
THE LOCAL TIME WARP APPROACH TO PARALLEL SIMULATION

Hassan Rajaei, Rassul Aya.ni, and Lars-Erik Thorelli

Royal Institute of Technology

Department of Teleinformatics

Electrmn 204, S-16440 Xista, Stockholm, Sweden

E-mail: {rajaei, rassul, le} @it,kth.se

The two main approaches to parallel discrete event
simulation – conservative and optimistic - are likely to
encounter some limitations when the size and complexity of the

simulation system increases. For such large scale simulations,

the conservative approach appears to be limited by blocking
overhead and sensitivity to lookahead, whereas the optimistic
approach may become prone to cascading rollbacks, state saving

overhead, and demands for larger memory space. These

drawbacks restrict the synchronization schemes based on each of

the two approaches from scaling up. A combined approach may

resolve these limitations, while preserving and utilizing
potential advantages of each method. However, the schemes

proposed so far integrate the two views at the same level, i.e.
local to a logical process, and hence may not be able to fully

solve the problems. In this paper we propose the Local Time
Warp method for parallel discrete-event simulation and present a
novel synchronization scheme for it called HCTW. The new
scheme hierarchically combines a Conservative Time Window

algorithm with Time Warp and aims at reducing cascade
rollbacks, sensitivity to lookahead, and the scalability

problems. Local Time Warp is believed to be suitable for parallel

machines equipped with thousands of processors and thus an

appropriate candidate for simulation of large and complex

systems.

1. INTRODUCTION

Parallel Discrete Event Simulation (PDES) is in general
synchronized by one of the two approaches known as
conservative and optimistic respectively (Fujimoto 1990b).
Performance studies (e.g. Fujimoto 1988; Fujimoto 1990a;

Lubachevsky et al 1991; Reynolds et al 1989) show that both of

the approaches are susceptible to some limitations. These

studies indicate that the conservative method endures when the

application exhibits poor lookahead in such case it may perform
worse than sequential simulation. Accordingly, the optimistic

approach becomes exposed to state saving and processing

overhead especially when the application imposes excessive
rollbacks to the simulation system. In particular when the
problem size and the number of processors become large, the

risk for explosive cascading rollbacks increases. This situations

occurs mainly by processes that rapidly advance far in future
virtual time. Cascading rollbacks dramatically deteriorate
performance and prohibit the simulation to scale. Moreover, the
system may become unstable and need an excessive amount of
memory for saving the state variables (Fujimoto 1990, Jefferson
1990; Lubachevsky 1990). To overcome this problem and let the

system run on the available memory, Jefferson (1990) strongly
recommends incorporating the cancelback protocol in the

optimistic scheme. However, the performance degrades
considerably when limited memory is available. The
synchronization and blocking overhead of the conservative

schemes also limit scalability. Furthermore, conservative

methods provide only static configuration and thus may not
support applications which exploit dynamic structures. Despite

these problems, there are interesting advantages for both
approaches.

The optimistic approach has the ability of exploiting
maximum parallelism, not being sensitive to lookahead, and

supporting dynamic structures. The conservative methods

generally require less memory and are considered to be able to

more efficiently produce deterministic simulation results.
Consequently, several attempts have been made to combine the

two methods in order to provide more efficient parallel
simulation schemes (Arvind and Smart 1992; Davis and

Ramachandran 1992, Lubachevsky et al 1989, McAffer 1990,
Mehl 1991; Parakash and Subramanian 1992; Turner and Xu
1992). The majority of these schemes add optimism to a
conservative algorithm such that rollback for a logical process
(LP) is limited either locally to the LP or by an upper-bound that

restricts advancement of local virtual time of the LP.

Furthermore, all these approaches combine the two views at the
same level of LPs and thus they carry to some extent the

problems associated with both views. Most notable is the

scalability problem which seems to remain unsolved for the

existing combined methods (Lubachevsky 1990). Our method

specifically aims at addressing this issue and in contrast to the

other schemes it hierarchically combines the two
synchronization views.

In this paper we propose the Local Time Warp (LTW)

approach to parallel simulation and present a novel
synchronization scheme for it called HCTW. The scheme

hierarchically combines the Conservative Time Windows

algorithm (CTW) (Ayani and Rajaei 1992) and Time Warp
(Jefferson 1985). The simulated system consists of a number of

subsystems each of which comprises numerous components.

Each subsystem is considered as a cluster and its components as
logical processes. At the lower level, Tne Warp is used locally
for LPs of the clusters in order to exploit parallelism and

maintain flexibility. To control cascade rollbacks CTW is used at
the higher level. This layered synchronization method preserves

the flexibility of the conventional Tme Warp - which is referred

to Global Time Warp (GTW) in this paper – while preventing the
unwanted cascading rollbacks.

The rest of this paper is organized as follows: Section 2
describes the related work and gives an overview of the current
hybrid techniques. In section 3 we present the Local Tme Warp

model and in Section 4 its synchronization scheme, HCTW.
Section 5 discusses dynamic configuration. Section 6 gives

119

http://crossmark.crossref.org/dialog/?doi=10.1145%2F158459.158474&domain=pdf&date_stamp=1993-07-01

some concluding remarks and issues which need further

investigation.

2. RELATED WORK

Clustering LPs has been supported by some parallel

simulation languages such as Sire++ (Baezner et al 1990) and

Maisie(Bagrodia and Liao 1990) .However, these languages use

clustering techniques mainly as a tool for assigning LPs to
specitic processors and allowing the LPs of a cluster to share
some variables. Both intra- and intercluster synchronization are

achieved by a single protocol. In contrast, our scheme
differentiates between the two such that intracluster activities are

synchronized optimistically whereas the intercluster

synchronization is done conservatively. Furthermore,
intrachrster activities can be simulated in parallel both with

respect to the cluster and to intercluster activities. In the rest of

this section we focus on hybrid synchronization schemes and
give an overview of techniques applied by the hybrid protocols

proposed so far.

The issue of integrating the two approaches of PDES,
although not new, has received more attention in recent years
since the limitations of both methods have been more explored.
The blocking problem and the sensitivity to lookahead in the
conservative protocols, and cascading rollback and state saving

problems in the optimistic schemes are the key limitation
factors for the respective approaches. Therefore, an intelligent
combination of the conservative and the optimistic approaches

may be more powerful than either type in pure form

(Lubachevsky et al 1991). One solution is to regulate somehow
the degree of risk and agg restiveness, in Reynolds’ (1988)

terminology, of a protocol. If the degrees of aggressiveness and

risk for a logical process LPi are denoted respectively by Ai and

Ri then by regulating O S Ai < co and O S Ri S 00 a conservative,

optimistic, or hybrid scheme can be obtained. There are three

general methods for integrating the two synchronization
approaches: (1) adding optimism into a conservative protocol,

(2) limiting optimism, (3) switching seamlessly between
optimistic and conservative schemes.

2.1 Adding Optimism into Conservative Protocols

To avoid blocking, a conservative protocol may use
speculative computation such that whenever an LP is to be

blocked, it optimistically simulates the first event from its

event-list. Two possibilities exists: (1) The degree of

aggressiveness is unbounded but tie degree of risk is set to zero.
(2) The degree of risk is relaxed from zero but the degree of
aggressiveness is bounded to a certain limit which implicitly
implies a bound on the degree of risk. In the fwst case the hybrid
protocol is still conservative and the result of speculative

computation is kept locally until it is certain that no other event
witl preempt it. If an error is detected while the results are kept, a

local rollback will restore the correct order. This approach is
adapted in SRADS with local rollback (Dickens and Reynolds
1990), Speculative Simulation (Mehl 1991), and Breathing Tne

Buckets (Steinman 1992). In the second case the hybrid protocol

approaches an optimistic one from a conservative direction. The
result is sent out but when an error is detected a limited number of
rollbacks will restore the correct order. Filtered Rollback

(Lubachevsky et al 1989) falls into this category. It is a
combination of Tme Warp and the bounded lag algorithm such

that the upper-bound of the lag, i.e. the lower bound after which

causality error may occur, is relaxed to a certain value which is

pre-defined and determined by the user. Lubachevsky et al (1989)
theoretically proved that filtered rollback under certain

assumptions is scalable. However, Lubachevsky (1990, pp 195)
suggests avoiding Time Warp for certain applications since

“Check-pointing rollback with global recovery is
asymptotically non-scalable. This means that the time to

simulate a larger system on a proportionally larger parallel

processor grows asymptotically very quickly”.
The main disadvantage of adding optimism into conservative

protocols at the LP level is that the modified schemes still
cannot support dynamic configurations which frequently is
needed in simulation of large and complex systems. The
scalability of this approach remains questionable. The local

rollback method (Dickens and Reynolds 1990, Mehl 1991),
although resolving blocking by using speculative computation,

may not exploit potential parallelism since the results are kept
by each LP until becoming secured. This is improved by
Breathing Time Buckets (Steinman 1992) to a group of LPs

residing in one node.

2.2 Limiting Optimism

In the previous section a conservative protocol approached
an optimistic one through relaxing the degree of aggressiveness
from zero. From the other direction, an optimistic scheme can be

made less optimistic and approach conservative protocols if the

degree of risk is bounded (from infinite) to a certain ceiling.

To reduce cascade rollbacks, rollback distance, and state

saving overhead of the optimistic protocols, it is possible to
prevent the local virtual time of LPs from advancing into the far

future. In Wolf (Madisetti et al 1988), whenever a rollback

occurs, special messages are broadcasted in order to quickly stop

the erroneous computation. Moving Tme Window (MTW)
(Sokol et al 1988) uses a window boundary to limit the

optimistic computation such that a window with pre-defined size
is pulled through the virtual time. Bounded Tme Warp (BTW)
(Turner and Xu 1992) divides the simulation duration time into a

number of equally sized intervals. BTW to some extent is similar
to MTW but instead of pulling the windows concurrently with the

event processing, all events inside the current interval are

simulated before the next interval is started. In MIMDIX
(Madisetti et al 1992) additional processes called Genie

processes are used at regular intervals to probabilistically

determine whether to desynchronize the LPs in order to slow
down the progress rate of their virtual time advancement. If it is

decided to do so, then a SYNC message with a timestamp slightly

greater than the Global Virtual Time (GVT) is broadcast to all LPs
to force them to rollback to the SYNC time. All events with

timestarnp greater than SYNC are deleted. Some messages are

undone to enable restarting of the computation. Unified
Distributed Simulation,UDS, (McAffer 1990) uses the degrees of
aggressiveness and risk and provides a sliding window
mechanism for both sending and receiving messages. Messages
with timestamps outside the boundaries of the windows are not

sent or received but rather the corresponding LPs are blocked,

resulting in a possible deadlock. Reiher and Jefferson (1989)
propose two throttling methods to limit rollback window-based
throttling and penalty-based throttling. The first method
explicitly prevents events from executing in the far future. The
second method identifies objects whose work has to be more

frequently undone and lets them be executed less often. The
experimental data presented in (Reiher and Jefferson 1989)

120

indicates that throttling methods may not show significant

improvement in performance.

The primary drawback of limiting optimism at the LP level is
to find an appropriate boundary to significantly improve

performance. For large scale simulation, it would be a difficult

task to predict a good enough boundary to improve performance
and not degrade it. MIMDIX (Madisetti et al 1992) uses

probabilistically determined intervals for controlling the

progress rate of virtual time. To do so, probabilistic knowledge

about the behaviour of the system under simulation is needed. If
the intervrd for resynchronization becomes short, LPs are more
often forced to synchronize themselves to GVT and hence behave
more conservatively. On the other hand, if the interval becomes

too large then resynchronization may have no significance.

Deleting messages after each SYNC may also become a source of

overhead but it seems to reduce the memory limitation of Time

warp,

2.3 Switching Between Optimism and Conservatism

It would be desirable to dynamically determine the degree of
aggressiveness or risk. In Composite ELSA (Arvind and Smart

1992) a node can switch between conservative and optimistic
mode by providing extra information. The information is used to
determine whether an event is certain or guessed. Both local and

global rollbacks are allowed and there is no notion of GVT. In

Adaptive Time Warp, ATW, (Ball and Hoyt 1990) a tuneable
Blocking Window (BW) is defined such that a processor is

blocked for a BW period whenever it experiences an abnormally

high number of rollbacks. The BW value is periodically updated
during simulation. If BW = O (i.e. no blocking period) then the
scheme turns to pure Time Warp and when BW = .= (i.e. block

until become certain) the scheme turns to a pure conservative
protocol. In CO-OP (Conservative-Optimistic, Steinman 1992)
an LP does not always select the first message of its event-list. If

some condition is not satisfied then the LP is temporarily
blocked waiting for less error-prone messages.

Switching seamlessly between the two approaches is an

attractive method especially when the behaviour of the

application changes dynamically. Nevertheless, this method

requires extra information to be stored, processed, and cross-

examined. This can become costly and degrade performance,
especially when the problem size and the number of processors

increase. The performance of Composite ELSA reported by

Arvind and Smart (1992) confirms this conclusion in that the
performance dramatically degrades when increasing the number

of processors.

3. THE LOCAL TIME WARP MODEL

This paper proposes a new combined method for PDES, Local
Time Warp (LTW), that preserves the dynamic behaviour of the
optimistic approach while limiting cascading rollbacks. The

simulation system is decomposed into a number of subsystems

interacting through messages. Each subsystem is further
decomposed and ita components are modeled as LPs according to

the Virtual Time paradigm (Jefferson 1985). The subsystems
encapsuling LPs are called clusters. It is assumed that each cluster

encapsulates more than one LP. Further, it is also assumed that

the partitioning task is assisted by the user. LPs of a cluster can
directly pass messages to each other. Consequently, the Cluster

Internal Network (CIN) has a dynamic configuration and there is
no need to establish links. In contrast, clusters are

interconnected through links constituting an Inter-Cluster

Network (ICN). Nevertheless, clusters and ICN can be

reconfigured dynamically under simulation (described in Section
5). Figure 1 illustrates the architecture of LTW with its two level

p“mtiti&ed simulation model.

Cluster Intend

Network (CIN)
Cluster 1

~’” “. .,..4.,/ /\ ..— .

Gateway

Processes
:. --

—._

/=
--_+

w ikr-ctuster,,,:.:.., Network(ICN)

cluster 3

Figure 1: Abstract view of the Local Tme Warp model.

For simplicity only one GP per cluster is shown.

Each cluster (Figure 2) has two Gateway Processes (GPs)

which are in charge of communication of timestamped messages

between clusters in non-decreasing timestamp order. Each LP is

uniquely identified throughout the system by an identifier

composed of the address of the cluster in which the LP is residing
and the internal identifier of the LP. Throughout the simulation
system, any LP can send messages to any other LP, assuming the

address of the receiver LP is known. When a message is sent, the
address of the receiving LP is checked to determine whether the
message is internal or external. All external messages of a

cluster are automatically directed to its Output Gateway Process

(OGP) which is in charge of correct message delivery to the
destination cluster. Message are sent to the Input Gateway

Process (IGP) of the receiving cluster to be fiially delivered to

the designated LP. Messages sent to other clusters should

consume non-zero service time at their source LP. Many

applications, including communication networks and computer

systems, satisfy this constraint.
Each cluster has a Cluster Virtual Time (CVT) which

resembles GVT in the Global Time Warp method with the

difference that CVT is local to the cluster. The vktual time of the

two gateway processes of a cluster are called Input Virtual Time
(IVT) and Output Virtual Time (OVT).

Definition 1: Let C be the set of all clusters i in the system
and ni be the number of LPs in cluster i. Then:

Vi= CCVTi=min {JVT’i, min{LvTi,j lj=l,2. -.., ni}} (1)

where LVTi,j is the LQcaJ Virtucd Time of Lpi,j (i.e., Lp n~ber J

in cluster number i).

In the above definition it is assumed that messages of a

cluster are delivered in zero time within the cluster and the
causality effect is immediate. Further, the underlying

communication system will preserve the order of message
sending. As a result, no messages will be in transit (likewise is
assumed in (Jefferson 1990)). This definition can easily be
adapted for the case when the above assumption is not true and
some messages possibly are in transit when CVTi is computed.

121

In this case, a more general algorithm such as those presented in

(Bellenot 1990; Lin and Lazowska 1990) can be applied for
computing CVTi.

Rule 1: For any cluster i, the input virtual time, WTi, is non-

dcxreasing time measure.

Rule 2: The output gateway of a cluster i can send out a message
only when CVT1 becomes greater than or equal to the timestamp

of that message, i.e. the message becomes commitred.

Definition 2: Let CVfi denote the kth (k = O, 1, 2, . . .)

computation of CVTi and tm the time& of message m at OGPi

(lm S C@l). Then the output virtual time of OGPi is defined

as:

(kv’i’i -before computing k+l :th CVTi

I and sending out any message

1
tm

OVTi =
-after computing k+l :th CVTi

and sending out message m

cvlp -after computing k+ 1:th CVTi

L and sending out all committed messages

Corollary 1 (from Definition 1) :

Vi ~c IVTi 2CVTi (2)

Since IVTi is a lower bound on timestamps of incoming

messages to cluster i, this excludes the possibility of arrival of

an input message with time less than cluster virtual time.

Corollary 2 (from Definition 2) : OVTi is non-decreasing.

Lemma 1: Let t(ttt~,j) be the timestamp of a message that is sent

from LPi,j to OGPi. Then

l(mi,j) 2 OVTi (3)
Proofi Follows directly from Definition 2 since no message can

be generated earlier than CVTi. +

Lemma 2: For any cluster i the following relation holds:
~i > ~i > Owi (4)

Proofi CVTi is non-decreasing, thus Definition 2 implies OVTi

S CVT1. The result follows from (2). +

Relation 4 is fundamental to the Local Time Warp model and

dictates to some extent how its synchronization scheme should

be organized.

~

from .

Oiller .

clusters .

Clu9wJ i

Figure 2: Components of cluster i.

4. SYNCHRONIZATION OF LOCAL TIME WARP

Synchronization of Local Time Warp is achieved at two
levels: logical process level and cluster level. At the logical

process level, LPs are synchronized according to the Time Warp
protocol. At the cluster level, relation 4 is enforced by a
conservative algorithm to guarantee that no rollback occurring

in a cluster propagates and triggers chain reactions into another

cluster. This is achieved by not allowing any message ever to
arrive at the input gateway of a cluster with timestamp less than
the time of that gateway. In this section we propose a novel
scheme called HCTW to synchronize the LTW model. The scheme
adapts Time Warp at LP level and uses a modified version of the
CTW algorithm (Ayani and Rajaei 1992) at the cluster level.

4.1 Logical Process Level Synchronization

The logical processes of a cluster simulate their local events

in the same way as the Global Time Warp. The LPs communicate
messages resulting in possible rollbacks. The global virtual

time is replaced by the cluster virtual time and fossil collection
is performed accordingly. All messages for destinations external
to a cluster are automatically passed to its output gateway instead
of being directly sent to their destination LPs. The messages are

kept in the gateway process until CVTi becomes greater than or

equal to their timestamps. Until then, the messages are subject to

possible rollback and hence are not sent out. Consequently,

messages at the output gateway are either safe or unsafe. Safe
messages fall in a time window bounded by OVTi and CVTi

(Figure 3) and cannot be rolled back. Unsafe messages can,

however, be rolled back and in the worst case back to CVTi. The

cluster virtual time is advanced by computing its new value at
regular intervals or according to an alternative scheme, e.g. in

each iteration of the HCTW algorithm. At the input gateway, the

HCTW algorithm identifies a time window over messages sent

from the predecessor clusters. The boundaries of the input

wiodow are respectively the current and new values of the input

virtual time. Messages of the input window are delivered to their
destination logical processes resulting in possible rollbacks.
However, the rollbacks are limited to the cluster and to the lower
bound of CVTi, since any predecessor output gateway should also

send out only safe messages. When the committed messages of
the output gateway are delivered, OVTi is advanced to CVTi.

‘ovTi ‘(w i ‘mi

Figure 3: Operational regions of a cluster: region (a) is
conservative, region (b) is moderate, and region (c) is

optimistic.

In principle, the operational zone of a cluster can be divided into

three regions (Figure 3): conservative, moderate, and optimistic.
In the conservative region, no event is rolled back and hence can
be committed. In the moderate region and no event-message cats
arrive from IGP with a timestamp less than IVTi (according to

Rule 2). Consequently, in this region only a moderate number of

events, activated indirectly or independently of IGP, are risky
and subject to possible rollback. In the optimistic region, the
probability of rollback to occur by new stragglers arriving from
IGP is rather considerable. A few LPs may operate most of their

time in the optimistic region. LTW limits the impact of such LPs

to the cluster they are residing in and thus no other clusters are
affected. Furthermore, it is possible to introduce an optional

ceiling for the optimistic region of each cluster to further limit

rapid progress of local virtual time of the LPs. Although it is

122

possible to integrate the cancelback protocol (Jefferson 1990,
Lin 1992) at this level, we believe this is unnecessary due to the

fact that LTW considerably limits cascaded rollbacks.
Furthermore, because of the far smaller number of LPs in a cluster
than in the global system CVT becomes computationally more

cost effective than the global counterpart, GVT. Therefore, it is
possible to more frequently compute CVT and hence keep the

length of the state queue, i.e. the queue holding saved states of

the LP, under control. Moreover, in the case of local bottleneck
the simple optional ceiling mentioned above can further liit

the local rollback distance, hence avoiding the overhead of the
csncelback protocol.

4.2 Cluster Level Synchronization

The gateway processes of a cluster are controlled by a

modified version of the Conservative Time Window algorithm
called the HCTW algorithm (Figure 4). For each IGPi, the

algorithm identifies an input time window IWi = [Li, Ui] where Li

= current value of IVTi and Ui = next value of IVTi. Messages

inside the window are delivered to their destination. Likewise,

boundaries of the output time window, OWi, will be determined

with the difference that the HCTW algorithm indirectly
determines the upper-bound of the window which is equal to the

new value of CVTi. As a resulg at the beginning (and at the end)

of each HCTW iteration, OVTi becomes equal to CVTi. The

following parameters are defined for the algorithm presented in
Figure 4: Let C be the set of all clusters i in the system, Predi be

the set of all immediate predecessors of IGPI, Suci be the set of ail

immediate successors of OGPi, IWi be the time window for IGPi,

bi be the minimum time distance fmm any LP in cluster i to any

other LP in its immediate successor clusters, and

{-

t(ei) time of the first message in IGPi
~i =

if the input queue is empty

{

t(t?j) time of the first message in OGPi
tJi = OVTi if the output queue is empty

To preserve the conservative constraint for all input

windows IWi, all OGPj ~ e Predi) should send their earliest time

~j to their immediate successors IGPi. Then the upper-bound of

Window IWi is computed as: Ui=min{~j I je Predi}

If UI - Z;< O then IWl = @ (i.e. the window is empty) else IGPi can

send ail event messages in IWi to LPs of the cluster and sets IVT’i

= Ui.

In the algorithm of Figure 4, all statements starting with Vi

~ c and those separated by II (lines 5, 8, and 13) can be executed
in parsdlel whereas a few sequences are sequentialized by barriers

(lines 9 and 15), In the distribution phase both the input and
output gateway processes of a cluster i are assigned to the same

processor to avoid more barriers. The IVT1 clock is advanced to

Ui (line 20) regardless of the condition whether IWi is empty or

contains messages. When the new value of IVTi is known, then it

becomes possible to compute CVTi and the boundary of the

output window OWi. All IVTi (i e C) will progress if their

predecessors OGPj 06 Predi) advance their clock. The latter is

also true since the virtual time of each output gateway progresses
with its cluster virtuai time, CWj.

1. Initialization stage: initialize event lists and variables
2. repeat
3. lj
4.

5. II

6. 2)

7. L

8. II

9.

10.

11.

12.

13.

14.

15.

16.

Nomination Phase:

Vi ~c IGPi : IWi = [~i, ~];

Vi ~c OGPi : OWi = [Gi, 00];

Adjustment Phase:

Vi ~c IGPi : send ~i + bi to OGP1

Vi ~C OGPi : send ~i to IGPj Q 6 Stlci)

Barrier

Vi .sC IGPi :

Ui=mill {Ui, miIl{Cjl~=I%edi)];

If Ui < %i then begin IWi = 0; %i = U1; end

II Vi ●c OGPi :

if~i+bi<~i then ~i = ~i+bi

Barrier

if any changes to any ~i or ~1 then goto L

17. 3) Distribution Phase:

18. Viec IGPi :

19. If IWi # 0 then deliver messages of IWi to LPs;

20. IVTi = Ui; /* update IVTi */

21. CVTi=min { Ui, {LVTij Ij= 1,2,ni }}

22. Vi~COGPi :

23. deliver messages (if any) of OWi = [OVTi, CVTi];

24. OVTi = CVTi;

25. Until (End_of_Simulation)

Figure 4: The HCTW algorithm which synchronizes the
parallel activities of Local Time Warp at the cluster level. Notice

that in the adjustment phase some flags can be used to prevent

unnecessary message sending and recomputation. This detail,
however, is intentionally left to the implementation level.

The Local Tme Warp model is sufficiently general to be
synchronized by other protocols at cluster level. Nevertheless, it

is our belief that HCTW can efficiently synchronize the activity
of the Local Time Warp approach for the following reasons: (1)
The output gateway exploits a time window over messages to be

sent out, and hence it is more natural to use a window-based

algorithm. (2) Several studies (Ayani and Rajaei 1992; Dickens
and Reynolds 1990; Lubachevsky 1989; Nicol 1991) indicate

that synchronous window-based conservative algorithms present

an important class of parallel simulation schemes which in some
cases outperform other conservative methods. (3) Synchronous

window-based algorithms are powerful enough to incorporate
extra features such as a general termination algorithm Sanjeevan

and Abrams 1991). (4) The HCTW algorithm can accommodate
both SIMD, MIMD, and a combination of SIMD-MIMD
architectures.

The HCTW algorithm of Figure 4 can be improved. Instead of
having processors blocked at barrier at line 9 until ail of them
arrive, the barrier can be replaced by a wait-untii construct. In

this case an IGPi process waits until it receives Oj from all its

predecessor OGPj. Likewise, an OGPi will wait until it receives ~i

+ ~i from its IGPi. Having two gateway processes per cluster,

123

although increases the degree of parallelism in the nomination

and adjustment phases, increases the overhead of sending

messages from IGPs to OGPS as well as the overhead of context
switching between GPs. If the two gateway processes are merged

into one GP while keeping the Local Time Warp model intact

(i.e. having the two IVTi and OVTi clocks and the two IWi and

OWi windows), then these overheads may decrease trading off the

degree of parallelism. Figure 5 illustrates the above two

modifications. The algorithms of Figures 4 and 5 seem to favour

shared memory multiprocessors mainly due to the usage of
barrier. However, there are techniques that make the algorithms

suitable also for computers distributed over a network, e.g.

distributed shared memory, distributed barrier (Davis and
Ramachandran 1992), or a simple co-ordinator process to
integrate the functionalist y needed for a distributed barrier.

1. Initialization stage: initialize event lists and variables
2. repeat

3. 1) Nomination Phase:

4. Vi cc GP1 : IWi = [~i, CO]; OWi = [($i, 00];

5. 2) Adjustment Phase:

6. L Vi6c GPi :

7. if~i+~i<~ithen~i=~i+~i;

8. send~ito VGPj ~~SU%);

9. wait until received (~j I~ c Predi);

10. Ui=ti{Ui, tin{~j l~~predi}};

11. If Ui < ~i then begin IW1 = 0; ~i = Ui; end

12. Barrier

13. if any changes to any ~1 then goto L

14. 3) Distribution Phase:

15. Viec GPi z

16. If IWi # 0; then deliver emessages of IWi to LPs;

17. IVTi = Ui;

18. CvTi=ti { Ui. {LVTi,j 1~= 1,2,ni }};

19. deliver messages (if my) of OWi = [OVTi, CVTi];

20. OVTi s CVTi;

21. Until (End_of_Simulation)

Figure 5: The improved HCTW algorithm. The two gateway
processes are merged into one, GPi, while the LTW model is

preserved.

4.3 Special Cases

In the Global Tme Warp protocol the receiving time of each

message should be greater than its sending virtual time
(Jefferson 1985, Rule 1). Some implementations of Time Warp

relax this rule. In LTW, this constraint is also relaxed for local
messages in a cluster. However, the LPs should not send only

such messages and must also have messages that consume non-
zero positive service time. For external messages, as mentioned
previously, the receive virtual time should be greater than the

send virtual time, More formally:
Assumption 1: The service time of an LPiOi for an internal

message cannot be zero for the entire simulati& period and for
an external message should not be zero at any time,
Assumption 2: There is no LP in the simulation problem such
that its local virtual time never advances.

Assumptions 1 and 2 cannot prevent the possibility of zero

cycle. As an example consider two LPs of a cluster sending

messages to each other consuming zero service time. The same
two LPs may occasionally send messages to other LPs while
consuming non-zero service time for such messages.

Consequently relation (5) is satisfied but the zero cycle remains.
Therefore, the following condition, which is referred to as
pi-edictubility property (Misra 1986), should hold:

Assumption 3: Let ri be the set of n logical processes in

cluster i building a cycle of CLP1, LP2, LPn, LP1> such that

LPk sends messages to its successor LP(k+l) ‘“d n in the cycle

(the successor of LP” is LP1). In such a cycle, there is at least one

process L# such that whenever it sends a message m to its

successor in the cycle, the timestamp f of that message is greater
than the time at which the message is sen~

3 L+ e r] I m(L$, LPti+l)mdn, LV’$, t) and t> L~ (5)
j = 1,2,n

4.4 Relaxing Non-zero Time Distance Constraint

Until now it has been assumed that there was a positive non-

zero time distance &i from cluster i to its immediate successors.

Although this constraint improves performance, for some

application it may not be needed. In the absence of such a time
distance, clusters of the simulation system in the worst case

progress sequentially. Nevertheless, this does not necessarily
imply that the LPs of other clusters cannot continue simulating
their local events. One problem which may arise, however, is

that the probability of rollback inside clusters increases. Since
the progress rate of CVTi may become less than the case with

non-zero time distance, the length of state queue may increase. A

global zero cycle can also arise in the simulation system. To

prevent such a cycle, the predictability property of assumption 3
is generalized as follows:

Assumption 4: Let Y be the set of n logical recesses in the
!?

simulation system building a cycle of <LP*, LP , LPn, LP1>

over clusters boundaries such that LPk sends messages to its

successor LP(k+l) ‘0’ n “m the cycle. In such a cycle, there is at

least one process L~ such that whenever it sends a message m to
its successor in the cycle, the timestamp t of that message is

greater than the time at which the message is sen~

3 L$ E Y I m(L$, LPO+l) fl”, L~, t) and t> LV~ (6)
j=l,2,n

Assumption 4 should hold for the entire simulation system

and over cluster boundaries. However, for the sake of generality
the following rule is derived from assumption 4 to comprise
cycles of clusters (Figure 6):

Assumption 5: Let Z be the set of n clusters Ci in the

simulation system constructing a cycle of <C1, C2 Cn, C1>

such that C1 sends messa es to its successor C
5

(i+l) mod n in tie

cycle (successor of Cn is C). In such a cycle, there is at least one

cluster Ck such that whenever a message m is passed through its
gateways, the timestamp of that message is increased by at least
one of the LPs of that cluste~

3 Ck E X I OVfi(m) > ti(m) (7)
k= 1,2,n

124

where IV~(tn) and O~(m) are respectively the virtual time for

a message m at the input and output gateways of cluster k.

,

W+E!$
Figure 6: Interconnection of clusters may construct a loop

5. DYNAMIC CONFIGURATION

One important property of the Global Time Warp is the

support for dynamic configuration which is highly desirable in
simulation of complex applications. The same is preferred for
LTW. LPs inside a cluster can dynamically be created and

terminated as in GTW. The gateway processes should handle

message arrivals for terminated LPs. Most likely this level of

flexibility will suffice for many applications which may need

dynamic changes only inside their subsystems, However, for
some applications such as communication networks or computer
systems it is advantageous to provide dynamic changes even at

cluster level. Such applications can utilize this property to
model, e.g. partial network crashes or subsystem break-down.
The primary difficulty is how to incorporate the changes at a

level which is synchronized by a conservative protocol using

links. This section presents a method for HCTW that facilitates
creation and termination of clusters during simulation. A similar
technique, however, may be used for changing the structure of

network of LPs when using, e.g., the Conservative Time
Windows algorithm.

O(x)-.
(1)-..”””; / ‘8;.. (2)

‘:,’”(6) : “
(3) ‘, ‘.,...

., . . ‘L, \,’ .’ 0
9=7

,.,,,... 1’.’..,,. (i)
(i) ,, :

(5) :: (4)
.’ ,’.,

,, ,

(k)

Figure 7: Dynamic creation (termination) of a cluster x in

Local Time Warp.

5.1 Dynamic Creation of Clusters

A cluster can be created by a request sent either from another
cluster, or from the outside world. The dominant problem is how
to link the newly created cluster to the existing ones in ICN,

while the conservative constraint at the cluster level is

maintained. We can describe the mechanism through an example.

Consider Figure 7 where a cluster x is newly created by a request

from cluster i and is to be coupled to ICN by a set of requested
links shown by dashed lines. The figure illustrates three types of
links: forward, reverse, and intermediary. In Figure 7, link 1 and

2 are intermediary, whereas 3 and 5 are reverse, 4 and 6 are
forward.

(1) Forward link : is established from x to an arbitrary cluster

k by sending a request-to-link to k. The request message has a

timestamp t(req), a higher priority over event-messages, and

may not follow the time order constraint. A request-to-link is

granted immediately if t(req) 2 lVTk. Otherwise the request is

delayed with A = ~Tk - t(ii?q) to enforce relation 4 and maintain

the conservative property at the cluster level. In both cases the
link can be established as soon as the request arrives, but the
response message will have a time of t for the fiit case and t+ A

for the second case notifying the source of request when the new
link can be used. In case of a delay, the virtual time of the output
gateway, OVTX, either should be adjusted to accommodate the

change or special measures should be taken to enforce the delay.
(2) Reverse ‘k links an arbitrary cluster k to the newly

created x. A request-for-link is sent from cluster x to cluster k. At

arrival of such a request if t(req) S OVTk then the link is

immediately established, otherwise a delay of A = t(req) - OVTk

will be added to the response. As in forward linking, a reverse

link can be established as soon as the request arrives. The

response time denotes whether the request-for-link was accepted

immediately or a delay was imposed.
(3) Intermediary links: connect the newly created cluster x,

from the requesting source i to its immediate successor through

x, i.e. links 1 and 2. This type is a special case of both forward
and reverse links where the arbitrary clusters are replaced by
pairs of directly linked ones. The new links can be established

immediately after creation of the requested cluster at simulation
time t. All three clocks of the new cluster are initialized to t, i.e.
IVTX = CVTX = OVTX = t, to enforce relation (4) for clusters x, i,

and j,

5.2 Dynamic Termination of Clusters

Clusters can be terminated by two methods: (1) a termination
condition is detected by the cluster after CVT is computed; (2) a
termination request is received. In the first case the gateway

processes of the cluster inform their respective predecessor and

successor clusters of tbe condition and then may close all related

links. The output links are closed when all messagea with
timestamp less than CVT are delivered. In the second case, a
request for termination may arrive at either input or output

gateway of a cluster corresponding to an external or internal

request. If the time of the request is t, the output gateway will

discard all messages with timestamps greater than t. In addition,
the gateway informs its immediate successors about the

termination by sending a link-closed message at time t.Likewise

is done for the input gateway and all predecessors are informed.
The predecessor gateways discard all messages that should be
sent to cluster x and have timestamp greater than t.Finally, the

cluster will terminate when its CVTX reaches t. In this scheme the

legitimacy of the termination request is left to the application
program.

6. CONCLUSIONS

We proposed the Local Time Warp approach to PDES which

combines the optimistic method with the conservative one at

two different levels. In contrast to the Globrd Tne Warp and
previously proposed combined schemes, the LTW model

hierarchically partitions the simulation system into a number of
subsystems, each comprising numerous objects. The

components of each subsystem are simulated by the Time Warp

125

protocol whereas the activities between the subsystems are

synchronized by a window-based conservative protocol.

Synchronization of the LTW model is achieved by a novel
scheme called HCTW which hierarchically combines the

Conservative Time Window akorithm with Time WarD. The LTW. .
model is general enough to be synchronized by other methods.

However, we believe that the HCTW scheme can efficiently

handle the complexity of the combined approach.

There are several advantages in using the Local Tme Warp
approach for parallel simulation. The model prevents cascading

rollbacks in the global system and does not allow a rollback
occurring in one cluster to penetrate into others. The state
saving overhead is reduced in many cases by bounding cascading

rollbacks. Moreover, the computation of the Cluster Virtual

Time, CVT, becomes less time consuming than its GVT

counterpart. As a result, CVT can be more frequently computed

for reclaiming memory of fossils hence reducing the amount of
memory needed for state saving. Consequently, the Local Time
Warp is unlikely to become unstable, while at the same time the

dynamic behaviour of the Global Time Warp to a great extent is

preserved.
The Local Time Warp approach to parallel simulation

together with its synchronization scheme HCTW may be used for

simulation of large and complex applications on computer
systems with massive parallelism and hence supports scalability

of the parallel simulation. This method appears to suit both

SIMD, MIMD or a combined SIMD-MIMD architecture as well as
a network of parallel computers. The LTW model is applicable to

both shared and distributed memory multiprocessor systems. A
prototype of the LTW model is currently operational and we are
investigating its performance. In addition, further

investigations are needed for issues such as the scalability of the

model as well as incorporating higher levels of clusters and

dedicating each one to a parallel machine distributed on a

network of computers.

ACKNOWLEDGEMENTS

This work was partly supported by the Swedish National
Board for Industrial and Technical Development (NUTEK) under

contract # 90-01773.

REFERENCES

Arvind D.K., and Smart C. R., 1992. “Hierarchical Parallel Discrete Event
Simulation in Composite ELSA”, in Proe. of6fh Workshop on Parallel
and Dirtnbutes Simulation, 147-156.

Ayani R. and Rajaei H. 1992. “Parallel Simulation Using Conservative
Time Window”, in Proc. of the Winter Simuhtion Conference, (Dee),
709-717

Baezner D., Lomow G., Unger W. 1990. “Sire++: The Transition to
Distributed Simulation”, Proc. of SCSW, Corf on Dirt-Sire San Diego,
(Jan), 211-218.

Bagrodia R. and Liao W. 1990. “Maisie: A Language and Optimizing
Environment for Distributed Simulation”, In Proc. of SCS90, Conf cm
Dist-Sim San Diego, (Jan), 205-210.

Ball D. and Hoyt S., 1990. “The Adaptive Time Warp Concurrency
Control Atgoritbm”, in Proc. of SCS90 Multiconfererrce on Dirtn”buted
Sinudolion, 174-177.

Bellenot, Steven, 1990. “Global Virtual Time Algorithms”, in Proc. of SCS
Multiconferenee on Dirtnbuted Simulation, 122-127.

Davis M. H., and U. Ramachandran. 1992. “A Distributed Hardware
Barrier ‘in an Optical Bus-Based Distributed Shared Memory
Multiprocessor”, in Proc. of International Conference on Parallel
Processing, 1-228-231.

Dickens, P.M., and Reynolds P.F. 1990. “SRADS with Local Rollback”, in
Proc. of the SCS Multiconference on Dirtnbuted Simulation 22, 1, 161-
164.

Dickens P., and Reynolds P., 1991. “A Performance Model for Parallel
Simulation”, in Proc. of the 1991 Winter Sinrukztion Conference, 618-
626.

Fujimoto, Richard. 1988. “Lookahead in Parallel Discrete Event
Simulation”, in Proc. of International Conference on Parallel
Processing,.

Fujimoto, Richard. 1990. “Performance of Time Warp under Synthetic
Workloads”. in Proc. of the SCS Multicorrference on Distributed
Simulation &n Diego, 2~-28.

Frrjimoto, Richard. 1990. “Parallel DLwrete-Event Simulation”, Conun. of
ACM vol. 33, No. 10, 3053.

Fujimoto, Richard. 1990. “optimistic Approaches to Parallel Discrete
Event Simulation”, Trans. of the Society for Computer Simuriatior+ Vol.
7, No. 2, 153-191.

Jefferson D.R. 1985. “Virtual Time”, ACM Trans. on Programming
Language and Systeq Z 3404-425.

Jefferson, David, 1990. “Virtual Time II: Storage Management in
Distribute Simulation”, in Proc. of the 9th Annual ACM Symp on
Principles of Distributed Computing, 75-90.

Lin Y-B. and Lazowska E., 1990. “Determining the Global Virtual Time in
a Distributed Simulation”, in Proc. of International Conference on
Parallel Processing, 111:201-209.

Lin, Yi-Bing, 1992. “Memory Management Algorithm for Optimistic
Parallel Simulation”, in Proc. of the 6tk Workshop on Parallel and
Distributed Simulation, 43-52

Luhachevsky, Boris. 1989. “Efficient Distributed Event-Driven Simulation
of Multiple Loop Networks”, Communication of the ACM, 32:111-
.,. ”
1L5.

Lubachevsky, B.D., Shwartz, A., and Weiss A. 1989. “Rollback Sometimes
Works . . . if Filtered”, in Proc. of 1989 Winter Simulation Conference,
630-639.

Lubachevsky, Boris 1990, “Simulating Colliding Rigid Diska in Parallel
Using Bounded Lag Without Time Warp”, in Proc. of SCS
Multiconference on Distribute Simuhztion, 194-202.

Lubachevsky B., Weiss A, Shwartz A, 1991. “An Analysis of Rollback-
Based Simulation”, ACM Trans. on Modeling and Computer
Simulation, Vol. 1, No. 2, 154-193.

Madisetti. V., Walrand J., and Messerschrnit D. 1988. “WOW. A Rollback
Algorithm for optimistic Distributed Simulation Systems”, in Proc. of
Winter Simulation Conference, 296-305.

Madisetti V., Hardaker D., and Fujimoto R. 1992. “The MIMDIX
Operating System for Parallel Simulation”, in Proc. of the 6th
Workshop on Parallel and Distributed Simulation: 65-74.

McAffer, Jeff. 1990. “A Unified Distributed Simulation System”, in Proc.
of the 1990 Winter Simulation Conference, 415-422.

Mehl, Horst. 1991. “Speed-Up of Conservative Distributed Discrete Event
Simulation Method by Speculative Computing”, in Proc. of SCS Muhi-
Confererrce on Advances in Parallel and Distributed Simulation, 163-
166.

Misra, Jayadev. 1986. “Distributed Discrete-Event Simulation”, ACM
Computing Surveys, Vol. 18, No. 1,39-65.

Nicol. D.M. 1991. “Performance Bounds on Parallel Self-Irtitiatin~
Discrete-Event Simulation”, ACM Trams. on Modeling and Compute;
Si)nuhtion, Vol. 1. No. 1,24-50.

Parakash A. and Subramanian R., 1992. “An Efficient Optimistic
Distributed Simulation Scheme based on Conditional Knowledge”, in
Proc. of 6th Workshop on ParaJlel and Distributes Simulation, 8$-94.

Reiher P., and Jefferson D., 1989. “Limitation of Optimism in the Time
Wam ODeratin~ Svstem”. in Proc. of 1989 Winter Simulation.
conf;ren;e, 765~769; ‘

Reynolds, Paul. 1988. “A Spectrum of Options for Parallel Simulation”, in
Proc. of the 1988 Winter Simulation conference, 325-332.

Reynolds P., Weight C., and Fidler R. 1989. “Comparative Analyses of
Parallel Simulation Protocols”. in Proc. of the 1989 Winter Simulation
Conference, 671-678.

Sanjeevan V., and Abrams M. 1991. “The Cost of Terminating
Synchronous Parallel Discrete-Event Simtrtation”, in Proc. of the 1991
Winter Simukrtion Conference, 642-651.

Sokol L. M., Briscoe D. P., and Wieland A.P. 1988. “MTW: A Strategy for
Scheduling Discrete Simulation events for Concurrent Execution”, in
Proc. of SCS Conj on Distributed Simulation, 34-42.

Steinman, Jeff. 1992. “SPEEDES: A Unified Approach to Parallel
Simulation”, in Proc. of the 6th Workshop on Parallel and Distributed
Simubtion 95-83. -

Turner S.J, and Xu M.Q., 1992. “Perforruarrce Evaluation of the Bounded
Time Warp Algorithm”, in Proc. of 6th Workshop on Parallel and
Distributes Simulation, 117-126.

126

