 6.7% 6.8%
] 2.2% 1.7%
7 2.2% 1.6%
8 1.1% 1.0%
9 1.1% 1.1%

Table 2: A compazrison of average queue lengths of the central server model. Each
number is an average of 10 runs.

[Algorithm [CPU | Diskl | Disk? || Arrivals Simulated
Parallel | 2.160 | 0.422 | 0.425 || 100264
Sequential#2.188 0.406 | 0.406 [100000

events in each sub-interval is only 3.33 (i.e. 3—/1?5), each process is expected to simulate
a large number of sub-intervals. Therefore, for each process, the termination condition
Is defined as, “state 0 occurs and at least 10 arrival events have been simulated by
the process”. Although this simple algorithm will cause more than N arrival events
to be simulated, because state 0 occurs with a very high frequency, experiment results
show that only an average of 2.64 more arrival events are simulated by each processor
(Table 2).

The experiment executes the model 10 times using the combinatorial simula-
tion and a sequential simulation, respectively. Table 2 compares the expected queue
lengths. The differences for the CPU, Diskl, and Disk? queues are 1.2%,3.8%, and
4.2%, respectively. Because the load of each processor is nearly perfectly balanced,
and the cost of computing the stationary distribution (using equation (1) or (2)) is
constant, a linear speedup can be achieved.

To illustrate that the combinatorial simulation can achieve massive parallelism
and still maintain high accuracy, we vary the value of P, ranging from 10 to 105, and
compare the results with a sequential simulation as well ag a multiple-replica simulation
in which each processor siinulates the entire simulation model independently and the
results of these independent runs are averaged together [9]. For the multiple-replica
simulation, each simulation run simulates N/ P events.

We also increase the number of Jjobs and the number of events simulated from 3 and
10° to 300 and 107, respectively. Initially, each queue contains 100 jobs. The service
times of the jobs are generated by an exponentially distributed random variable with
& mean of 0.01. All other parameters and assumptions of the system are not changed
from the first experiment.

The number of possible states of the imbedded queue length process of this model
is about 4.5 x 10%. Because of the large state space, we use the pre-simulation method
of algorithm PS (Section 3) to estimate the MFOS; the MFOS is the state in which
all 300 jobs are in the CPU queue. Figure 3 and Table 3 compare the expected queue
lengths obtained from the three simulations. For the time-parallel simulation, each
processor simulates no more than N /P + 7 events on the average for any value of P,

The time-parallel simulation outperforms the multiple replica simulation in simuy-
lation accuracy for any number of processors. The difference js significant when the
number of processors exceeds 1000. We also use an uniformly distributed random

Table 3: A comparison of the average queue lengths of the central server model. In
the Table, TP and MR represent the time-parallel and multiple-replica simulations,
respectively. The average queue lengths obtained from the sequential simulation are
299.05, 0.473, and 0.473, respectively.

P Simulation | CPU Diskl | Disk2
10 TP 299.06 | 0.471 | 0.471
MR 299.02 | 0.488 | 0.4%0
100 TP 209.06 | 0.467 | 0.468
MR 298.55 [0.719 | 0.729
1000 | TP 299.06 | 0.470 [0.469
MR 293.62 | 3.180 ! 3.193
19600 | TP 299.06 | 0.470 | 0.469
MR 177.18 | 61.817 | 61.306
300 -]

—— Multiple Replicas
—— Sequential and Time-Parallel
200 1

Average CPU Queue Lénglh

100 — e e —
1 10 100 1000 10000

Number of Processors

Figure 3: A comparison of queue lengths of the CPU for the sequential, fime-parallel,
and multiple replica simulations.

10

Figure 4: A closed queueing network mode} for a 4-node virtual circuit with sliding-
window control. The window size of the VC is 12. The number appears in each
queue and in the server is the buffer size (packets) and the service rate of the node,
respectively. Dash lines are the paths for acknowledgments.

variable to generate the queue lengths. Results similar to those shown in Tables 2 and
Figure 3 are observed for both cases (i.e., 3 or 300 jobs in the system).

5.2 Virtual Circuit of Communication Networks

In our second example, we use a virtual circuit in a packet-switched data commu-
nication network with sliding-window control (Figure 4). In a packet-switched data
communication network, data to be transmitted across the network are grouped into
packets. Before a packet is transmitted, a path from the source node to the destination
node, called a virtual circuit (VC), has to be established. Sliding-window is a flow
control mechanism which limits the number of packets simultaneously in transit in a
VC [17, pp.171-191]). This number is called the window size of the VC. Fach node,
representing a switch or gateways of the network, in the VC has a finite size input
quene. When an arriving packet to a node finds the buffer of the node full will be
lost. We assume that when a packet is lost or arrives at the destination node, an
acknowledgment will be sent back to the source node immediately and the delay of
transmitting the acknowledgments is negligible. A virtual circuit with these assump-
tions can be modeled by a closed queueing network as shown in Figure 4. In our
example, there are 4 nodes in the VC and the window size is 12. The extra node in
the bottom (i.e. @5) is artificially added to model the flow control mechanism and
the job arrival process of the source node. Initially, all 12 jobs are in ¢J5.

Again, this VC model can be modeled by a continuous-space process in which
there exists an imbedded discrete-space quene length process. Using assumptions 1
and 2, the imbedded process is simplified and can be modeled by a Markov chain. We
apply algorithm C to the VC model and compare the results with a multiple replica
simulation and a sequential simulation, in which N = 107. The packet lengths are
generated by an exponentially distributed random variable. The MFOS obtained by
algorithm PS for all value of P is (1,0,1,0}, where the ith element in the 4-tuple is
the queue length of 4. The initial state of the system is thus (0,0,0,0), since all jobs
are in @5 initially. A comparison of the expected queue lengths is shown in Table 4.

11

Table 4: A comparison of the average queue lengths of the virtual circuit model. In
the Table, TP and MR represent the time-parallel and multiple-replica simulations,
respectively. The average queue lengths obtained from the sequential simulation for
queues 1 to 4 are 1.275, 1.708, 1.865, and 1.986, respectively.

P Simulation | Q1 Q2 Q3 Q4
10 TP 1.275 1 1.706 | 1.863 | 1.084
MR 1.275 | 1.711 | 1.870 | 1.99
160 TP 1.275 1 1.709 | 1.865 | 1.085
MR 1.276) 1.705 | 1.875 | 1.869
1006 | TP 1273 | 1.704 | 1.861 | 1.980
MR 1.273 [1.701 | 1.852 | 1.966
10000 | TP 1.260 | 1.687 | 1.838 | 1.951
L MR 1.260 | 1.650 | 1.757 1.813 |

The results show that the combinatorial algorithm does only slightly better than
the multiple replica simulation in simulation accuracy. This is because the expected
first passage time from the injtial state of the multiple replica simulation (ie. (0,0,0,0))
to the matching state of the time-parallel simulation (i.e. (1,0,1,0)) is short. There-
fore, these two simulations have close initial transient.

6 Summary and Final Remarks

A combinatorial time-parallel simulation which can achieve massive parallelism by
identifying the recurrent states of the simulation model has been proposed. The de-
gree of parallelism that can be obtained is proportional to the number of events and
is not constrained by the topology of the simulation model. Approximate Markovian
modeling is suggested to extend the the class of simulation models that the combina-
torial simulation can be applied.

In this paper we apply the combinatorial simulation to two closed queuneing network
models. Experiment result show that our approach can obtain massive parallelism and
still maintain high accuracy. We also compare the combinatorial simulation with mul-
tiple replica simulation. The combinatorial simulation always yields more accurate
results than multiple replica simulation because in the combinatorial simulation, the
use of the MFOS as the initial state reduces the initial transient of the simulation.
However, if the initial transient is weak or if the ratio of N /P is large, the multi-
ple replica simulation is more efficient due to the overhead of computing the MFOS
required by the combinatorial simulation.

A concern of the combinatorial algorithm is that the pre-simulation has to record
the number of state occurrences in order to identify the MFOS. The efficiency of the

12

recording may dominate the cost of the pre-simulation. Thus, an efficient state record-
ing algorithm is essential for large simulation models. For acyclic queneing networks
of any size, another time-parallel simulation method proposed in a previous paper
[18] can be applied. In this paper, we only focus on queueing network applications,
although other applications are also possible for the proposed time-parallel simulation.

References

[1]
[2]

[8]

[9]

[10]

[11]

[12]

[13]

Aki, 5. G. The Design And Anelysis of Parallel Algorithms. (1989), Prentice Hall.

Bhat, U. N. Elements of Applied Stochastic Process. 2nd ed. (1984), Jhon Wiley
& Souns.

Bertsekas, D., Gallager, R. Data Networks. 2nd ed. (1992), Prentice Hall.

Chandy, K. M., Herzog, U., Woo, L.S. Parametric Analysis of Queneing Networks.
IBM J. Research and Development. Vol 19, No. 1, (Jan. 1975), 43-49.

Hordijk, A., Iglehart, D. L, Schassberger R. Discrete Time Methods for Simulating
Continuous Time Markov Chains Adv. Appl. Prob. Vol 8, 772-778 (1976)

Fujimoto, R. M. Lookahead in Parallel Discrete Event Simulation. Proceedings of
International Conference on Parallel Processing. St. Charles, IL {August 1988)

Greenberg, A. G., Lander, R. E., Paterson, M., Galil, Z. Efficient Parallel Al-
gorithms for Linear Recurrence Computation. International Proceeding Letters
Computer. Vol 15, No. 1, (Aug. 1982), 31-35.

Heidelberger, P. Variance Reduction Techniques for the Simulation of Markov
Process, I:Multiple Estimates IBM J. Research and Development. Vol 24, No. 5,
(Sept. 1980), 570-581.

Heidelberger, P. Statistical Analysis of Parallel Simulations. Proceedings of the
1986 Winter Simulation Conference (Dec. 1986), 290-295.

Jones, D. W., Chou C., Renk, D., Bruell S. C. Experience with Concurrent Sim-
ulation Proceedings of the 1989 Winter Simulation Conference {Dec. 1989), 756-
764,

Kleinrock, L. Queueing Systems. Vol. 1 (1975), Wiley-Interscience.

Lander, R. E., Fischer, M. J. Parallel Prefix Computation. Journal of ACM 27
(1980), 831-838.

Leung, E., Cleary, J., Lomow, G., Baezner, D., Unger, B. The Effect of Feedback
on the performance of conservative algorithms Proceedings of 1989 SCS Multi-
conference on Advances in Distributed Simulation, 44-49.

13

[14]

[15]

[16]

[17]
[18]

Lin, Y. B. Understanding the Limits of Optimistic and Conservative Parallel
Sumulation. Technical Report 90-08-02, Department of Computer Science and
Engineering, University of Washington, (1990).

Lin, Y. B., Lazowska, E. A Time-Division Algorithm for Parallel Simulation.
ACM TOMACS 1,1 (Jan. 1991}, 73-83.

Reed, D. A., Malony, A. D., McCredie, B. D. Parallel Discrete Event Simulation
Using Shared Memory. IEEE Transaction on Software Fngineering Vol. 14, No.
4 (April), 541-553.

Schwarz, M. Telecommunication Networks. (1987), Addison Wesley.

Wang, J., Abrams, M. Approzimate Time-Parallel Simulation of Queueing Sys-
tems with Losses. To be appeared in the Proceedings of the 1992 Winter Simula-
tion Conference. An extension of this paper appears as Technical Report 92-50,
Computer Science Department, Virginia Tech. (Sept. 92}

Wanger, D, B., Lazowska, E. D. Parallel Simulation of Queueing Network: Lim-
itation and Potentials. Proceedings of 1989 ACM SIGMETRICS and PERFOR-
MANCE (May 1989), 146-155.

Wanger, D. B., Lazowska, E. D., Bershad B. N. Techniques for Efficient Shared-
Memory Parallel Simulation. Distributed Simulation 1989, Society for Computer
Simulation International, San Diego, CA (March 1989)

14

