
GLOBAL SYNCHRONIZATION FQR OPTIMISTIC PARALLEL DISCRETE EVENT

SIMULATION

David M. Nicol*

Department of Computer Science

College of William and Mary

Williamsburg, VA 23187-8795

Abstract

A number of optimistic synchronization schemes for

parallel simulation rely upon a global synchronization.

The problem is to determine when every processor

has completed all its work, and there are no messages

in transit in the system that will cause more work.

Most previous solutions to the problem have used dis-

tributed termination algorithms, which are inherently

serial; other parallel mechanisms may be inefficient. In

this paper we describe an efficient parallel algorithm

derived from a common “barrier” synchronization al-

gorithm used in parallel processing. The algorithm’s

principle attraction is speed, and generality-it is de-

signed to be used in contexts more general than paral-

lel discrete-event simulation. To establish our claim to

speed, we compare our algorithm’s performance with

the standard barrier algorithm, and find that its addi-

tional costs are not excessive. Our experiments are con-

ducted using up to 256 processors on the Intel Touch-

stone Delta.

1 Introduction

A number of algorithms for parallel simulation are

based upon the notion of a window in simulation time,

where activity associated with time-stamps in the win-

dow may be executed in parallel, but successive win-

dows are processed serially. Examples include bounded-

lag[4], conservative time windows[2], YAWNS[5], MTW

[7], SPEEDES [9], and Bounded Time Warp [10]. The

laet three of these protocols are optimistic. In a con-

servative protocol, at the point a processor has simu-

lated up to the end of the window it knows that it will

not get a message in its past. In this case, in order

*This research was supported in part by NASA grants
NAG-1 -106O, NAG-1-1132, and NAG-l-995, and NSF
Grants ASC 8819373 and CCR-9201195.

to establish that all processors have finished the win-

dow it suffices to use a standard barrier synchronize

tion algorithm, such aa the butterfly barrier [1]. Such

algorithms are efficient and parallelizable (usually en-

joying a log(P) complexity on P processors), and are

provided as a system call in most parallel computer

systems. However, consider a processor running an op-

timistic protocol. At the point it haa simulated up to

the end of the window it may still be rolled back by

the arrival of a straggler message. Standard barrier al-

gorithms will not work in this case, as they have no

provision for a processor needing to back out of the

barrier.

The fore-mentioned optimistic windowing algorithms

use different approaches for determining when a win-

dow has completed. MTW’S scheme is to monitor the

idleness of LPs, and to initiate a GVT calculation once

the fraction of idle LPs exceeds some threshold. Syn-

chronization is detected when the GVT is greater than

the upper window edge. SPEEDES uses parallel oper-

ations to compare the total number of messages sent

with the total received, and upon equality applies a

GVT calculation. Such a calculation is the heart of our

approach ae well; however, the mechanics and frequency

of SPEEDES’ computations is not documented in the

literature. Our algorithm performs the computation es-

sentially once. Bounded Time-Warp uses an algorithm

from the distributed termination literature. A token is

passed serially among processors. Any “busy” proces-

sor receiving the token marks it. Once the token has

circulated twice without being colored, then the pro-

cessor who generated the token knows the computation

has reached the end of the window; an additional com-

munication phase is needed to notify all processors of

this fact,

As recognized by SPEEDES and (various GVT al-

gorithms) the key to the problem is to compare the

number of messages sent and received in the system.

If no processor will execute an event past time t, we

27

http://crossmark.crossref.org/dialog/?doi=10.1145%2F174134.158463&domain=pdf&date_stamp=1993-07-01

know that all the processors have completed once every

processor is idle and the total number of messages sent

is equal to the total number received. The problem is

to perform this calculation efficiently, and to do so in

such a way that every processor quickly knows when it

is synchronized with every other processor.

In this paper we show how modification of a stan-

dard algorithm (the butterfly barrier[l]) permits the

use of barrier synchronization in an optimistic compu-

tation. There are two important elements to the al-

gorithm. One is to permit a processor to enter the

barrier optimistically, before it is certain that it is fin-

ished with its pre-synchronization work. The second

important element is to have each processor keep track

of the number of messages it has sent to and received

from each of log P sets of processors we call shells (there

are P processors). Then, like a standard barrier algo-

rit hm, a processor advances through log P steps, where

at each step it synchronizes with a specific processor.

Unlike a standard barrier, two synchronizing processors

exchange send/receive counts tabulated for each shell,

and from this information decide whether to advance

to the next synchronization step, or wait to receive and

process further messages. At any time, receipt of a new

computation message can roll a processor back out of

the barrier altogether, or a repeated synchronization

message from a previous step can also roll the synchro-

nization processing back to that step. Our algorithm

requires O(log P) space on each of P processors, and

requires O(log2 P) parallel time to execute.

The problem we address is not original; others have

had to tackle it, notably [9, 10]. Furthermore, most of

the key ideas in this algorithm originated elsewhere. For

instance, the notion of comparing message send/receive

counts lies at the heart of standard GVT algorithms;

combining trees (hardware or software) are as old as

parallel processing itself, as is the butterfly communi-

cation pat tern; optimist ic execution has been well ex-

plored in parallel simulation, and database research.

Our contribution is to combine these ideaa to produce

an eficient and general algorithm for global optimistic

synchronization. The efficiency derives from our iden-

tification of O(log P) sized quantities (our shell counts)

which support the send/receive analysis; the efficiency

is proven by comparing our algorithm with a highly op-

timized non-optimistic synchronization barrier synchro-

nization on a large-scale multiprocessor. The generality

follows from design; the support for optimistic process-

ing is an integral part of the algorithm, and does not as-

sume any optimistic simulation kernal. The problem of

needing to synchronize in the face of uncertainty is not

unique to parallel simulation, e.g. it has also appeared

in the context of parallel numerical algorithms[8]. Our

algorithm works equally well in this more general con-

text.

The remainder is structured as follows. Section 32 in-

troduces some notation, and uses it to describe a stan-

dard barrier synchronization algorithm. Section $3 de-

scribes our modifications, and argues for the algorithm’s

correctness. Section $4 evaluates the performance of

our algorithm on large scale multiprocessors. Section

$5 summarizes thk paper.

2 Background

Suppose that we can view every processor’s behavior

in terms of its response to messages. For example, a

processor might receive one or more messages, perform

some computation, and possibly send new messages as

a result. The notion is quite general, encompassing

scientific computations where the messages communi-

cate data at domain partition boundaries, to parallel

discrete-event simulations, where a message represents

an event. A key difference between these two examples

is that in the former cae.e the message passing behavior

is predictable, whereas in the latter case it is not.

A barrier synchronization is introduced into the com-

putation when we desire that the processors synchro-

nize globally. In the context of parallel simulation, it

means that processors synchronize at a logical simula-

tion time, say .9-no processor is to execute any event,

even optimistically, until every processor has simulated

all events up to time s. When the computation is per-

formed correctly, this means that every processor will

have received and processed all messages for it prior to

synchronizing, and no processor leaves the barrier until

all processors have received and processed all messages

for which the~ are responsible prior to synchronization.

A processor leaving the barrier is assured that every

other processor has already received all messages, per-

formed all work, and sent all messages that are logi-

cally required by the computation prior to the global

synchronization. This point is important: optimistic

parallel simulations are very closely related to the algo-

rithm we propose, and yet do not automatically provide

this assurance, While our solution permits optimistic

entry into the barrier, our problem forbids an optimistic

departure. Upon emerging from a barrier a processor

can be certain that its present state is correct.

To be sure, one can rig standard optimistic simula-

tion approaches to provide a barrier-like mechanism. A

reviewer of this paper suggested that one create events

to ‘freeze” the state, and then apply a global state-

detection algorithm to determine whether every pro-

cessor’s state is frozen. The point of this paper is not

to solve a new problem. The point is to solve it quickly,

28

Dmension 3 [0,1,2,3,4,5]

/\.
Dimension 2 [0,1,2]

/\
Dimension 1 [0,1] [2]

/\ /

Dimension O [01 [11 [21

[3,4,5]

/\
[3,4] [5]

/\ /

[3] [4] [5]

Figure 1: Balanced tree created by splitting sets of

processors ids.

and generally. The fact that standard optimistic algo-

rit hms worry much about memory management, and

yet invoke GVT calculations infrequently suggests that

standard approaches to problems related to ours are

viewed as having high overhead.

Our problem arises in contexts other than parallel

simulation. For example, consider a parallel search-

ing algorithm that performs load balancing by having a

processor generate some nodes to evaluate, select some

for itself, and distribute the rest. We might wish to

use a barrier to establish termination, yet a processor

must be concerned about receiving additional workload

a$?er entering the barrier. As shown in [8], the problem

can also arise in numerical contexts, when convergence

determines termination. A processor whose subdomain

has converged enters the optimistic barrier, but can re-

ceive a message containing boundary interface values

from a neighboring processor whose subdomain has not.

Next we introduce some notation, Consider a sye-

tem of P processors, for any P > 1. Define p, the

s~stem dimension, to be the smallest integer such that

P < 2P. Our solution involves a balanced binary

tree whose elements are sequences of processor ids.

The root node is TO = [0,1,..., P - 1]. Given tree

node T= = [i ,... ,~1, i < ~, we define T.’s left child
Tzc+l = [i,..., [(i +j)/21], and its right child (applica-

ble only if i < j) T2C+2 = [[(i+ j)/21 + 1,... ,j]. Thus,

children sets are defined by evenly splitting a parent

sequence, with the ‘extra> member (if any) placed in

the left child. Also, we define the “dimension” of To to

be p, and the dimension of a child to be one less than

its parent’s. The splitting process is applied until the

dimension O sequences are defined. Figure 1 illustrates

the tree associated with P = 6.

Let T2C+1 and T2C+2 in dimension k be children of

a common parent, As these sequences are nearly bal-

anced, we can pair their elements as follows. We say

that processors i and j are neighbors in dimension k

if for some m, i is the mth largest element of TZ.+l,

and j is the m th largest element of T2~+2. We denote

this relationship by a function n, writing n~(i) = j and

nk (j) = i. For example, in Figure 1, the neighbors in

dimension 2 are O and 3, 1 and 4, 2 and 5. When the

size oft wo sibling sequences differs, the largest member

(say j) of the left sibling has no neighbor. In this case

we say that j is a hermit in that dimension. Also, we

call the least member of any sequence the leader of that

sequence.

Most scalable barrier algorithms employ a tree of

some kind, where processors representing sibling nodes

synchronize locally, and a processor representing a par-

ent node is enabled to synchronize as soon as its own

chddren have synchronized. One approach is to require

the leader of a sequence to represent the sequence in this

synchronization process. In our example, in dimension

O we’d have O synchronize with 1, and 3 synchronize

with 4; in dimension 1 we have O synchronize with 2,

and 3 synchronize with 5; in dimension 2, we have O

synchronize with 3. At any point in the barrier algo-

rithm, if the leader of a sequence S is attempting to

synchronize with some other processor, then we know

that all processors in S have entered the barrier. Ob-

serve that only the processors representing TI and Tz

will know when all processors have entered the barrier.

In thk case, a broadcast step is required to notify the

remaining processors. This is usually accomplished by

having the leader of a tree node release the leaders of

its children, who in turn release the leaders of their

children, and so on.

Another approach avoids the broadcast step by re-

quiring every processor in a tree node to determine for

itself when that tree node is synchronized with its sib-

ling. A processor synchronizes with its neighbor in di-

mension O, then its neighbor in dimension 1, and so on

through dimension p – 1. If a processor i successfully

synchronizes with its dimension k- 1 neighbor, then we

know that all processors in the dimension k sequence S

containing i have entered the barrier. Thus, a processor

is free to leave the barrier once it is synchronized with

its neighbor in dimension p - 1. One minor difficulty

occurs if processor i in sequence S in dimension k is a

hermit there. A solution is to have i wait to be noti-

fied by the leader of S’s sibling, which is i + 1. In our

example, in dimension 1 we have processor 1 wait for a

message from 2, and processor 4 wait for a message from

5. When thk occurs, we call the leader a messenger in

dimension k, and define nk(i) = i + 1. A messenger

doesn’t need to receive a synchronization message from

its hermit, as it will synchronize with its own neigh-

bor. In the remainder we will call the algorithm above

the standard barrier algorithm. Our solution involves

modification of this algorithm.

A little more notation will aid our discussion. For

29

any processor i and dimension k, let C~(i) denote the The remainder of the section separately addresses the

sequence in dimension k that contains i. For any two problems of managing message counts and specifying

processors i and j, define their distance d(i, j) = k if the barrier algorithm.

k is the largest dimension in which i and j are not in

the same sequence. The table below gives d(i, j) for the

case of P = 6.
3.1 Managing Message Counts

i\jo1234 5

01— o 1 2 2 2

1 0—1222

2 11—222

3 222—01

4 2220—1

5 22211—

For every processor i and dimension k, define Sk(i)

to be the set of all processors j with d(i, j) = k. We

call the collection of Sk(i) (k = O,..., p – 1) processor

i’s shell sets. An intuitive understanding of sk (i) is as

the set of processors represented by the sibling of [i]’s

dimension k ancestor. Another view is that Sk(i) is the

set of processors with whom i establishes synchroniza-

tion in dimension k.

3 An Optimistic Barrier Syn-

chronization Algorithm

The problem we pose has two components. First, we

must ensure that the thread of control is not lost by

calling a barrier routine, as we may have to roll back

out of the barrier. Secondly, we have to ensure that

no processor believes it has completed the barrier be-

fore it is certain that the processor has received all pre-

synchronization messages eventually destined for it.

Even with provision for rollback, simple optimistic

execution of a barrier synchronization will not ensure

that a processor not leave a barrier prematurely. For ex-

ample, consider a four processor system where at some

time t processor O sends a message to processor 3 and

heads into the barrier. It is quite possible for the pro-

cessors to exchange synchronization messages (O with 1

then 3, 1 with O then 2, 2 with 3 then O, 3 with 2 then

1) and appear to be globally synchronized before the

computation message from O is recognized by 3. Our

problem formulation forbids these processors to depart

the barrier, yet this is precisely what they will do if

we rely only on rollback to enforce the synchronization.

Our solution requires that every processor i maintain,

for every shell Sk(i) (k = O,... ,p - 1), a count of

messages it has sent to processors in Sk (i), and a sep

arate count of messages it has received from sk (i)l,

These counts (called Sendjj({i}) and Recvk ({i}), k =

o,..., p – 1) should include all messages relevant to the

computation, but should not include the synchroniza-

tion messages sent se part of the barrier implement

tion. Between barriers these counts increase monoton-

ically, they are never reset as a result of rollback. Im-

mediately following successful completion of a barrier

the counts are cleared.

In the standard barrier algorithm, a single step syn-

chronization between i and nk (i) serves to establish syn-

chronization of two disjoint collections of processors,

Ck (i) and ck (nk(i)). Now suppose that processors i

and nk (i) additionally exchange counts of messages sent

to and received from these two sets of processors (if i is

a hermit it does not send counts to nk (i)). For example,

suppose they detect that the total number of messages

sent by processors in ck (i) to processors in ck (nk (i))

is larger than the total number of messages received by

processors in ck (n~ (i)) from processors in ck (i)). pr~

cessors in c~ (nk (i)) will eventually receive the missing

messages, and be rolled back out of the barrier. Con-

sequently neither processor i nor processor nk (i) ought

to advance to the next dimension. If the two pairs of

send/receive counts match as required, we will say that

i and nk (i) are “in agreement” at step k.

How then can i and ~k (i) have available counts of

messages between ck (i) and ck (nk (i))? Observe that

sk (i) = Ck(nk (i)), and that the Sendk and Recvk

counts in processor i and every other processor in ck (i)

tabulate the number of messages sent to and received

from sk (i). When i and no(i) synchronize, they can

exchange their counts relating to this set, and combine

them. When i synchronizes with nl (i) it can send the

combined i and nO (i) counts, and receive the combined

m (i) and no (nl (i)) counts. Continuing in this fashion,

by the time i reaches dimension k, it will have accumu-

lated the send/receive counts of all processors in Ck(i)

relating to sk (z). For that matter, it can have accu-

mulated the send/receive counts relating to all shells

This example highlights the fact that a correct barrier 1Actually, one need Ody maintain the &fference between
algorithm must account for messages that are sent, but these two counts. This optimization reduces the communi-
not yet received. The modifications we make to the cation load of our algorithm; however, it is easier to explain
standard algorithm do precisely that. in terms of separate counts.

30

Sin(k),m 2 k.

Our modified barrier rdgorithm hinges on the obser-

vation above. Forallk =0, ... ,p-landnz=k,p–

1 define Z’otaLSend~ (C~ (i)) to be the total number of

messages sent by processors in Cfc (i) to processors in

S“(i); similarly define TotaU?ecu~(C~(i)) to be the to-

tal number of messages received by processors in 6’k (i)

from processors in S~(i). These counts are defined

to describe the situation after sll pre-synchronization

messages have been generated, received, and processed.

Since Ck(i) is the union of disjoint sequences Ck-1 (i)

and C&l (nk (i)), it is evident that whenever m ~

k, Tota~Send~(Ck(i)) = TotaMend~({i}) for k = O

and Tota~Send~(Ck(i)) = Tota~Send~ (Ck_l (i)) +

z’otaLSendm(ck_l (nk_l (i))) fork>O;

while Tota~Recu~(Ck(i)) = TotalRecu~ ({i}) for k = O

and ~Ohd&?CUm(ck(~)) = TotalRecv~ (C~-1 (i)) +

TotalRecu~(C~-1 (nk-1 (i))) for k >0.

In the course of synchronization, a processor will not

necessarily know these final send/receive counts. It can

only tally the numbers of messages it has seen itself with

similar counts reported by other processors. We will ap-

proximate each TotalSend~(Ck (i)) count with a count

Send- (Ck (i)) that is computed using the aggregation

equations specified above (replacing each inst ante of

TotalSend with a corresponding Send); we similarly ap-

proximate each TotalRecv~ (Ck (i)) with a count called

Recu~(Ck (i)). When processor i attempts to synchro-

nize in dimension k, it includes in its synchronization

message to nk (i) (and to i – 1, if i is a messenger) two

vectors that estimate completed send/receive counts:

SendVeck(i) = [Sendk(ck(i)),..., SendP_l (Ck(i))],

and

Recvveck(i) = [Recvk(Ck(i)),..., RecuP-l(C~(i))].

Figure 2 illustrates the information exchanged by

two processors i and nk (i). Here we suppose that i

is a member of the sequence labeled A, and nk (i) is

in the sequence labeled B, both in some dimension

k. Sets D and E are SP_Z(i) = SP-Z (nk(i)), and

$1(i) = Sp-1 (nk (i)), respectively. The components
of Send Veck(i) are the counts of messages sent by pro-

cessors in A to processors in B, D, and E; Recv Veck(i)

contains the number of messages received by proces-

sors in A from B, D, and E. Similarly, the comp~

nents of Send Veck(nk (i)) are the counts of messages

sent by processors in B to processors in A, D, and E;

Recv veCk(?’Jk (i)) contains the number of messages re-

ceived by processors in B from A, D, and E. When i

and nk (i) are in agreement they may combine these

values to determine the send/receive counts between

processors in C and D, and between C and E.

r..-1

%

~ [.-1

~;$l &
..!

... ...

Figure 2: Graphical depiction of information passed

when i (in A) synchronizes with nk (i) (in B). i gives

n~ (i) send/receive counts between processors in A

and B, A and D, A and E, n~ (i) gives i send/receive

counts between processors in B and A, B and D, B

and E.

3.2 Algorithm Specification

In our solution processor i enters the barrier logic and

passes through as many dimensions as possible until

it either completes, reaches a dimension k for which

there is yet no synchronization message from nk (i) (or a

messenger), or the message fails to indicate agreement.

Upon completion failure processor i exits the barrier

logic to permit receipt of further messages (either com-

putation and synchronization messages). When a pro-

cessor reenters the barrier logic it may not need to step

through dimensions it has already passed through; for

example, if i leaves the barrier logic because nk (i) has

not yet sent its synchronization message, on reentry it

may return directly to the dimension k step. However,

if i is rolled back in the meantime it may need to start

over in dimension O, or possibly in some other dimen-

sion j < k. The proper point of entry is given by state

of the barrier, a pair (D,s). D is the current working

dimension, and s is 1 or O, depending on whether the

processor needs to send a synchronization message to

nk(i) (and to i - 1, if i is a messenger) or not. For

example, if i leaves the barrier on failure to find a syn-

chronization message from nk (i), the barrier state on

departure is (k, O). If the barrier state is not altered

by a rollback, then on i’s reentry it need not resend

the synchronization message-it just checks again for

the synchronization message from nk (i). on the other

hand, if i’s barrier is rolled back due to receipt of a

computation message or re-receipt of a synchronization

message in some dimension j < k, then the barrier state

is reset to (j, O), (use j = O if the rollback is due to a

computation message).

Figure 3 illustrates a flowchart of processing that uses

an optimistic barrier. Synchronization messages are

given highest priority (although this is not absolutely

necessary), and barrier processing is attempted only if

31

*- T
Figure 3: Flow diagram of processing logic using

an optimistic barrier

there are no known computation messages to process.

Entering the barrier logic in state (D,s), the processor

pushes through as many dimensions as it can, begin-

ning with dimension D. On passing through dimension

P -1 the processor may leave the barrier, Otherwise,

the thread of control is returned to the user program

to receive and process any computation messages that

may have arrived since the processor last checked.

The processing shown assumes that messages from

processor i to j are delivered in the order in which they

are sent (a condition usually satisfied by parallel ma-

chines). If this condition cannot be guaranteed (or if

synchronization messages are not given highest receipt

priority), our algorithm works provided that synchro-

nization and computation messages are tagged with a

‘phaae” identifier, e.g., the number of global barriers

completed so far. Phase identification prohibits a pro-

cessor from accepting a phase k synchronization or com-

putation message before it haa completed its phase k-1

barrier. Inpractice, only one bitof phase identification

is needed (odd or even phase).

Lazy cancellation [6] can be applied to the optimistic

barrier. Either the receipt of a computation message or

the receipt of a synchronization message in dimension

j < D causes a rollback. The rollback consists entirely

of resetting the barrier state (D,s) as appropriate e. It

is not necessary to cancel the synchronization messages

already sent in dimensions j through D, for the barrier

will reach the point where their transmission is logically

appropriate again. However, upon reaching a logical

transmission point again, the processor may find that

the vector it ought to send is identical to the vector it

previously send, in which case retransmission is unnec-

essary.

Since O(log P) counts are transmitted and analyzed

at each of log P steps, the algorithm’s time complexity

is O(log2 P). In addition, O(log P) is space required at

every processor to store the shell counts, and synchro-

nization vectors.

3.3 Correctness

Finally, we establish the correctness of the algorithm.

We need to show both that the algorithm terminates,

and that no processor leaves the barrier prematurely.

First consider termination. For the sake of contra-

diction, suppose that the algorithm does not terminate.

Now every processor eventually performs all of the work

required of it prior to the upper window edge, and ev-

ery message that causes work has been generated, sent,

and received; hence every processor i is in the barrier

logic with some state (Di, s;). Without 10SS of gener-

ality suppose that DO ~ Di for all i = 1,..., P -1.

The only reason processor O cannot advance is because

it does not agree with its neighbor in dimension Di.
But this is impossible, because non-agreement is pos-

sible only if there is a generated message that has not

yet been received. This established the contradiction.

Finally, we need to argue that no processor leaves the

barrier prematurely. In order for a processor i to depart

the barrier, it is necessary that it agree with its neighbor

in dimension p-1. To even reach that stage in the bar-

rier, it is necessary that the processor be in agreement

with all its neighbors in dimensions j = O, 1, p — 2.

This can only happen if there is no unprocessed mes-

sage sent from a processor in CP-Z (i) to a processor in

the same set. Similarly, for nP_l (i) to synchronize with

i it is necessary that there be no unreceived message

generated by a processor in C&z (nP-l (i)) for a proces-

sor in that same set. Now i cannot depart the barrier

unless it agrees with nP-l (i), which can only happen if

there is no as-yet-unprocessed message generated by a

processor in CP-l (i) for a processor in C’p-l (nP-l (i)),

or vice versa. But every processor is in one of these two

sets, implying that processor i cannot leave the bar-

rier before all necessary messages have been generated,

sent, and received.

4 Empirical Results

Our optimistic barrier provides more flexibility than

a conventional barrier, but at a cost. Our algorithm

sends vectors of data at each synchronization, it com-

pares vectors prior to transmission in an effort to avoid

unnecessary retransmission, and it implements message

passing logic at the user level. All of these activities ex-

act costs not suffered by an optimized conventional bar-

rier. In this section we endevour to quantify these costs,

by comparing the performance of our barrier with that

of the conventional barrier provided on a large-scale

parallel architecture.

We first quantify the relative cost of our algorithm in

the absence of rollbacks. Table 1 presents timings from

32

Size
3X3

4x4

5x5

6x6

7x7

8x8

9x9

10 x 10

11 x 11

12 x 12

13 x 13

14 x 14

15 x 15

16 X 16

opt barrier
1.14 ms

1.30 ms
1.40 ms
1.57 ms
1.73 ms
2.0 ms
2.0 ms

2.10 ms
2.19 ms

2.29 ms
2.38 ms

2.49 ms
2.53 ms
2.71 ms

gsync

0.56 ms

0.56 ms

0.65 ms

0.74 ms

0.82 ms

0.92 ms

0.94 ms

1.00 ms

1.05 ms

1.09 ms

1.14 ms

1.17 ms

1.20 ms

1.24 ms

Table 1: Comparison of time required to execute

optimistic barrier vs. time required to execute

gsynco on Intel Touchstone Delta.

the Intel Touchstone Delta[3]. The Delta is a basically

a 16 x 32 PE mesh architecture. The global synchro-

nization provided with the system—gsync () -does not

work precisely like the standard barrier we described

earlier, being optimized for Delta architecture and NX

operating system.

In the first experiment we simply call the barrier al-

gorithms repeatedly. The numbers presented are av-

erages taken over thousands of calls. Since there is no

other message passing, our algorithm does not rollback,

Even so, our algorithm experiences memory copy and

comparison costs at every step. These measurements

show that that on large architectures, the cost of our

barrier is only slightly more than twice that of gsync ().

Considering all of the extra costs involved and the fact

that gsync () is optimized for the Delta while our al-

gorithm is not, we view this as very encouraging. So

long as the cost of the computation of interest is not

dominated by the barrier, the relative expense of using

an optimistic barrier is not large.

A second set of experiments is designed to measure

relative costs in the presence of rollbacks. In these ex-

periments each processor is to receive, and send, one

message. A cycle begins with processor O, who sends

a message to processor 1, Upon receipt of a, mes-

sage, processor i (i # O) sends a message to processor

(i+ 1) mod P. The cycle completes when O receives a

message. Implementation using an optimistic barrier

lets the barrier logic determine when all messages to

be generated have been (after O reenters the barrier af-

ter receiving a message). Observe that receipt of every

Size opt barrier gsync

3x3 1.14 ms 0.56 ms

4x4 1.30 ms 0.56 ms

5x5 1.40 ms 0.65 ms

6x6 1.57 ms 0.74 ms

7x7 1.73 ms 0.82 ms

8x8 2.0 ms 0.92 ms

9x9 2.0 ms 0.94 ms

10 x 10 2.10 ms 1.00 ms

11 x 11 2.19 ms 1.05 ms

12 x 12 2.29 ms 1.09 ms

13 x 13 2.38 ms 1.14 ms

14 x 14 2.49 ms 1.17 ms

15 x 15 2.53 ms 1.20 ms

16 X 16 2.71 ms 1.24 ms

Table 2: Comparison of time required to execute

optimistic barrier vs. time required to execute

gsync () on Intel Touchstone Delta.

message will cause a rollback in the receiving processor,

Implementation using gsync () simply has a processor

block waiting for its single message, send a message

upon its receipt, and then call gsync (). Table 2 gives

the average times required to complete a cycle, divided

by the number of processors used,

Now we find that the cost of using an optimistic bar-

rier is over three times that of using gsync (). This

ought to be viewed as an upper bound, since any com-

putation related to message passing will be the same in

both versions, and will serve to lessen the ratio of their

running times. A final set of experiments illustrates

this point, by modeling the cost of message process-

ing. These experiments are identical in structure to

the previous set, save that upon receiving a message,

a processor waits for a specified period of time before

sending the message on. The parameter in these experi-

ments is the average number of milliseconds a processor

waits. Figure 4 plots the ratio of time required by our

algorithm to complete a cycle, to the time required us-

ing gsync (), using 256 processors. Here we see that

even under a modest half millisecond message process-

ing time, use of our optimistic barrier is only 30% more

expensive than gsync (); at higher message processing

costs the relative difference is well under 570.

We also examined the cost of our algorithm vs

gsync () on an Intel iPSC/860 multiprocessor. This

architecture haa a hypercube topology. In these ex-

periments processor counts were always powers of two,

and synchronization messages were always exchanged

between processors that are directly connected. The

33

4.0 I I I

35

3.0

25 -

2.0 “

I
15 -

1.0 ~
o 2 4 6 8

Msg Processing Costfmsec)

Figure 4: Ratio of time required to complete a cycle

using an optimistic barrier, to that required using

gsync ()

relative difference between our algorithm and gsync ()

was observed to be nearly identical to that observed

on the Delta, implying that the network bandwidth of

the Delta is sufficient to support our algorithm’s “arti-

ficial” tree construction without significant cost to per-

formance.

5 Summary

Many optimistic parallel simulation algorithms require

the global synchronization of processors, where a pro-

cessor ought not pass through the synchronization if

there is any chance that it will be rolled back to a sim-

ulation time prior to the synchronization point, The

use of an optimistic protocol complicates the problem

over that experienced using a conservative algorithm,

because standard global synchronization algorithms do

not work. In this paper we extend a standard bar-

rier synchronization algorithm by endowing it with op-

timism, We study the performance of our algorithm

with experiments on the Intel Touchstone Delta, using

up to 256 processors. Comparisons with a standard bar-

rier algorithm show that the extensions inflate the cost

of the barrier by only a factor of 2-3, If any significant

amount of processing is associated with a message, this

additions cost is quickly amortized.

Acknowledgements

This research was performed in part using the Intel

Touchstone Delta System operated by CaJtech on behalf

of the Concurrent Supercomputing Consortium. Ac-

cess to this facility was provided by Sandia National

Labs. We also acknowledge the usefulness of discus-

sions on optimistic barrier synchronization with Phlllip

Dickens, Paul Reynolds, Richard Fujimoto, Lisa Sokol,

and Harry Jordan.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

T.S. Axelrod. Effects of synchronization barriers on

multiprocessor performance. Parallel Computing,

3(2):129-140, May 1986.

R. Ayani. A parallel simulation scheme based on

distances between objects. In Distributed Simula-

tion 1989, pages 113–1 18. SCS Simulation Series,

1989.

Sigurd L. Lillevik. The Touchstone 30 gigaflop

DELTA prototype. In Distributed Memory Com-

puter Conference 91, pages 671-677, IEEEPRESS,

April 1991.

B.D. Lubachevsky. Efficient distributed event-

driven simulations of multiple-loop networks. Com-

munications o./ the ACM, 32(1):111-123, 1989.

D.M. Nicol. The cost of conservative synchroniza-

tion in parallel discrete-event simulations. ICASE

Technical report 90-20. To appear in Journal of the

A CM, 1993.

Peter L. Reiher, Richard Fujimoto, Steven Bellenot,

and David Jefferson. Cancellation strategies in opti-

mistic execution systems. In Distributed Simulation

1990, pages 112–121, Society for Computer Simula-

tion, 1990.

L.M. Sokol, D.P. Briscoe, and A.P. Wieland.

MTW:a strategy for scheduling discrete simulation

events for concurrent execution. In Distributed Sim-

ulation 1988, pages 34-42. SCS Simulation Series,

1988.

Jianjian Song. A distributed-termination experi-

ment on a mesh-connected array of processors. Par-

allel Computing, 18(2):779–791, July 1992,

J.S. Steinman. Speedes: Synchronous parallel en-
vironment for emulation and discrete event simula–

tion. In Advances in Parallel and Distributed Sire.

ulation, volume 23, pages 95–103. SCS Simulation

Series, Jan. 1991.

[10] S. Turner and M. Qu. Performance evaluation of

the bounded time warp algorithm. In Proceedings of

the 6*h Workshop on Parallel and Distributed Sim-
ulation, volume 24, pages 11 7–126. SCS Simulation

Series, 1992.

34

