
Parallel Simulation of Communicating

Finite State Machines

Curl T~opper- ad A.z.zedin.e Boukerch.ef

Jet Propulsion Laboratories

California Iustitute of Technology

Abstract

We describe, in this paper, a synchronization/deadloclc

resolution mechanism for a network of communicating fi-

nite state machines implemented on a parallel machine.

As it is message-based, it is appropriate for distributed

memory machines.

The technique was inspirecl by a project at the .Jet

Propulsion Laboratories whose goal is the specification and

verification of the software used to control the interplane-

tary spacecraft operated by the laboratory.

The network of communicating finite state machines

makes use of write messages to alter the value of the vari-

ables describing the finite state machines and read mes-

sages to determine the state of the variables. Since a
blocking protocol is employed, it is possible for cleadlocks

to occur. Consequently, we clescribc deadlock resolution

algorithms.

Our algorithms were implemented on an iPSC/2 hy-

percube, demonstrating good performance ou a queueiag

network model.

1 Introduction

Wedescribe$ in this paper, a synchronization rnechauism

foranetworlcof communicatin gfinit estatemachines inl-

plemented on aparallelm-achine. As it is message-based,

it is appropriate for distributed memory machines.

The technique was inspired by a project at the .Jet

Propulsion Laboratories of the California Institute of Tech-

nology, whose goal is the specification and verification of

the software used to control the interplanetary spacecraft

which are operated by the laboratory.

In order to control the actions of an interplanetary
spacecraft, a sequence of commands are issuecl from the
ground to on-board flight computers in the course of the
spacecraft’s voyage (fire engiues, move raclar, begin plot-
ting surface...). Before actually issuing the commands,

they aresubject toverification so that “undesirable’’states

are not entered into. For example, instruments which are

*On sabatical leave from School of Computer Science,

McGill Univ. Canada
tvi~itingdoctoralstucieatat the California Institute of

Technology

susceptible to the sun’s glare should not be unnecessarily
exposed to it. At present, the verification consists of check-
ing flight rnles via a sequential event-logic language which
was originally developed for the Voyager program in the
mid- 70’s [A LKA91]. In an attempt to place the specifica-
tion and verification of the fipmecraft on a more modern
foundation, n model of the spacecraft, baaed on the no-
tion of communicating finite state machines (abbreviated
henceforth as fsm’s) was proposed in [ALKA91]. A transi-
tion between the states of an fsm occurs as a consequence
of a commaucl executecl at the fsm. In appendix A we
provide an example (based on [ALKA91]) of a small sub-
system of the Galileo flight software in order to make this
approach to the specification and verification of real-time
systems more coacrete.

Since the communicating fsm’s are to be distributed
among the nodes of a multi-computer, a synchronization
technique is required in order to assure that the causal-
ity of the model is not violated. In the context of our
model, causality means that the writ e events are simulated
in chronological order at each fsm and the read events are
simulated for the correct values of the variables which they
are trying to access.

While conservative synchronization mechanisms rely on
blocking to avoicl violatloas of dependence constraints, op-
timistic methods rely on detecting synchronization errors
at runtime and on recovery using a rollback mechanism.
The algorithms we consider in this paper are an extension
to a conservative mechanism. In particular, we present rm
approach to synchronizing the fsm’s based upon the use of
recp~est messages. The technique is an outgrowth of algo-
rithms for synchronizing parallel simulations as described
in [C OTE92] and [COT E92]. Algorithms for parallel sim-
ulation which are closely related to this approach are de-
scribed in [MISR86], [FUJ190] and [NIC088]. Our work
differs from these algorithms in that our algorithm sup-
ports the read operation of the state of variable in distinct
nodes (fsm’s in our case).

This technique is particularly important when the im-
mense size of these models is taken into account. In order
to be able to verify a model such as the one described above
in a re.aaouable time it is necessary to execute it on a par-
allel machine. Hence the need for efficient synehronization
techniques.

The remainder of this paper is organized along the fol-
lowing lines. We present our model for synchronizing the

fsm’s in the next section, discussing the ways in which

deadlocks can arise. The third section contains a descrip-

tion of the algorithm, followed by a proof of its’ correct-

143

http://crossmark.crossref.org/dialog/?doi=10.1145%2F158459.158477&domain=pdf&date_stamp=1993-07-01

ness. In section 5 we describe the experiments and the
performance of the algorithms. The conclusion follows.

2 The Model

We model the communicating fsm’s as a directed graph in
which the nodes are fsm’s and the links represent, cpeues
of either writel or read messages. Messages are exchanged
between the fsm’s which are intended to represent the send-
ing of write and read messages from one fsm to another
and the sending of.+ ate information between fsm ‘s. Write
messages are used to write to state wriables, while the
messages which request the state of an fsm correspond to
the reading of state variables. The messages in the queues
await processing at the fsm’s,

Write messages, denoted by < Write. write,,,,,, > may

change the value of a fsm’s variables. 1$ ’site ~,.,, is the
(simulated) time of the write message. since ou~ model

is conservative, writes must be processed in CIU orological

order and no processing can occur until either the missing

write arrives or until an estimate is obtained of the earliest

time at which a write message can arrive. In orcler to coui-

plete the (simulated) processing of a write message, it may

be necessary for the fsm to recluest the state of a variable

in another fsm (for example, in the case of verification pro-

gram described in the appendix A, it may be necessary to

first obtain the value of a variable locatecl at another fsm

in order to determine the safety of a transition). This is

accomplished via read message sent to the fsm in questiou.

The read message takes the form < Read, reacli ,.,, >,
where read,, ~. is the (simulated) time at which the read
is to occur.

Until a reply is received, the processing of the write
message cannot be completed, and no other write message
can be processed at the fsm. Read messages can be pro-
cessed, but only up to the time at which the last write
occurred. Since no further writes can be processeci, macl
messages with times larger than the time of jhe last np-
date of the variables which they are trying to read cannot
be processed. We say that, the fsm in cluestion is (tem-
porarily) blocked.

It is assumed that there is no upper bound on the
amount of time it takes a message to traverse a link, there
is no loss of messages, links never fail and they are FIFO
(do not reorder or duplicate messages). Furthermore, we
assume that the connect ivi ty of the graph never changes.

In our model each fsm is represented by a logical process
LP2. The LP maintains a local simulation time /t, defined

as the last time at which a write was executed at the fsm.
Separate queues are maintained for the read and the write
messages.

Each of the LPs is initialized with a cpleae of writes.
(In our example, these can be the set of writes which are
initially sent to the spacecraft or can be the result, of the
pre-simulation phase proposed in [ALKA91]).

1In the ~equel wl-ite/ieacl messages and writ,e/reaci-event

messages are taken to mean the sa n)e t h iags

‘In the sequel LP is to taken to mean the logical process that

will simulate the fsm in our model.

As mentioned above, an fsm will block when it haa an
empty (write) input queue. In order to obtain the missing
wrote message, our LP sends a < Requestwriie, .min >t

message (t,~,n is the minimum time stamp at the LP) to
the appropriate neighbor. In the event that the neighbor
can provide a write message for the requesting LP, it does
so. If it does not have one, then it examines its’ local time
(Lt)to see if it is larger than t.m,n.If/t > ts~,~, then
it sends a < repl~, It> message back to the requesting
LP. When this message arrives, it unblocks the LP. If lt<
tsm t., and if the fsm has empty input queues itself, it sends
its’ own < Requestw.,~., H > message to these neighbors
which correspond to its’ empty queues.

Unfortunately, blocking behavior can lead to deadlock.
We turn to a description of several of these deadlocks.

2.1 Different Type of Deadlocks

Deacllocks can occur clnring simulation as a result of

blocking and limited buffers. Since we employ different
cleadlocli-breaking mechanisms depending upon the type
of cleadlocks which occurs, we aualyse different cases. We
clistinguish between the following types of deadlocks:

(1) Write Deadlock

Our first, example of deadlock is due to empty (write)
input cpleues. Consider three LPs, depicted below in figure
1. Each of the LPs has au empty input queue, expecting
messages from another LP. The arrows indicate this de-
pendency At the same time, each of the LPs have writes
in other input clneues. LPI has a write bearing time stamp
11, LP2 has a write with time stamp 7, and LP3 has one

bearing time-stamp 13. The local time at each LP are

shown insicle the circle. (The local time is the time at

which a write was last executed).

(5)(3)

Figure 1: Cycle of Request Writes

In accordance with our protocols, LP 1 requests a write
from LP 2, LP 2 does the same thing to LP 3 and LP 3
completes the circle. None of the LP’s can respond because
they cannot be certain that they won’t receive a message
from their neighbor which could change its’ response.

Our cleadlock is, of course, a cycle. It readily generalizes
to a knot.

144

Definition of a Knot 2.1 Let (V,E) be a directed graph

where V is the set of vertices in the graph and E a set of

directed edges where a directed edge (i, j) indicates that in

node i the link (ii) is designated as an output link.

A knot K in (V, E) is a strongly connected subgraph of

(V, E) with no edges directed away from the subgraph K.
Alternatively, a node i is a member OJ a knot K if node i

is reachable from all nodes which are reachalde from node
i. Each of these nodes must be able to reach i.

(2) Read Write Deadlock

A deadlock may also involve both read messages as well
as request for write messages. As illustrated in figure 2,
we can see in the example that LPB cannot respond to the
read message < Read, 5 > issued by LP.4 because it has an
empty input queue, and it local time /tB (= 3) is less than
5. The arrows from LPB to LPc and LPc to LPA indicate
an empty input queues at LPB and LPc respectively. LPA

is blocked until it completes processing the read message.

6

Figure 2: Read-Write Deadlock

The preceding two examples illustrate the occurrence
of deadlocks as a consecpence of awaiting messages (which
don’t arrive).

(3) Memory Deadlock

Lack of memory can also cause deadlocks [COTE92]. If
no upper bound is placed on the number of buffers asso-
ciated with each LP, then dynamic memory management
could significantly reduce the possibility of cleadlock. Iu
what follows, we assume that there is sufficient memory
for these deadlocks not to occur.

3 Description of the Algorithm

We start with an informal clescription of the algorithm,
and then make it more precise.

Let us first assume that the dcacllock takes the form of
a cycle, i.e. that 2 LPs “connected” by the read message
in our dependency graph are also connected by a path of
request write messages, as clepicted in the example above
(fig 2). An arrow directed from LPB to LPc in a depen-
dency graph means that LPB has an empty input clueue
from LPc.

Recall that a read message may be issued by an LP
while processing a write message.

The read message is defined by:

< Read, read~i~e >

where read~,~, is the (simulated) time of the read mes-
sage issued by au LP to read the value of a variable located
in another LP.

Denote by LPid,aU~C~ the LP which issues the read mes-
sage ancl by LPP,Oc, ~i, the LP which receives the read mes-
sage.

In general, a read message maybe responded to if and
)honly if read~,~~ < nta~(lt(proc,~ii), t~~,~ , w ere tmn,n

is the smallest time stamp in all of the JVPr~C,. ,t ‘S input
clueues, the readt i~, is the read time of the read message
iwued by LP;d,Ou,,C~ and the lt(proc;,,i,) is the local (clock)
time at the LPP,O,,,,,,.

Upon receipt of a red message < Read, ~ead~i~e >

from LPidl,, UmCk (lP,.l in figure 2), LPP,OC,,,,, (LPB in fig-
ure 2) scuds a l’eqUeS&d (recpest ~locked~waiting~ata)
message along its’ empty input queues, i.e. to neighbor-
ing LPs which deliver messages via the empty queues. The
purpose of this recluest message is to determine if the value
of the variable recluest, ecl b.y the read message at LPp~~cimi~
will change between the It(t c&o=) and readt, ~~. The
requestia~ message is in turn forwarded along a path of
empty input queues to LP, ~laU~=~. If the 7YqUeS&d mes-
sage arrives at LP;,l,@=n=~ then LPidl~UnCk checks to see if it
has received the data which it requested by the read mes-
sage. If it has not, we have a read-write type of deadlock
(see figure 2). Therefore LP,d,aumck sends a bad (b$:&j
awaiting data) message winch returns to LPp~~~, ~i *
same path taken by the req?Je5tb.d message (but in the
appposite direction). In our example, the requesttmi mes-
sage travels from L PEJ to L f’..4 via the empty links, and
the bad message returns in the opposite direction. Upon
receipt of the bad message, LPP,~C,.,t is free to either re-
spond to the read message or to process a write message
in one of its’ input queues.

We now turn to a more precise description of our algo-
rithm.

As described in section 2, we make use of <
Reque.stU,,,,c, t,,,,,,, > messages in an attempt to unblock
LPs which have empty (write) input queues.

In the event that the following the 2 conditions are
satisfied, the LP initiates the knot detection algorithm de-
scribed in [MISR83], in order to detect a write deadlock.

1.

2.

The LP must have received at least one request and
have sent one recluest. This condition eliminates those
LPs which could not possibly belong to a knot from
starting the knot detection algorithm.

The time associated with the request write message
issued by the LP must be smaller than or equal to
the time of some request write message which was
received by the LP. The purpose of this condition is
to exclucle those LPs which cannot break the knot
from initiating the cletection algorithm.

145

The deadlock is then broken by detecting the LP with
the smallest time stamps among the LPs involved in the
deadlock [BOUK90].

Recall that L~,d,~UflC,L is the LP which issues the reacl
message and LPpt.~~,m,t is the LP which receives the read
message.

Upon receipt of a read message, LPP..., .,, sends a
reguedb.dmessage along its’ empty input links if it is un-
able to reply.

The requestbad message is defined by:

< &qUeStbmd, ?’eUCl,,n,e > i~,<,u,,ch , PI-W,,, ,, >

where read~,~e is the read time of the reacl message is-

sued by L1’&...k, ZCZICU,,./, is the id of the LP which sen&
the read message, proc,,,,~ is the id of the LP which sends
the requedb.dmessage after receiving a read message

Each LP maintains a data structure so that it may for-
ward only one ~equdbmd message corresponding to the
same read message along its’ outgoing links. The clata
structure is

p~7%nttdk= id of the LP from which a I’eqWSt60d mes-
sage arrives, such that k is the id of LP, d,o,, ,,Ck. In our
example at LPC, paren.t.~ = LPB.

parent.~~ contains the associated read time; in our ex-
ample, parentrt~ = 5.

Upon receipt of a ?’.%fUedbad message, both fields are
examined, i.e parentzd~ and parent~ik. If the message

comes from a different parent and has the same reacl time,
then it is a duplicate of one already received and is dis-
carded, thereby reducing the number of req u est~,,,/ mes-

sages involved in the simulation.

When a request bad message arrives at an LP. then

1.

2.

If the LP is not blocked. it keeps the message until]
such time as it blocks,

If the LP is blocked and the readf ,mlc < lt theu
the request bad message is forwarded to ~leighbors
which correspond to empty (write) input, links. If the
readlt ~, > It, a bad message is sent aloug the path
determined by the parentid’s. We clescribe the bad
message and its’ processing below.

If a ?h?qu’%$tbad message finally arriveS at LPt~,oW,,C,,,
then if it is blocked waiting for data, a comparison of the
readi,nc associated with the recplest bad message and the
Itof LP,d,~un=h is made. If they are equal, a bad messa~e

is sent to the LP from which the request bad message ar-
rived. Subsequent reqUedb. d messages correspoucling to
the same read are discarded. The bad message is defined
as

< Bad, i~laitnch, P’oGnit, ~ea~ii,~e > .

The bad message now ~eturas along the path dictated
by the parent.id ‘s. When a a bad message arrives at

an empty write input clueue, it is processed in the order
dictated by its’ time stamp.

In the event that the bad message reaches LPp,..i=it
(LPB in our example) its’ readt,~e must fall into one of
two cases:

1.

2.

ltE < reudt,n,, < tsmil~ (B). Then LPB may respond
to LPA’s < Readj readi,.,. > message by sending the
value of the variable requested via a data message.

lt~< t.,,,,,,(B) < read,,n,.. Then the write at LPB

may be executed.

As before it is still possible that execution of the write
might not result in the read being responded to; a
write bearing a time stamp >= the time of the read
might have to first arrive.

Recall, that if LPp,oc,n,$ unblocks, it may provide that
data message to the reacl message.

The data message is clefined by:

where datattm, is the data time of the recent value
of the vwiables requested by the read message issued by

LpZ~l<,u.<l$? ?.d/oa,, .h is the id of the LP which sends the
read message,

4 Proof of Correctness

To simplify our discussion, call a deadlock which only in-
volves read messages a read-only deadlock, one which only
involves write messages a write-only deadlock, and the
combination a read-write deadlock.

Lemma 4.1 Read-only deadlocks cannot occur.

Proof

We assume that the response to a < Read, read_time >

message is the state of a variable at time t - IS(c > 0).

We make this assumption in order to maintain temporal
consistency, as the write operation which resulted in the

< Read, readt;~e > message should be executed after it
obtains the necessary state information. This assumption
also avoids deadlocks, as we shall see .

We show that in order for such a deadlock to occur,
the time-stamps of the corresponding write messages (i.e.
which resulted in the read messages being issued) must be
ecplal. As a consequence of our assumption, it follows that
all of the LPs can respond with a < Data, readti~= - c >

message.

Assume that there exists a deadlock and that not all of
the minimum time-stamps of the read messages are equal.
Then a < Read, readf,~e > must arrive at some LPi such
that reud,,,ne < t~~,,, (LPi). LPi will then be able to

146

d6’(“h .<”””’”Yaw’
~ “.-/’ - “u’ ,

Figure 3: Read Cycle

respond with a data message, contradicting
of a deadlock. ❑

Lemma 4.2 Write only deadlocks can be

broken.

Proof

the existence

detected and

Write only messages may form a knot, as pointed out. in
the preceding section. We may detect this knot by use of
the algorithm described in 3. In orcler to be able to break
the knot, we also detect the LP which sent the request,
with the smallest request time. The LP with the smallest
request time can res ond to at least one request, therebcy
breaking the knot. d

Having eliminated these two categories of deadlocks, we
are left with the possibility of a deadlock which involves
both read and request write messages. In the spirit of
divide and conquer, we first prove

Theorem 4.1 A deadlock which involves a. single read

message and more than one .wvite message may be broken,.

Proof

The reason that we restrict ourselves to chmdlocks in-
volving one read and more than one write message is that a
deadlock involving exactly one read and one write message
cannot occur. Such a deadlock must, per force, involve 2
LPs, as illustrated below.

Figure 4: Read-Write Cycle

LP A is constrained to execute the write beaxing its’
smallest time stamp. Consecpently, upon receiving the
read message, LP B is aware that it cannot receive a mes-
sage bearing a smaller time stamp the time of the read
message. Hence there is no deadlock. (We note, however,
that LP B may not be able to immediately respond to the
read message because its’ own minimum time stamp is less
than the time of the request. In this case it executes the

write with the smallest time stamp and continues process-

ing writes until its’ minimum time stamp exceecls the time

of the read message). ❑

Summarizing the argument to this point, we may say

Lemma 4.3 If a deadlock cycle exists, a reqUe8tbad mes-

sage is sent and arrives at LP,d,aUne~ . In turn, a bad mes-
sage isswed by LP, d(UU,,c~ will arrive at LPp,o,,n,t, thereby

breaking the deadlock.

Proof

The final case which we must dispose of in order to

prove the theorem is the existence of a knot of write mes-

sages in between the LPs connected by the read message.

An example of this is depicted in the figure below.

Figure 5: Read-Write Knot

In this example. the arrival of a bad message at node C
will not unblock C. However, the knot detection/breaking
algorithm previously described will locate the minimum
(write) time stamp in the knot. Since no write mes-
sage with a smaller time stamp can arrive in its’ input
queues, the LP which 11ss the write bearing the smallest
time stamp ma! be processed. In the event that is LP
is blocked awaltmg a read, it can demand the data via a
< Demand,emd, t > message. •l

We are now in a position to construct the final link in
our exclusionary chain.

Theorem 4.2 A deadlock which involves more than one

read and writes cannot occur.

Proof

Consider an LP which has received a read message, but
which cannot respond to the to the read because of m
empty input queue. The empty input queue is directed to
an LP which did not send the read message.

The minimum time stamp at the LP must be > the
smallest time stamp of any write message which can arrive
in the empty queue. This is true because a requedwrite
message WOUIC1have produced an estimate which would
have unblocked the LP. (the write bearing the smallest

time stamp woulcl have been executed). Furthermore,

t.n~ in (Write) < ts (read), else the read message could com-
plete,

147

The subsequent LP must issue either a read or a request
write message. Since the LP is part of a knot, a path of LPs
which issue either reads or request writes must lead to the
the LP which sent the original read message. Making use
of the above argument, a simple inductive argument leads
to a strictly decreasing sequence of time stamps associated
with the read messages. This leads to a contradiction. ❑

Summarizing the above discussion, we have

Theorem 4.3 Deadlocks involving write messages alone
may be detected and broken, while deadlocks involving read

and write messages may either be prevented OT detected and

broken.

5 Performance- Experiments and Results

In order to investigate the performance of our algorithms
we elected to simulate them on an Intel iPSC/2 hypercube.

The iPSC/2 is a distributed memory multiprocessor, in
which the processing elements are connected in a hyper-
cube topology. The iPSC/2 consists of nodes and a front-
end processor. Each node is a processor/memory pair aucl
runs the NX/2 operating system and uses message pass-
ing to other nodes. The iPSC/2 board consists of an intel
80386 processor and a 80387 co-processor, both running at
16 MHz, local memory of up to -1 MBytes, and a 32 bit
architecture.

The time T recpired to transmit, a one hop message of
length N bytes is : T = o + /lN

where CYrepresents a fixed start-up time (= 390 mi-
croseconds) for messages less than 100 bytes anti /? repre-
sents the transmission time per byte (=0.4 microseconds)
(see [DUN190] for a description of the performance of the
hypercube).

We chose the graph of our network of communicating
LP’s to be a torus because the large number of cycles in
the torus provides a stress test for the algorithms. The
presence of cycles results in the knot detection algorithm
being frequently called if the number of messages present
in the graph is suflicientl.y small. In keeping with this

approach, we initialized each link of the torus ~~,ith 3 write
messages. We cal interpret the initial messages as the first
set of messages sent to the spacecraft. We made use of
several size torii, from dimension 6x6 to 14x14 ancl varied
the number of processors from 2 to 16 processors.

We made use of a simple static mapping strategy of LPs
to processors, as in [FUJ190], [B OUI{90] in which a torus
is subdivided into grids, and in which the LPs in the same
grids are allocated to the same processol.

The simulation runs for 1000 units of simulated time,
where one time unit is taken to be the time required to
process a message. All categories of messages are assumed
to require one unit of processing time. We assume that
as a result of processing a write message at most one read
message and at most one write message can be generated.
A write is generated with probability 80% while a reacl is
produced with probability 20?%. Once produced, the prob-
ability that a message is directed to a neighboring link is

determined by a uniform distribution, i.e. each output link
is equally likely to be chosen. We present our results below
in the form of a graph of the execution time (in seconds)
of the model as a function of the number of processors
employed to execute the model. As we can see from the
curves (figures 6, 7), the algorithms exhibit good perfor-
mance, in which the rnn time decreases significantly with
an increase in the number of processors.

500
R I x 14x 14 LPs

t

u 400 K,,

N ‘,,
@ 12x 12 LPs

300
\

Q “
T \

200 “k
I “\. “’...,

.
M “-..-%... ‘%. _
E

100
~@_~”---._x

-.--- ””..,._ @
01 ;

4 6 8 10 12 14 16

PROCESSORS

Figure 6: Performance - Run Time vs. Processors

From the shape of the graphs we note that the largest
decrease in execution time occurs initially, with the run
time eventually flattening out. For example, in figure 6
increasing the number of processors from 2 to 4 results in
approximately a 50% decrease in run time. From 4 to 8
processors, we observe a 3070 decrease. After 8 proces-
sors the curve gradually flattens out. A number of factors
contribute to the shape of the curve.

200r
I

u
150

x

N ‘..
125 ‘,

\
‘.

x IO XIOLPS

@ 8x 8LPs

6x 6LPs

100 ‘\

T
(3J ‘k

.. ..,,
75 ‘-.

I ‘x..
M 50 *. “’~ “’..X__,%._,_

(~.

E 25

-,.

#
9

-WY---------x

#
‘-” .9’.

““-”’’--”’’’+”””””--@

of
2 4 6 8 10 12 14 16

PROCESSORS

Figl~re 7: Performance - Run Time vs. Processors

First is the limit on the parallelism of the model. The
number of LPs in the model coupled with the number of
messages initially placed at each of the LPs determine the
amount of parallel activi t.y in the model. While the shape
of the graphs in figures 6 and 7 are the same, the percent-

age decrease in the run time of the models is smaller when
there are fewer LPs.

A second factor is the effect of inter-processor commu-

nication, in particular the increase in the cost of knot de-
tection and breaking when message passing is involved.
The knot detection algorithm used is the one described in
[MISR83].

6 Conclusion

We described, in this paper, algorithms for synchronizing
a collection of communicating finite state machines and for
resolving deadlocks which might arise in the process. The
algorithms were implemented on an Intel iPSC/2 and were
tested in the context of a queueing model of a torus. The
torus was chosen primarily because it is rich in cycles and
is therefore a stress test for our algorithms.

The performance results show that significant decreases
in run time were obtained with the use of the algorithms
described in this paper.

An issue worthy of further attention is that of memory
mimagement. It becomes more important as the program
grows in size, especially the management of space for write
messages.

Our approach to memory management has been to em-
ploy a fixed number of buffers at wach LP. However, as

pointed out in [COTE92], deadlocks may result. One ap-

proach to their resolution is described in [COTE92]. An-

other approach is to use a dynamic scheme in which all

buffers are shared by LPs, subject to an upper and a lower

bound on number of buffers available to an LP. This pre-

vents starvation and hogging. A combination of a process

migration protocol with the dynamic scheme might also be

envisaged.

The algorithms outlined here are suitable for address-
ing related problems in domains other than the verifica-
tion of real-time software programs. Examples are combat
simulation and shark world simulation, to mention a few,
where it is convenient to at ilize Stat e val iablcs that CaU be

accessed by distinct logical processes.

Appendix A

We provide an example (based on [A LI{A91]) of a small
sub-system of the Galileo flight software.

Our example is based upon a small sub-system of the
Galileo spacecraft. It illustrates the use of communicating
finite state machines for the purpose of specifying aucl ver-
ifying a rather large, complicated real-time system. Sub-
systems of the spacecraft are represented by fsm’s. with
safe and un-safe state transitions specified. Messages are

exchanged between the fsm’s which are intended to repre-
sent the sending of commands from one fsm to another and
the sending of state information between fsnl’s. The conl-
mands are represented by messages which write to state
variables, while the messages which request the state of an
fsm correspond to the reading of state variables.

The system consists of a gyroscope, an inertial sensor,
an accelerometer and a heater. The flight mode of the

spacecraft is maintained by an at tit ude and articulation
command subsystem, while a command data system re-
eeives command subsequences which are transmitted to

70Yf01_m ?W-w Tlnm

S0 -h (71N1P,[1)Sin
so Grw Slm

{-b (71N1PM)
SdwrMe (71N1PS,[1))

a S* E,ru Sdwdk (71N%Fi,,*) ~

IfM [Uu.on
Sr S 2 Ecra A h%+ld~ (71N1.~l)

Table 1: State Actions.

the spacecraft from the ground and schedules them for ex-
ecution.

0
Tirnsr (gyro_on) oA~B

\i

7 gyro-on

7 gyrO_On 7 gyro-on

,?

(:)

Stste ((X,Y) I X. gym_p3wsr, Y. rsliible.dst]

Figure 8: State Graph

The gyro is powered on in response to a 7gyro_on com-
mand, and is powered off upon receipt of the 7gyro.o~~
commaucl. It produces reliable data only after the inertial
sensor has been turned on for 40 seconds after the gyro
is powered on. The gyro turns on the inertial sensor by
scheduling the 71 nlp command and turns it off by issuing
the 71n,lpr command. 40 seconds after the inertial sensor
is turnecl on, it notifies the gyro that its’ data is reliable
by issuing the timer(g~ro) command. At point the gyro is
considered to be functloniug reliably.

The accelerometer functions in a similar fashion. When
it is turned on via the 7accl-on command, it also requires
that the inertial sensor be switched on. If the gyro haa
previously turned on the inertial sensor, the accelerometer
does not have to C1Oso. When the gyro is powered on
after the accelerometer has already turned on the inertial
sensor, the gyro will first switch off the sensor and then
turn it back on. This is done because the gyro requires
that the inertial sensor be initialized.

The gyro heater is switched on by the 7htr-on command
ancl off by the 7htr-of,f command.

Figure 8 contains a finite state machine for the gyro,
Fsm’s for the inertial sensor, and the heater may be found
in [.4 LI(A91]. Each state is represented by two variables,
indicating whether the power is turned on and whether
the clata is reliable. A transition between the states of an
fsm occurs as a consequence of a command executed at the
fsm. An alterecl state can, in turn, cause the generation
of new commands. An example of such “state actions” is
contained in the table 1 below devoted to gyro actions.

Sevcr:d entries in the table indicate that an error state
has been reached. In order to determine whether such a

149

state occurs, constraints on allowable transitions are ex-
amined after the execution of each command. These con-
straints, based in part upon the Galileo flight manual, are
described by the following pseudo-code:

1. whenever (gyro.on<-– true)

(gyro.on.t – htr.on.t < 1 hour and
htr-on.v= true) <=> error

2. whenever (gyro.on < – – false)

(sacs.mode = ?nertial) <=> error

3. aacs_mode.t –gyro-on.t < 2 hours <=> error

Acknowledgments

Heartfelt thanks to Mani Chandy for arranging CT’s
sabbatical at J P L and for reviewing the manuscript and
providing criticism. Thanks to John Horvath at JPL for
hosting CT’s visit. Thanks are in order to Richarcl Fagen,
director of the Campus Computing Organization of the
California Institute of Technology for providing us with
computational facilities and to Paul Messina, director of
the CCSF at CalTech for providing us with super-computer

References

[ALKA91]

[BOUK90]

[COTE91]

[COTE92]

[DUN190]

[FUJ190]

[MISR83]

[MISR86]

Alkalaj L., “Towards a Specification Lan-
guage and Programming Environment for
Concurrent Constraint Valiclatiou of Space-
craft Commands”, JPL, Pasaclena, Calif.
1991.

Boukerche A., “ Performance Analysis
of Distributed Simulation”, M. SC. thesis,
McGill Univ., School of Computer Science,
Montreal. Canada, 1990.

Cote C., “ Pseuclosimulation in Distributed
Simulation”, M. SC. thesis, McGill Univ.,
School of Computer Science, Montreal,
Canada, 1991

Cote C. and Tropper C., “On Distributed
and Pseudosimulation”. 1992 Workshop on
Parallel and Distributecl Simulation, SCS,
Vol. 24, n. 3, Jan 1992, pp. 97-106.

Dunigau T. H., “ Performance of the In-
tel iPCS/2 Hypercube”, Technical Report
ORNL/TM-11491, 1990, Oak Ridge Na-
tional Laboratory, Oak Ridge, TN, 37831

Fujimoto R., “ Parmllel Discrete Event
Simulation”, Communication of the ACM,
October 1990.

Misra J. and Chandy K. M., “A Distributed
Graph AlgorithnxKnot Detection”, ACM
Transactions on Programming Languages
and Systems, vol. 4, no. 4, Oct. 1983, pp.
678-686

Misra, J. , “ Distributed Discrete Event
Simulation”, ACM Computing Surveys, 18
(l), March, 1986, pp 39-65

[NIC088] Nicol, D., “ Parallel Discrete Event Simu-
lation of FCFS Stochastic Queueing Net-
works”, Proc. ACM SIGPLAN Symposium
on Parallel Programming Environments,
Applications, and Languages, Yale Univer-
sity, July, 1988

[TROP92] ‘h-opper C., Boukerche A., “ Parallelizing
the Sequencing Problem”, TR-SOCS, 1992,
McGill University, Montreal, Canada

150

