
EFFICIENT IMPLEMENTATION OF EVENT SETS IN TIME WARP

Robert Ronngren and Rassul Ayani
Dept. of Telecommunication and
Computer Systems
The Royal Institute of Technology
P.O. Box 70043
S-100 44 Stockholm, Sweden

Abstrac~

The implementation of the pending event set (PES) is crucial

to the execution speed of discrete event simulation programs.

This paper studies the implementation of the PES in the
context of simulations executing on parallel computers using

the Time Warp mechanism. We present a scheme for imple-
menting Time Warp’s PES based on well-known data struc-
tures for priority queues. This scheme supports efficient

management of future and past events, especially for rollback
and fossil collection operations. A comparative study of
several queue implementations is presented. Experiments
with a Time Warp system executing on a Kendall Square
Research multiprocessor (KSR 1) demonstrate that the

implementation of the input queue can have a dramatic impact

on performance, as large as an order of magnitude, that is
much greater than what can be accounted for by simply the

reduced execution time to access the data structure. In

particular, it is demonstrated that an efficient input queue

implementation can also significantly reduce the number of

rollbacks, and the efficiency of memory management

policies such as Jefferson’s cancelback protocol. In the
context of this work we also present an improved version of

the skew heap that allows dequeueing of arbitrary elements at

low cost. In particular, the possibility of dequeueing arbitrary
elements will improve memory utilization. This ability is
also important in applications where frequent rescheduling

may occur, as in ready queues used to select the next logical
process to execute.

1. Introduction

In discrete event simulation, the pending event set (PES)

is the set of rdl generated but not yet processed events. The
implementation of the pending event set is often crucial to
the performance of the simulation. In Time Wa~ [5,6]
partdlel simulations, the PES is augmented by events in the
past that have already been processed. The data structure that

holds the pending and past events is usually referred to as the

input queue [6]. Time Warp must remember past events
because it allows events to be executed out of timestamp

order, necessitating that they be rolled back and processed
again. We call this augmented set of events the Time Warp
PES (TWPES), which is synonymous to input queue. A

number of implementations of the pending event set have
been suggested in the literature for sequential simulators, e.g.
[2, 3, 8, 9, 10, 12, 13, 14, 15], but none consider the issue of

managing past events or support for implementing the

rollback mechanism. Thus, other techniques for implemen-
ting the TWPES must be devised.

In this paper, we. present a technique for implementing
the TWPES that allows efficient management of both pending
and past events to support efficient rollback and fossil
collection [6] operations. An experimental evaluation of

Richard M. Fujimoto and Sarnir R. Das
College of Computing
Georgia Institute of Technology
Atlanta, Georgia 30332-0280
USA

several implementations of the TWPES has been made. The

experimental results indicate that the efficiency of the Time
Warp mechanism may be dramatically improved by the use of
more efficient implementations of the TWPES for certain

workloads; it is observed that an et%cient TWPES implemen-

tation can yield performance improvements that far exceed
that which can be accounted for by reduced search time alone.

In the context of this work we have also developed an
improved version of the skew heap data structure which
allows for dequeueing of arbitrary elements. This skew heap

is also a good candidate for implementation of ready queues
for scheduling logical processes on a physical processor,

The rest of this paper is organized as follows. The
technique for implementation of the TWPES is presented in
section 2. In section 3 known data structures for sequential

PES that are relevant to this problem are briefly reviewed.

The improved skew heap implementation is also introduced
and analyzed here. Experimental results are discussed in

section 4 and conclusions are presented in section 5.

2. Event Set Operations in Time Warp

In Time Warp computations may be executed in violation
of causality constraints, and may have to be rolled back.

Therefore, each logical process (henceforth referred to as LP)
must maintain snap shots of its state variables as well as
copies of processed events and negative copies of messages

or antimessages that were sent. (We will use the terms

“event” and “message” interchangeably.) As described in [4],
each event in the TWPES is assumed to include a copy of the

process’s state vector as well as a list of antimessages gene-

rated as a result of processing the event. For the sake of
brevity, we assume that the reader is already familiar with the

basic Time Warp mechanism and terminology as discussed in
[6]. We will assume that aggressive cancellation is used as
the cancellation technique.

In a sequential discrete event simulation it is sufficient for
the PES to support two simple operations:
● dequeue: return the event with the smallest timestamp

present in the queue. This element is removed from the queue.
● enqueue: add an event to the queue. It is guaranteed that the
timestamp of the event is greater than or equal to the time

stamp of the last event that was dequeued.
In Time Warp, the operations on the event set differ from

those in the sequential simulator in severrd important ways:

1) Processed events cannot be immediately discarded, but
must rem tin in the TWPES. We therefore distinguish between
processed and unprocessed events stored in the TWPES.

2) The dequeue operation must locate the smallest time-

stamped unprocessed event. Once found, this event remains
in the data structure as a processed event.
3) The enquerre operation must consider the possibility of
rollback. Let us fust consider enqueueing positive messages.
The enqueue operation must add the event ~ the TWPES, as in
the sequential case. If a rollback occurs, i.e., the TWPES

101

http://crossmark.crossref.org/dialog/?doi=10.1145%2F158459.158472&domain=pdf&date_stamp=1993-07-01

contains processed events that have a timestamp larger than

the event that was just enqueued, then all such events must be

located, and “marked” unprocessed. The antimessages for
these events must then be sent if aggressive cancellation is
used, Enqueue operations that do not cause a rollback are iden-
tical to enqueue operations for the sequential case.
4) If the event being enqueued is an antimessage, and the

corresponding positive message also resides in the TWPES,
then the enqueue operation must delete (annihilate) both of

these events. If the annihilated positive message has already
been processed, a rollback takes place, as described above. If
the corresponding positive message is not in the TWPES, the

message is simply et-queued, and no rollback occurs, regard-

less of the antimessage’s timestamp. The subsequent enqueue-
ing of the positive message will annihilate both messages,
without any rollback.

5) During fossil collection operation, all events with time-
stamp less than some value (the GVT value) must be deleted
from the TWPES.

Thus, we assume three basic operations on the TWPES:
enqueue, dequeue and fossil collection. The semantics of the
enqueue and dequeue operations includes the possibility of

rollback, as described above. The enqueue operation also
differentiates between positive messages and antimessages.

The experimental studies described later in this paper

deviate from the above general model in two respects. We
assume a shared memory implementation of Time Warp such
that anti-messages can be implemented as pointers to the
corresponding positive messages. This scheme, known as
direcc cancellation [4, 17], eliminates the need for searching

the TWPES to locate matching positive and negative pairs of
messages, and substantially improves rollback perform ante.
Direct cancellation assumes that message passing is order

preserving, i.e., messages sent from one LP to another arrive

in the order they were sent. This facilitates the handling of
antimessages, as they always will arrive after the correspon-

ding positive message.

2.1 Linear List Implementation of TWPES

We can view the TWPES as a timestamp ordered sequence
of events divided into a past (processed events) and a future
(unprocessed events) part by an index indicating the last

evaluated event. This index is moved forward by each event
evaluation and backward by rollbacks. This view can be

directly implemented as a doubly linked list. Many, perhaps

most, existing implementations of Time Warp use this
approach. A tag in each event indicates if the message has
been processed, allowing simple detection of rollbacks for
message cancellations. We will refer to this implementation
as the TWPES(linked list).

The aforementioned Time Warp operations are easy to
implement using this structure [4]. Enqueue operations
simply scan the list, inserting the new event in its proper
location. If the .+nqueue vperation results in an annihilation,

the annihilated event is simply removed. For rollbacks, the
events being rolled back are those from the newly inserted

event up to and including and the last evaluated event.
Dequeue operations need only advance the last evaluated
pointer and update the evaluated flag. Fossil collection

deletes the oldest events from the list with timestamps less
than GVT.

This approach has several advantages. It is easy to imple-
ment explaining its popularity in existing Time Warp
systems. The search time for insertions that cause rollback is
short if few events are rolled back, since such searches are

usually performed by scanning from the last evaluated event

backwards. Fossil collection can be performed very
efficiently because the set of fossil collected events can be

removed from the list as a whole, rather than one-by-one, and
the search time is short if there are few processed, un-
committed events remaining in the event list.

The principal drawback with this approach is that the

time to enqueue a new event in the simulated future is
proportional to the number of unprocessed events in the LP,
which can lead to very poor performance if there are many

unprocessed events [9, 14].

2.2 Enhanced Method for Implementing the

TWPES

As noted above, the central drawback with the linear list
implementation is the insertion time for enqueueing new
events in the simulated future. This suggests an enhanced

implementation of the TWPES (see figure 1) that uses a

second faster data structure to hold future events. A message is
transferred from the future part to the linked list part

whenever an event is processed.

Past
\

Immediate Future
Future

Last Evaluated Event

Figure 1. Schematic picture of an enhanced
implementation of the TWPES.

If all future events were maintained in this second data struc-
ture, events would have to be transferred from the linked list

to the future event data structure on each rollback, introducing
certain overheads (discussed later, e.g., see figure 11). An

alternative approach is to leave the rolled back events in the

linear lis~ implying the list may contain both processed and
unprocessed events. We call unprocessed events that reside in
the linear list the immediate future. Empirical data suggests

that rollbacks are typically short [4] and not very frequent
relative to other TWPES operations, implying that the

overhead of somewhat longer searches through the linear list

for enqueue operations accessing the past or immediate future
portions of the list should not be very large. This approach
also reduces the time to dequeue elements during the

reexecution phase after a rollback has been performed, since
the dequeue operation can be performed very rapidly in a

linear list (one need only advance the “last evaluated
message” pointer). This will tend to accelerate the recomputa-
tion phase of rolled back LPs, potentially reducing the proba-

bility of creating stragglers, and thereby reducing the number
of rollbacks. Thus, we adopt the approach that rolled back
events remain in the linear list, unless stated otherwise.

This approach resembles, to some extent, the way in
which one might manage an appointment calendar. Appoint-
ments for the immediate future, e.g., the day’s activities, are a
reasonably small set compared to the set of appointments for
the next month, and might be stored in a separate list with

different characteristics than events scheduled much forther
into the future.

A similar technique used in the SPEEDES environment is
briefly described in [16]. This approach uses one ordered list

(called primary list) and an unordered list (called secondary

102

list). The secondary list is sorted and merged in its entirety
with the primary list on demand. This approach relies on
newly sheduled events to fall into the unordered list, which is

the case in the SPEEDES environment. We will refer to this

method for implementing the TWPES as SpeedesPES.
An alternative approach to implementing event annihila-

tion in the future part of the TWPES is to mark the canceled

event invalid rather than explicitly removing it tlom the data
structure. Invrdidation marking requires no knowledge of the
internal representation of the data structure used to implement

the future part. Invalid messages are ignored when they are
dequeued from the future part, and thus this technique requires
some additional dequeue operations compared to deleting the

event from the TWPES immediately when cancellation
occurs. Invrdidation marking may also increase the amount of
memory that is required to execute the simulation as cancelled
events cannot be immediately removed.

A variety of candidates for implementing the future part of

the TWPES exist, e.g., see [2, 3, 8, 9, 10, 12, 13, 14, 15].

Here, we examine the implicit binary heap[9], the skew heap
[10, 15], an improved skew heap (described below), the lazy

queue [13] and the calendar queue [3]. These implementations

except the improved skew heap use a cancellation scheme
with invalidation marking. We will refer to these implemen-

tations as eTWPES(X), where X is the name of the data
structure used to implement the future part. For example,
eTWPES (imp skew heap) refers to a TWPES using the im-

proved skew heap to implement the future part. A brief review
of these data structures is presented next.

3. Data Structures for Implementing the Future

Part of TWPES

For the sake of completeness, the non-trivial data struc-

tures used to implement the future part are briefly reviewed in
this section. We assume that the reader is already familiar

with the implicit binary heap [9].

The lazy queue [13] is a multi-list oriented data structure.
The basic idea is to divide the elements into several parts, and
only keep a small portion of the elements completely sorted.

To assure good memory utilization, a set of resize operations
have been introduced. The resize operations are expensive,
but are amortized over the other, relatively inexpensive,

operations. It has a fast 0(1) average access time for queue
sizes of more than some thousand events and for most

priority distributions. The worst case execution time for

insertions into the data structure is O(log(N)).
The calendar queue presented by Brown [3] is also a multi-

list based data structure. It uses an elegant technique to solve

the overflow problem. It does not have any dedicated
overflow structure. All elements, including those that would

otherwise fall into an overflow structure are inserted into the
sub-lists. It has a fast 0(1) average access time for most queue
sizes given that all elements in the queue have similar

priority distribution and the distribution does not change
drastically unless the number of elements also changes by at
least a factor 2. The worst case behavior is O(N).

The skew heap [10, 15] is an ordered binary tree where
any descendant of a node has lower priority than the node
itself. The central operation in the skew heap is referred to as
a meld operation. A meld operation merges two skew heaps

into one, preserving the heap property. Thus a dequeue
operation is performed by removing the topmost (root) node
and melding the two resulting sub heaps. An enqueue
operation is performed as a meld of a one node skew heap and
the existing skew heap. It has an O(log(N)) execution time.

3.1 An Improved Skew Heap

The improved skew heap relies on the same data structure
as the ordina~ skew heap. It extends the semantics of the
skew heap by allowing arbitrary elements to be deleted from
the queue to implement event annihilation. This is accom-

plished by the introduction of an upward pointer from each
node to its parent. This pointer has to be updated in the meld

operation. An arbitrary element in the improved skew heap

that is accessible via a pointer could be dequeued by melding
the two descendant sub heaps of this node and linking them
into the heap via the upward pointer.

Deletions can, on average, be performed in constant time,
assuming each node is equrdly likely to be deleted. The time
required to meld the subheaps is proportional to the number

of levels of descendants of the deleted node. In a balanced
heap, half of the nodes have no descendants, 1/4 have one

level of descendants, 1/8 have two levels, etc. This

summation asymptotically approaches 1 for large N.

This extension is useful in Time Warp because it allows

direct unblinking and garbage collection of annihilated

events. This ability also allows this queue to be uesd as a
scheduling queue for the LPs executing on a single processor.

4 Performance Measurements

Two sets of experiments were performed. The frost set of
experiments measure the performance of a single TWPES in
isolation, driven by sequences of stochastically generated
enqueue and dequeue operations, These experiments were con-

ducted on a single processor of a Sequent Symmetryl S81

[18]. This approach gives full control over various para-
meters, e.g., the frequency and length of rollbacks, and

antimessage arrivals, that might otherwise be difficult to

control. A second, more restricted, set of experiments mea-
sured the performance of an operationrd Time Warp system

executing on a Kendall Square Research KSR12 multipro-
cessor. The latter set of experiments demonstrate the impact
of the TWPES data structure on the overall performance of an

operational Time Warp system. As we shall see, the TWPES
data structure can have a very substantial impact on Time
Warp performance that far outweighs the improved access

time of the individual TWPES operations.

4.1 Methodology for Evaluating a Single

TWPES

The access pattern used in this study captures a steady-

state behavior where the average number of unprocessed

events remains constant. We will refer to the average number
of unprocessed events as the queue size. The accesses on the
queue were then performed as an interleaved sequence of
dequeue and enqueue operations. In these experiments, the
number of dequeue operations performed was 5 times the queue
size. The number of enqueue operations performed was

slightly lower because of the restriction that the queue size

should be kept constant. Experiments were performed for
small (100-500) and large (1000-5000) queue sizes. Three

parameters were chosen to simulate the specific workload on

1Symmetry is a trade mark of the Sequent Computer
Systems, Inc.

2KSR1 is a trade mark of the Kendall Square Research
Corporation.

103

the queue due to rollbacks. The values of these parameters

were determined from experimentally observed values in
earlier experiments with a real Time Warp implementation
[4]. The three parameters selected were: (1) the rollback ratio,

i.e., the number of operations resulting in rollbacks divided
by the total number of operations, was varied from O to 10%;

(2) the average rollback length, was varied from 1 to 15
messages; and (3) the ratio of antimessages to stragglers
(jositive messages arriving in the past) was varied from 1/1
to 2/1. The ratio of antimessages to stragglers had little

impact on the experimental results. Thus this parameter was
not varied over a wide range of values in order to economize

on the total number of experiments performed.
The priorities (timestamps) of new events were calculated

by adding an increment generated by a priority distribution to

the value of the most recently dequeued event. A series of
experiments were performed with a set of different priority
distributions: rectangular, triangular, negative triangular and

exponential distributions. The experiments showed that the

behavior of the queues are only marginally dependent on the
distribution used. This is in accordance with earlier results [9,

13, 14]. Hence only experimental results obtained with
exponential and triangular distributions are shown. Most of
the experimental results presented are the mean queue access
times of a series of 50 different experiments for each queue

size, conducted with the parameters varied as follows:
(1) Rollback frequency is varied from O% to 10% with an

average os 2.5%. (2) Rollback length is varied from 1 to 15

messages with an average of 5.1 messages. The ratio of

antimessages and stragglers ia varied from 1/1 to 2/1 with a
ratio of 3/2. (4) The efficncy (number of events that are

committed, i.e., not rolled back, divided by the total number
of events executed) was varied from O to 100% with an

average of 87~0. These results, referred to as “mean results”,
give a realistic picture of how the queue implementations
would perform when used in real simulations.

4.2 Performance of the Sequential TWPES
Implementations

In the first experiments (see figures 2 and 3), the queues

were tested for small and large queue sizes, respectively. For

the smaller queue sizes, the access time of the eTWPES(lazy

queue) is dominated by the relatively high cost for the resize
operations of the lazy queue. This excludes the eTWPES(lazy
queue) from being a good general choice. In fact we can

expect that queue sizes encountered in real simulations may
be fairly small in many instances as the PES is distributed
among the LPs. The access times of the TWPES(linked list)

implementation increases rapidly with the queue size to
levels that are unacceptable. The SpeedesPES implementation
behaves as the TWPES(linked list). This is due to a

significant amount of the newly generated events falling into
the sorted list. The eTWPES(binary heap) has consistently

worse performance than the implementations using the skew
heaps. The eTWPES(calendar queue) shows the best all-round
performance in these experiments. The calendar queue may

suffer from adapting itself to changes in the priority
distribution when only minor changes in the queue size occur,
however [13, 14]. The implementations based on the skew
heaps, the eTWPES(skew heap) and the eTWPES(imp skew
heap) also provide short access times for the smaller queue

sizes and have O(log(n)) behavior regardless of the
distribution used. For the skew heap there also exist efficient

parallel access implementations [10, 14] which could serve
as a basis for an efficient parallel implementation of the

TWPES. The performance penalty for allowing arbitrary
dequeues in the improved skew heap is fairly small compared

to the skew heap. The possibility of improved memory usage
and management makes the eTWPES(imp skew heap) a good
choice for TWPES implementations.

Figures 4 and 5 show the times for different operations on

the eTWPES(imp skew heap) and the eTWPES(calendar queue).
As expected, the cost for enqueueing a message that results in
a rollback are similar for these two queues, as these

operations only will access the linked list. It is interesting to

notice that this time is short, approximately 105 ps. This is

important as a fast rollback mechanism is vital to the
efficiency of the Time Warp mechanism [4,11]. Fast roll-

backs will reduce the average rollback length, which in turn

is likely to reduce the number of rollbacks, resulting in better
performance. The time to enqueue an antimessage is a little

higher in the eTWPES(imp Skew Heap) than in the

eTWPES (Calendar Queue). This is because the former uses
direct unlinking of the message while the latter uses invali-

dation marking. The time to enqueue antimessages, or in

other words, dequeue arbitrary elements, is however, close to
constant also in the eTWPES(imp skew heap) case, as was

pointed out earlier.
Another interesting observation is that the access times

of the queues in general decreased as the number of rollbacks

and the rollback length increase. This phenomenon occurs
for all the queue sizes tested, An example of this phenomenon
for the eTWPES(skew heap) is found in figure 6. This is a

result of that an increasing number of dequeues only have to

access the already sorted part of the linked list in the
immediate future where the rolled back elements are found.

The average dequeue time was in some experiments reduced by
Up to nearly 60Y0.

In figure 7 a comparison is made of the access times of

the eTWPES(imp skew heap) and the eTWPES(calendar queue)
to the access times of the ordinary skew heap and calendar
queue implementations for sequential simulations. From

these experiments one can see that the overhead introduced

with the additional functionality of the eTWPES
implementations is not very large.

Figure 8 shows a comparison of two implementations of

the eTWPES(skew heap). In the implementation called
etwpes(skew heap) elements subject to rollback are lifted out

of the linked list and transferred back into the skew heap

implementing the future rather than being left in the linked
list as in the eTWPES(skew heap). This strategy does not
benefit from the fact that the elements that have once been
processed are almost completely ordered (except for the

occurrence of stragglers). The difference in access times
increases with the rollback frequency and rollback length.

4.3 Parallel Performance in Time Warp:

Symmetric Workloads

While the preceding experiments characterize the

behavior of the TWPES data structure for different distri-
butions of enqueue and dequeue operations, they do not
indicate how the data structure affects the behavior of the
Time Warp mechanism itself. To evaluate this question, we

ran experiments using a Time Warp system executing on a
Kendall Square Research KSR1 multiprocessor were con-
ducted. Distinct versions of the Time Warp kernel were

created that use (1) a linear linked list for the future events,
and (2) a calendw queue. The data structure for processed
events is still a linear linked list with one such list for each

104

LP. In the calendar queue version taking the constant time

access advantage, each processor has a single calendar queue
to hold all unprocessed events for the LPs mapped to that

processor. The kernel includes an implementation of

Jefferson’s cancelback protocol which allows it to execute
simulation programs to completion using no more memory

than that required by the sequential execution [7].

Annihilation is accomplished by direct unlinking the
event message and returning it to the free pool of memory,

even if it is present in the calendar queue (i.e., invalidation

marking is not used). This reduces memory usage and is
necessary for correct operation of the cancelback protocol.

C)ne set of experiments for a specific instance of the

homogeneous PHOLD workload described in [4] was run on 8
processors. In this workload a constant number of messages

(called the message population) circulate among the LPs. The
timestamp increments are taken from an exponential distri-

bution and messages are equally likely to be forwarded to any
other process. There is one LP per processor in these experi-
ments. The computation per event is selected from an expo-

nential distribution with mean of one millisecond. The
message population is varied and the event rate (committed
events/see), efficiency (number of events committed divided
by the number of events processed) were measured, as shown

in flgores 9 and 10. From these figures it can be seen that the
calendar queue implementation is considerably faster for high
message densities, where message density is defined as the

message population divided by the number of processors,

though it is only slightly slower in small message densities.
As expected, the difference in performance increases as the

message density (which determines the number of un-
processed events in the TWPES) is increased.

The difference in speed for higher message densities is
largely due to lower message insertion costs in the calendar

queue. Improved efficiency also contributes to the perfor-
mance differential to some extent. We believe that the effi-
ciency is affected by the event set data structure because for a

linear linked list, slow processes (in virtual time) tend to be

delayed because they must fxst insert received messages into
their event lists. This delays their generation of potential

straggler messages. At the same time, faster (in virtual time)
processors tend to have fewer unprocessed events, so they
can progress more rapidly in simulated time. They will thus

be forced to roll back further than they would, had the
progress of slow processes not been impeded by costly event
list searches. For the calendar queue, the search time is

reduced so the variance of local virtual times (LVTS) of
different processors is also reduced, leading to higher

efficiency. This is an interesting beneficial effect which
supplements the improved search time of using calendar queue
compared to linear linked lists.

4.4 Parallel Performance: Asymmetric

Workloads

In the PHOLD workload, the number of unprocessed
messages is always constant and is equal to the chosen

message population. Thus the size of the pending event set
data structure does not become uncontrollably large. In our
second set of experiments, we have chosen a particular

heterogeneous workload, called the Arbitrary Flow Network
Model, where the number of pending events can grow without
bound and there is a possibility of very long rollbacks. This
provides an interesting stress case for evaluating the efficacy
of the event set data structure.

In this model, there is a source node that generates

events and sends them to a network of nodes, a sink nodes

that receives events from the network, and application nodes

that model the actual network being simulated. Each node is

modeled by an LP. The application nodes communicate by
sending timestamped messages of two types: propagating
and non-propagating. Processing a propagating message

results in one or more additional messages to be sent by the
LP. Messages are sent to other LPs based on a user-specified
communication probability matrix. Non-propag sting
messages are intended to model data transfers which do not
result in additional communication. If new messages are

generated, only one will be propagating and the rest non-
propagating. When a propagating message is processed, the
timestamp increment is computed based on a probability

distribution specified by the user. In addition, the granularity

of each event is computed based on another user-specified
probability distribution. The number of source, sink and
application nodes, the communication probability matrix,

and the timestamp increment and granularity distribution for
each node are parameters in the model. The same model was
used in [11] for evaluating the performance of probabilistic

synchronization scheme in conjunction with Time Warp.
In the chosen instance of the model, there are one source,

one sink, and eight application nodes. The granularity of all
processes is normally distributed with mean 1.5ms per event.
Of the eight application nodes six are fast and the rest are

slow. The fast nodes have a very large timestamp increment

compared to the slow nodes. The timestamp increments are
exponentially distributed. A fast or slow node has a 0.2

probability of communicating with its own group and a 0.6

probability of communicating with the other group.
The number of unprocessed messages in the system

continuously grows with the progress of the simulation
because of the existence of the unthrottled source LP which
continues to generate messages for other LPs, and never rolls

back. As our Time Warp system can only provide a finite
amount of memory for the simulation, the cancelback

protocol needs to be invoked for memory management when-

ever the system runs out of memory. Cancelback automati-

cally reclaims memory by undoing some computation with
high timestamp thus making room for the lower timestamped

computations to progress. We can vary the events set sizes

on different LPs by simply varying the amount of memory
(measured in terms of the number of event buffers) available
for the simulation.

Figure 11 shows the event rate vs. amount of memory in
the system for this workload. It is seen that for small memory
the performance of Time Warp using each of the two data

structures are similar. However, as the amount of memory
increases, the behavior of the two simulators diverge

sharply. Performance of the calendar queue implementation

increases with increasing memory, while that for the linear

list declines. The difference is very large, over an order of
magnitude, for large memory. The reason is as follows. With

the calendar queue, the search time does not increase

appreciably with the size of the event set, so in these
experiments, the simulation can complete without invoking
cancelback very many times except when the amount of
available memory is really small. However, with the linear

list, the search time becomes significant, and slows down
those application nodes containing the largest event sets,
i.e., those closest to GVT. This, in torn, causes these LPs to
lag behind even further, causing the LPs with short event

lists that are already ahead of the others to race ahead even
further. This runaway effect continues until the number of

105

uncommitted events in the system becomes so large that the
simulation runs out of memory. This is an extreme form of
the behavior observed in the symmetric workload. When this

occurs, fossil collection and cancel back are invoked very
frequently. Because these operations incur a significant over-
head, overrdl performance is severely degraded. Thus speed of

execution with the linear list data structure actually decreases
with increasing memory, where the calendar queue version

remains stable with performance gracefully increasing with

increased memory, and then stabilizing. This demonstrates
an important “secondary effect” associated with using an
inefficient data structure to implement the input queue which

has consequences that far outweigh the performance degrada-

tion associated with increased search time alone.

5 Conclusions

In this paper we have presented a method for imple-
menting the pending event set in Time Warp simulations.
The method is based on a combination of a linear linked list

and another faster data structure. It provides a means of

achieving high efficiency for all types of operations on the

pending event set including rollbacks and fossil collection.

An improved implementation of a skew heap is also
presented. This implementation allows dequeueing of arbi-
trary elements in a skew heap to a low additional cost. This
allows for efficient implementations of the PES and ready

queues where frequent cancellation or rescheduling occur. In
particular it may help improving memory usage.

Our experimental results indicate that for large event set

sizes faster implementations of the pending event set may

decrease the number of rollbacks performed. Also, it was
found that an inefficient implementation of the event list

could lead to “runaway” processes, and extremely poor

performance due to large search times and increased memory
usage. Thus we expect that this method could provide a useful

tool to improve efficiency of Time Warp simulators.

References

[1]

[2]

[3]

[4]

[5]

[6]

Ayani, R. “Performance of priority-queue implemen-
tations on shared memory multiprocessor computer
systems”, Tech. Rep. TRITA-CS-8705, Dept. of Tele-

communication and Computer Systems, The Royal Inst.
of Technology, Stockholm, 1987.

Ayani, R. “LR-algorithm: Concurrent Operations on

Priority Queues”, Proc. of the second IEEE Symposium
on Parallel and Distributed Systems, Dallas, Texas,

December 1990.
Brown, R. “Calendar queues: A fast 0(1) priori!y queue
implementation for the simulation event set problem”,

Comm. ACM Vol. 31, No. 10, pp. 1220-1227, Oct.
1988.
Fujimoto, R. “Time Warp on a Shared Memeory
Multiprocessor”, Transactions of the Society for
Computer Simulation, Vol. 6, No. 3, pp. 211-239, July
1989.
Fujimoto, R. “Parallel Discrete Event Simulation”,

Comm. ACM Vol. 33, No. 10, pp. 31-53, Oct. 1990.
Jefferson, D. “VirtuaJ Time”, ACM trans. on
Programming Languages and Systems Vol. 7, No. 3,

pp. 404-425, Jul. 1985.

/J

8]

Jefferson, D. “Virtual Time II Storage Management in

Distributed Simulation,” Proc. of the Ninth Annual
ACM Symposium on Principles of Distributed
Computing, pp. 75-89, August 1990.
Bisws J and Browne J. C., “ Simultaneous update of

Priority Structures”, Proc. of the 1987 Int. Conf. on

Parallel Processing, DU 17-21, Awz. 1987.
[9]

[10]

[11]

[12]

13]

14]

15]

16]

-.. .
Jones, D.W. “An empirical comp~ison of priority-
queue and event-set implementations”, Comm. ACM

Vol. 29, No. 4, pp. 300-311, Apr. 1986.

Jones, D.W. “Concurrent Operations on Priority
Queues”, Comm. ACM Vol. 32, No. 1, pp. 132-137,

Jan. 1989.
Madisetti, V., Hardaker, D., and Fujimoto, R. M., “The
MJMDIX Operating System for Parallel Simulation”,

Proceedings of the 6th Workshop on Parallel and

Distributed Simulation”, Vol. 24, No. 3, pp. 65-74,
Jan. 1992.

Rao V. N. and V. Kumar, “Concurrent Access of Priority

Queues”, IEEE trans. on Computers Vol. 37, No. 12, pp
1657-1665, Dec. 1988.

Ronngren R, Riboe J. and Ayani R. “Lazy Queue A new

approach to implementing the Pending-event Set”, To
appear in the International Journal in Computer
Simulation.

Ronngren R, Riboe J. and Ayani R. “Fast Implemen-
tations of the Pending Event Set”, Proceedings of the

International Workshop on Modeling, Analysis and
Simulation of Computer and Telecommunication
Systems, Vol. 2, No, 1, pp 210-215, Jan. 1993.

Sleator D. D. and Trsrjan R. E., “Self-Adjusting Binary
Search Trees”, Journal of the ACM Vol. 32, No. 3, pp.
652-686, Jul. 1985.

Steinmann J. S., “SPEEDES: A Unified approach to
Parallel Simulation”, Proceedings of the 6th Workshop
on Parallel and Distributed Simulation”, Vol. 24, No. 3,

pp. 75-84, Jan. 1992.
[17] Overgaard G. “A Model of the Time Warp Mechanism

for Implementation on a Multiprocessor with Shared

Memory”, Tech. Rep. TRlTA-TCS-8902, Dept. of Tele-

communication and Computer Systems, The Royal Inst.
of Technology, Stockholm, 1989.

[18] “Guide to Parallel Programming on Sequent Computer

Systems”, Prentice-Hall, ISBN 0-13-370446-7, 1989.

Acknowledgements

The work of Ronngren and Ayani is supported by a distributed
simulation project financed by the Swedish National Board

for Technical Development (STU). The work of Fujimoto and
Das is supported by Innovative Science and Technology
contract number DASG60-90-C-0147 provided by the

Strategic Defence Initiative Office and managed through the
Strategic Defense Command Advanced Technology
Directorate Processing Division, and by NSF grant number
CCR-8902362.

106

Mean access time ps

700 I
-m-

600- -

+
500- -

400-

300-

200

100
I

Linked list & BinaryHeap
Linked list & SkewHeap

Linked list & extSkewHeap
Linked list & CalendarQ

Linked list &Lazy Q
Linked list

Speede!sms

o~
o 100 200 300 400 500

Queue sue

Figure 2. Mean access time for small queue sizes in “mean

experiments”

Time US

300

200

100

0

Figure

--B- Enqueue
+ Dequeue

~ Accessmean
+ Straggler
+ Antimsg
- Rollback

o 1000 2000 3000 4000 5000
Queue size

4. Times for queue operations in “mean experiments”
for the eTWPES(imp Skew Heap).

Mean access time ps

300 ~

200

100
0 0

+ eTWPES(BinaryHeap)
+ eTWPES(SkewHeap)
+ elWPES(imp SkewHeap)
+ eTWPES(CalendarQ)

+ .TWPES(LazyQueue)

o~
o 1000 2000 3000 4000 5000

Queue size

Figure 3. Mean access time for large queue sizes in “mean

experiments”.

Time ps

200

150

100

50

+ Enqueue
+ Dequene

+ Accessmean
* Stmggler

+ Antimag

ii===!=

o~
o 1000 2000 3000 4000 5000

Queue size

Figure 5. Times for queue operations in “mean experiments”
for the eTWPES(Calendar Queue).

107

Mean access time ps

;:: ~

:: -

“ * 5% rollback + 30% rollbacks

25- w ICI% rollback + 40% r.llbadw

. ~ 2G%rollbacks ~ 60% rdlb,tk,

o 1 1 I I
0246810

Rollback length

Figure 6. Mean access time of eTWPES(Skew Heap) for a
fixed queue size 500 and exponential distribution as a
function of rollback length and frequency.

Mean access time ps

150

IT

.. .

100

1“50 ~ etwpes(Skew Heap)
~ elWPES(Skew Heap)

0246810
Rollback length

Figure 8. A comparison of mean access time of
eTWPES(Skew Heap) and etwpes(Skew Heap) for rollback

ratiO 7~o.

Et%ciency %

75 “

1
50-

25- = Calendar Queue
~ Linked list

o~
o 100 200 300 400 500

Message Density

F@re 10. Et%ciency in Time Warp for PHOLD experiment
with linked list and Calendar Queue implementation of the
pending event set.

Mean access time ps

5-

r“”ua100 .~.

50 + eTwpWQlendar + w. H~
+ Calm&r CkIeJ3
+ .TWPES(Sk&w Heap)

o 2500 5000

Queue size

Figure 7. A comparison of mean access time of

eTWPES(Skew Heap) and eTWPES(Calendar Queue) vs
ordinary implementations of the Skew Heap and the Calendar
Queue

Event rate (committed events /s)

6000 ~

‘:=
o 100 200 300 400 500

Message Density

Figure 9. Event rates (committed events/s) in Time Warp for
PHOLD experiment for linked list and calendar queue
implementation of the pending event set.

Event rate (committed events /s)

3000

2000

1000

0

J Linked list

~ Calendar Queue

I

o 10000 20000
Available Memory

Figure 11. Event rates (committed events/s) in Time Warp for
the asymmetric workload with linked list and Calendar Queue
implementation of the pending event set.

108

