Parallel Simulation of Communicating
Finite State Machines

Carl Tropper=and Azzedine Boukerche!

Jet Propulsion Laboratories

California Institute of Technology

Abstract

We describe, in this paper, a synchronization/deadlock
resolution mechanism for a network of communicating fi-
nite state machines implemented on a parallel machiac,
As it is message-based, it is appropriate for distributed
memory machines.

The technique was inspired by a project at the Jet
Propulsion Laboratories whose goal is the specification and
verification of the software used to control the interplane-
tary spacecraft operated by the laboratory.

The network of communicating finite state machines
makes use of write messages to alter the value of the vari-
ables describing the finite state machines and read mes-
sages to determine the state of the variables. Since a
blocking protocol is employed, it is possible for deadlocks
to occur. Consequently, we describe deadlock resolution
algorithms.

Owr algorithms were mmplemented on an iPSC/2 hy-
percube, demonstrating good performance on a queueing
network model.

1 Introduction

We describe, in this paper, a synchronization mechanism
for a network of communicating finite state machines im-
plemented on a parallel machine. As it is message-based,
it is appropriate for distributed memory machines.

The technique was inspired by a project at the Jet
Propulsion Laboratories of the California Institute of Tech-
nology, whose goal is the specification and verification of
the software used to control the interplanetary spacecraft
which are operated by the laboratory.

In order to control the actions of an interplanetary
spacecraft, a sequence of commands are issued from the
ground to on-board flight computers in the course of the
spacecraft’s voyage (fire engines, move radar, begin plot-
ting surface...). Before actually issuing the commands,
they are subject to verification so that “undesirable” states
are not entered into. For example, instruments which are

*On sabatical leave from School of C'omputer Science,
McGill Univ. Canada

tVisiting doctoral student at the California Institute of
Technology

143

susceptible to the sun’s glare should not be unnecessarily
exposed to it. At present, the verification consists of check-
ing flight rules via a sequential event-logic language which
was originally developed for the Voyager program in the
mid-70’s [ALKA91]. In an attempt to place the specifica-
tion and verification of the spacecraft on a more modern
foundation, a model of the spacecraft, based on the no-
tion of communicating finite state machines (abbreviated
henceforth as fsm’s) was proposed in [ALKKA91]. A transi-
tion between the states of an fsm occurs as a consequence
of a command executed at the fsm. In appendix A we
provide an example (based on [ALKA91]) of a small sub-
system of the Galileo flight software in order to make this
approach to the specification and verification of real-time
systems more coucrete.

Since the communicating fsm’s are to be distributed
among the nodes of a multi-computer, a synchronization
technique is required in order to assure that the causal-
ity of the model is not violated. In the context of our
model, causality means that the write events are simulated
in chronological order at each fsm and the read events are
stinulated for the correct values of the variables which they
are trying to access.

While conservative synchronization mechanisms rely on
blocking to avoid violations of dependance constraints, op-
timistic methods rely on detecting synchronization errors
at runtime and on recovery using a rollback mechanism.
The algorithms we consider in this paper are an extension
to a conservative mechanism. In particular, we present an
approach to synchronizing the fsm’s based upon the use of
request messages. The technique is an outgrowth of algo-
rithms for synchronizing parallel simulations as described
in [COTE92] and [COTE92]. Algorithms for parallel sim-
ulation which are closely related to this approach are de-
scribed in [MISR86], [FUJI90] and [NICO88]. Our work
differs from these algorithms in that our algorithm sup-
ports the read operation of the state of variable in distinct
nodes (fsm’s in our case).

This technique is particularly important when the im-
mense size of these models is taken into account. In order
to be able to verify a model such as the one described above
in a reasonable time it is necessary to execute it on a par-
allel machine. Hence the need for efficient synchronization
techniques.

The remainder of this paper is organized along the fol-
lowing lines. We present our model for synchronizing the
fsm’s in the next section, discussing the ways in which
deadlocks can arise. The third section contains a descrip-
tion of the algorithm, followed by a proof of its’ correct-

http://crossmark.crossref.org/dialog/?doi=10.1145%2F158459.158477&domain=pdf&date_stamp=1993-07-01

ness. In section 5 we describe the experiments and the
performance of the algorithms. The conclusion follows.

2 The Model

We model the communicating fsm'’s as a directed graph in
which the nodes are fsm’s and the links represent queues
of either write' or read messages. Messages are exchanged
between the fsm’s which are intended to represent the send-
ing of write and read messages from one fsm to another
and the sending of statec information between fsm’s. Write
messages are used to write to state variables, while the
messages which request the state of an fsm correspond to
the reading of state variables. The messages in the queues
await processing at the fsm's.

Write messages, denoted by < Write, writeim. > may
change the value of a fsm’s variables. Writes,me is the
(simulated) time of the write message. Since owr model
1s conservative, writes must be processed in cluonological
order and no processing can occur until either the missing
write arrives or until an estimate is obtained of the earliest
time at which a write message can arrive. In order to coni-
plete the (simulated) processing of a write message, it may
be necessary for the fsm to request the state of a variable
in another fsm (for example, in the case of verification pro-
gram described in the appendix A, it may be necessary to
first obtain the value of a variable located at another fsm
in order to determine the safety of a transition). This is
accomplished via read message sent to the fsm in question.
The read message takes the form < Read, read;me >,
where ready,m. is the (simulated) time at which the read
is to occur.

Until a reply is received, the processing of the write
message cannot be completed, and no other write message
can be processed at the fsm. Read messages can be pro-
cessed, but only up to the time at which the last write
occurred. Since no further writes can be processed, read
messages with times larger than the time of the last up-
date of the variables which they are trying to read cannot
be processed. We say that the fsm in question is (tem-
porarily) blocked.

It is assumed that there is no upper bound on the
amount of time it takes a message to traverse a link, there
is no loss of messages, links never fail and they are FIFO
(do not reorder or duplicate messages). Furthermore, we
assume that the connectivity of the graph never changes.

In our model each fsm is represented by a logical process
LP?. The LP maintains a local simulation time it, defined
as the last time at which a write was executed at the fsm.
Separate queues are maintained for the read and the write
messages.

Each of the LPs is initialized with a queue of writes.
(In our example, these can be the set of writes which are
initially sent to the spacecraft or can be the result of the
pre-simulation phase proposed in [ALIKA91]).

'In the sequel write/iead messages and write/read-event
messages are taken to mean the same things

2In the sequel LP is to taken to mean the logical process that
will simulate the fsm in our model.

144

As mentioned above, an fsm will block when it has an
empty (write) input queue. In order to obtain the missing
write message, our LP sends a < Requesty,ite,temin >
message (temsn is the minimum time stamp at the LP) to
the appiopriate neighbor. In the event that the neighbor
can provide a write message for the requesting LP, it does
so. If it does not have one, then it examines its’ local time
(lt) to see if it is larger than tsmin. If It > t.min, then
it sends a < reply,lt > message back to the requesting
LP. When this message arrives, it unblocks the LP. If It <
tsmn, and if the fsm has empty input queues itself, it sends
its” own < Requestyy i, It > message to these neighbors
which correspond to its’ empty queues.

Unfortunately, blocking behavior can lead to deadlock.
We turn to a description of several of these deadlocks.

2.1 Different Type of Deadlocks

Deadlocks can occur during simulation as a result of
blocking and limited buffers. Since we employ different
deadlock-breaking mechanisms depending upon the type
of deadlocks which occurs, we analyse different cases. We
distinguish between the following types of deadlocks:

(1) Write Deadlock

Our first example of deadlock is due to empty (write)
input queues. Consider three LPs, depicted below in figure
1. Each of the LPs has an empty input queue, expecting
messages from another LP. The arrows indicate this de-
pendency. At the same time, each of the LPs have writes
in other input queues. LP; has a write bearing time stamp
11, LP> has a write with time stamp 7, and LP; has one
bearing time-stamp 13. The local time at each LP are
shown inside the circle. (The local time is the time at
which a write was last executed).

Figure 1: Cycle of Request Writes

In accordance with our protocols, LP 1 requests a write
from LP 2, LP 2 does the same thing to LP 3 and LP 3
completes the circle. None of the LP’s can respond because
they cannot be certain that they won’t receive a message
from their neighbor which could change its’ response.

Our deadlock is, of course, a cycle. It readily generalizes
to a knot.

Definition of a Knot 2.1 Let (V,E) be a directed graph
where V is the set of vertices in the graph and E a set of
directed edges where a directed edge (1,7) indicates that in
node i the link (i,j) is designated as an output link.

A knot K in (V, E) is a strongly connected subgraph of
(V, E) with no edges directed away from the subgraph K.
Alternatively, a node i is a member of a knot K if node i
s reachable from all nodes which are reachable from node
i. Each of these nodes must be able to reach i.

(2) Read Write Deadlock

A deadlock may also involve both read messages as well
as request for write messages. As illustrated in figure 2,
we can see in the example that LPpg cannot respond to the
read message < Read, b > issued by LP4 because it has an
empty input queue, and it local time ltg(= 3) is less than
5. The arrows from LPg to LPc and LPc to LP,4 indicate
an empty input queues at L Pg and L Pc respectively. LP4
is blocked until it completes processing the read message.

9
L J

% Q . /&

\/

\/

m

6

Figure 2: Read-Write Deadlock

The preceding two examples illustrate the occurrence
of deadlocks as a consequence of awaiting messages (which
don’t arrive).

(3) Memory Deadlock

Lack of memory can also cause deadlocks [COTE92]. If
no upper bound is placed on the number of huffers asso-
ciated with each LP, then dynamic memory management
could significantly reduce the possibility of deadlock. In
what follows, we assume that there is sufficient memory
for these deadlocks not to occur.

3 Description of the Algorithm

We start with an informal description of the algorithmn,
and then make it more precise.

Let us first assume that the deadlock takes the form of
a cycle, i.e. that 2 LPs "connected” by the read message
in our dependency graph are also connected by a path of
request write messages, as depicted in the example above
(fig 2). An arrow directed from LPg to LPc in a depen-
dency graph means that LPg has an empty input queue
from LPc.

145

Recall that a read message may be issued by an LP
while processing a write message.

The read message is defined by:

< Read,read;ime >

where ready.me is the (simulated) time of the read mes-
sage issued by an LP to read the value of a variable located
in another LP.

Denote by LP.q,,,,., the LP which issues the read mes-
sage and by LPpoc,,;, the LP which receives the read mes-
sage.

In general, a read message may be responded to if and
only if readime < mazx(lt(procinit), tsmin), where tymin
is the smallest time stamp in all of the LPpy,,.,,,,’s input
queues, the read;;m. is the read time of the read message
issued by LP;y, .., and the It(proc;,) is the local (clock)
time at the LP,,.c,,,,-

Upon receipt of a read message < Read,readiime >
from LPi,,,,... (LP4 infigure 2), LPpoc,,,, (LPp in fig-
ure 2) sends a requesty,q (request blocked_awaiting data)
message along its' empty input queues, i.e. to neighbor-
ing LPs which deliver messages via the empty queues. The
purpose of this request message is to determine if the value
of the variable requested by the read message at L Pproc; ...,
will change between the lt(idyroc) and readim.. The
request,,q message is in turn forwarded along a path of
empty input queues to LPyq,,,...- If the requesty,qa mes-
sage arrives at LPiq,, .., then LP;q,,, .., checks toseeifit
Las received the data which it requested by the read mes-
sage. If it has not, we have a read-write type of deadlock
(see figure 2). Therefore LP,qg,,,,., sends a bad (blocked
awaiting data) message which returns to L Py, ,,;, Vvia the
same path taken by the requestysa message (but in the
oppposite direction). In our example, the requestp,a mes-
sage travels from LPg to LP4 via the empty links, and
the bad message returns in the opposite direction. Upon
receipt of the bad message, LPproc,,,, is free to either re-
spond to the read message or to process a write message
in one of its’ input queues.

We now turn to a more precise description of our algo-
rithm.

As described in section 2, we make use of <
Request yritc,tam:n > messages in an attempt to unblock
LPs which have empty (write) input queues.

In the event that the following the 2 conditions are
satisfied, the LP initiates the knot detection algorithm de-
scribed in [MISR83], in order to detect a write deadlock.

1. The LP must have received at least one request and
have sent one request. This condition eliminates those
LPs which could not possibly belong to a knot from
starting the knot detection algorithm.

2. The time associated with the request write message
issucd by the LP must be smaller than or equal to
the time of some request write message which was
received by the LP. The purpose of this condition is
to exclude those LPs which cannot break the knot
from initiating the detection algorithm.

The deadlock is then broken by detecting the LP with
the smallest time stamps among the LPs involved in the
deadlock {[BOUK90].

Recall that LP,q,,,,, ., is the LP which issues the read
message and LPprqc,,,, 15 the LP which receives the read
message.

Upon receipt of a read message, LPpr.,,,, sends a
requestyoq message along its’ empty input links if it 1s un-
able to reply.

The requestyoq message is defined by:

< RequeStbads 7‘60(l1;me) 7dluun chs PTOC nyt >

where read;,me is the read time of the read message is-
sued by LP,q4,, .0+ tdiaunch s the id of the LP which sends
the read message, proc,,. is the id of the LP which sends
the request,,q message after receiving a read message

Each LP maintains a data structure so that it may for-
ward only one requestp,q message corresponding to the
same read message along its’ outgoing links. The data
structure is

parent,q, = td of the LP from which a requestioq mes-
sage arrives, such that k is the id of LP, In our
example at LPc, parent,y = LPpg.

digunch”

parent,,, contains the associated read time; in our ex-
ample, parent,,, = 5.

Upon receipt of a requesty.q message, both fields are
examined, i.e parent,q, and parent, . If the message
comes from a different parent and has the same read time,
then it is a duplicate of one already received and is dis-
carded, thereby reducing the number of requestyqq mes-
sages involved in the simulation.

When a request bad message arrives at an LP, then

1. If the LP is not blocked. it keeps the message untill
such time as it blocks.

2. If the LP is blocked and the readime < It then
the request bad message is forwarded to neighbors
which correspond to empty (write) input links. If the
readime > It, a bad message is sent along the path
determined by the parent_id’s. We describe the bad
message and its’ processing below.

If a requestsos message finally arrives at LPa,,, ...
then if it is blocked waiting for data, a comparison of the
readym. associated with the request bad nessage and the
It of LP,a,,, ..., is made. If they are equal, a bad message
is sent to the LP from which the request bad message ar-
rived. Subsequent request,.qs messages corresponding to
the same read are discarded. The bad message is defined
as

< Bad7 idlaunch sy PTOCsnit, 7'eadh'1ne >.

The bad message now returns along the path dictated
by the parent_id ’s. When a a bad message arrives at

an empty write input queue, it is processed in the order
dictated by its’ time stamp.

In the event that the bad message reaches LPproc;,;,
(LPg in our example) its’ readyme must fall into one of
two cases:

1. Itg < readyme < tsmin(B). Then LPg may respond
to LPa’s < Read, ready,n. > message by sending the
value of the variable requested via a data message.

2. ltp <ty (B) < readyyme. Then the write at LPp
may be executed.

As before it is still possible that execution of the write
might not result in the read being responded to; a
write bearing a time stamp >= the time of the read
might have to first arrive.

Recall, that if LPproc,,,, unblocks, it may provide that
data message to the read message.

The data message is defined by:

< Data, datanme s idlnunch, ProcCinit >

where datay,m. is the data time of the recent value
of the variables requested by the read message issued by
LP.4,,,ners *dtauncy is the id of the LP which sends the
read message,

4 Proof of Correctness

To simplify our discussion, call a deadlock which only in-
volves read messages a read-only deadlock, one which only
involves write messages a write-only deadlock, and the
combination a read-write deadlock.

We start out with a
Lemma 4.1 Read-only deadlocks cannot occur.

Proof

We assume that the response to a < Read, read.time >
message is the state of a variable at time t — e(e > 0).
We make this assumption in order to maintain temporal
consistency, as the write operation which resulted in the
< Read, ready;me > message should be executed after it
obtains the necessary state information. This assumption
also avoids deadlocks, as we shall see .

We show that in order for such a deadlock to occur,
the time-stamps of the corresponding write messages (i.e.
which resulted in the read messages being issued) must be
equal. As a consequence of our assumption, it follows that
all of the LPs can respond with a < Data, readiime — € >
message.

Assume that there exists a deadlock and that not all of
the minimum time-stamps of the read messages are equal.
Then a < Read, read;,me > must arrive at some LPi such
that readiime < temin (LPi). LPi will then be able to

146

\69 O < osd, > @@6

< Read, 6 >

Figure 3: Read Cycle

respond with a data message, contradicting the existence
of a deadlock. [J

Lemma 4.2 Write only deadlocks can be detected and
broken.

Proof

Write only messages may form a knot, as pointed out in
the preceding section. We may detect this knot by use of
the algorithm described in 3. In order to be able to break
the knot, we also detect the LP which sent the rcquest
with the smallest request time. The LP with the smallest
request time can 1'eT£ond to at least one request, thereby
breaking the knot.

Having eliminated these two categories of deadlocks, we
are left with the possibility of a deadlock which involves
both read and request write messages. In the spirit of
divide and conquer, we first prove

Theorem 4.1 A deadlock which involves a single read
message and more than one write message may be broken.

Proof

The reason that we restrict ourselves to deadlocks in-
volving one read and more than one write message is that a
deadlock involving exactly one read and one write message
cannot occur. Such a deadlock must, per force, involve 2
LPs, as illustrated below.

V% N

=),

< Read 5>

Figure 4: Read-Write Cycle

LP A is constrained to execute the write bearing its’
smallest time stamp. Consequently, upon receiving the
read message, LP B is aware that it cannot reccive a mes-
sage bearing a smaller time stamp the time of the read
message. Hence there is no deadlock. (We note, however,
that LP B may not be able to immediately respond to the
read message because its’ own minimun time stamp is less
than the time of the request. In this case it executes the
write with the smallest time stamp and continues process-
ing writes until its’ minimum time stamp exceeds the time
of the read message).

Summarizing the argument to this point, we may say

Lemma 4.3 If a deadlock cycle exists, a requestpaq mes-
sage i3 sent and arrives at LP.d,“"ch In turn, a bad mes-
sage issued by LP,q, ... will arrive at LPpoc,,,,, thereby
breaking the deadlock.

Proof

The final case which we must dispose of in order to
prove the theorem is the existence of a knot of write mes-
sages in between the LPs connected by the read message.
An example of this is depicted in the figure below.

<Read 5>,

\/

& (\—-—»@

\va

ITI

3

Figure 5: Read-Write Knot

In this example. the arrival of a bad message at node C
will not unblock C. However, the knot detection/breaking
algorithm previously described will locate the minimum
(write) time stamp in the knot. Since no write mes-
sage with a smaller time stamp can arrive in its’ input
queues, the LP which has the write bearing the smallest
time stamp may be processed. In the event that is LP
is blocked awaiting a read, it can demand the data via a
< Demand,cad,t > message.

We are now in a position to construct the final link in
our exclusionary chain.

Theorem 4.2 A deadlock which involves more than one
read and writes cannot occur.

Proof

Consider an LP which has received a read message, but
which cannot respond to the to the read because of an
empty input queue. The empty input queue is directed to
an LP which did not send the read message.

The minimum time stamp at the LP must be > the
smallest time stamp of any write message which can arrive
in the empty queue. This is true because a requesty ite
message would have produced an estimate which would
have unblocked the LP. (the write bearing the smallest
time stamp would have been executed). Furthermore,
t,lm in(write) < ts (read), else the read message could com-
plete,

147

The subsequent LP must issue either a read or a request
write message. Since the LP is part of a knot, a path of LPs
which issue either reads or request writes must lead to the
the LP which sent the original read message. Making use
of the above argument, a simple inductive argument leads
to a strictly decreasing sequence of time stamps associated
with the read messages. This leads to a contradiction.

Summarizing the above discussion, we have

Theorem 4.3 Deadlocks involving write messages alone
may be detected and broken, while deadlocks involving read
and write messages may either be prevented or detected and
broken.

5 Performance- Experiments and Results

In order to investigate the performance of our algorithms
we elected to simulate them on an Intel iPSC/2 hypercube.

The iPSC/2 is a distributed memory multiprocessor, in
which the processing elements are connected in a hyper-
cube topology. The iPSC/2 consists of nodes and a front-
end processor. Each node is a processor/memory pair and
runs the NX/2 operating system and uses message pass-
ing to other nodes. The iPSC/2 board consists of an intel
80386 processor and a 80387 co-processor, both running at
16 MHz, local memory of up to 4 MBytes, and a 32 bit
architecture.

The time T required to transmit a one hop message of
length N bytesis: T'=a + 3N

where o represents a fixed start-up time (= 390 mi-
croseconds) for messages less than 100 bytes and 3 repre-
sents the transmission time per byte (=0.4 microseconds)
(see [DUNI9Q0] for a description of the performance of the
hypercube).

We chose the graph of our network of communicating
LP’s to be a torus because the large number of cycles in
the torus provides a stress test for the algorithms. The
presence of cycles results in the knot detection algorithm
being frequently called if the number of messages present
in the graph is sufficiently small. In keeping with this
approach, we initialized each link of the torus with 3 write
messages. We can interpret the initial messages as the first
set of messages sent to the spacecraft. We made use of
several size torii, from dimension 6x6 to 14x14 and varied
the number of processors from 2 to 16 processors.

We made use of a simple static mapping strategy of LPs
to processors, as in [FUJI90], BOUK90] in which a torus
is subdivided into grids, and in which the LPs in the same
grids are allocated to the same processo1.

The simulation runs for 1000 units of simulated time,
where one time unit is taken to be the time required to
process a message. All categories of messages are assumed
to require one unit of processing time. We assume that
as a result of processing a write message at most one read
message and at most one write message can be generated.
A write is generated with probability 80% while a read is
produced with probability 20%. Once produced, the prob-
ability that a message is directed to a ncighboring link is

determined by a uniform distribution, i.e. each output link
is equally likely to be chosen. We present our results below
in the form of a graph of the execution time (in seconds)
of the model as a function of the number of processors
employed to execute the model. As we can see from the
curves (figures 6, 7), the algorithms exhibit good perfor-
mance, in which the run time decreases significantly with
an increase in the number of processors.

500
R x 14x14LPs
U X
N ® 12x 12LPs
300 \
@ \
T 200 \ ~~
[o
M oo I
E \@ %%%%%%%%% @.‘*‘\"**ux
"
0 2 4 6 8 10 12 14 16

PROCESSORS

Figure 6: Performance - Run Time vs. Processors

From the shape of the graphs we note that the largest
decrease in execution time occurs initially, with the run
time eventually flattening out. For example, in figure 6
increasing the number of processors from 2 to 4 results in
approximately a 50% decrease in run time. From 4 to 8
processors, we observe a 30% decrease. After 8 proces-
sors the curve gradually flattens out. A number of factors
contribute to the shape of the curve.

200

10x 10 LPs
8x 8LPs
6x 6LPs

175 X
150 . ®

125 N #

ZCD
x

100 QE}
75

50 #.

mz— -

25

0

PROCESSORS

Figure 7: Performance - Run Time vs. Processors

First is the limit on the parallelism of the model. The
number of LPs in the model coupled with the number of
messages initially placed at each of the LPs determine the
amount of parallel activity in the model. While the shape
of the graphs in figures 6 and 7 are the same, the percent-
age decrease in the run time of the models is smaller when
there are fewer LPs.

A second factor is the effect of inter-processor commu-

148

nication, in particular the increase in the cost of knot de-
tection and breaking when message passing is involved.
The knot detection algorithm used is the one described in

[MISR83].

6 Conclusion

We described, in this paper, algorithms for synchronizing
a collection of communicating finite state machines and for
resolving deadlocks which might arise in the process. The
algorithms were implemented on an Intel iPSC/2 and were
tested in the context of a queneing model of a torus. The
torus was chosen primarily because it is rich in cycles and
is therefore a stress test for our algorithms.

The performance results show that significant decreases
in run time were obtained with the use of the algorithms
described in this paper.

An issue worthy of further attention is that of memory
management. [t becomes more important as the program
grows in size, especially the management of space for write
messages.

Our approach to memory management has been to emn-
ploy a fixed number of buffers at each LP. However, as
pointed out in [COTE92], deadlocks may result. One ap-
proach to their resolution is described in [COTE92]. An-
other approach is to use a dynamic scheme in which all
buffers are shared by LPs, subject to an upper and a lower
bound on number of buffers available to an LP. This pre-
vents starvation and hogging. A combination of a process
migration protocol with the dynamic scheme might also be
envisaged.

The algorithms outlined here are suitable for address-
ing related problems in domains other than the verifica-
tion of real-time software programs. Examples are combat
simulation and shark world simulation, to mention a few,
where it is convenient to utilize state vaiiables that can be
accessed by distinct logical processes.

Appendix A

We provide an example (hased on [ALKA91]) of a small
sub-system of the Galileo flight software.

Our example is based upon a small sub-system of the
Galileo spacecraft. It illustrates the use of communicating
finite state machines for the purpose of specifying and ver-
ifying a rather large, complicated real-time system. Sub-
systems of the spacecraft are represented by fsm's, with
safe and un-safe state transitions specified. Messages are
exchanged between the fsm’s which are intended to repre-
sent the sending of commands from one fsm to another and
the sending of state information between fsm’s. The com-
mands are represented by messages which write to state
variables, while the messages which request the state of an
fsm correspond to the reading of state variables.

The system consists of a gyroscope, an inertial sensor,
an accelerometer and a heater. The flight mode of the
spacecraft is maintained by an attitude and articulation
command subsystem, while a command data system re-
ceives command subsequences which are transmitted to

149

Tgyrop_on 7qyvop._ o Timer

SO Schedule (7IN1P,11) Elve

{Schedule (TINTPR.11)
Schedule (7IN1PR.11))

s1| 89 Error Schedule (7INTR,t1)

aH

i not {ine_on)

s2| $2 Eror Schedule (7INTAT)

Table 1: State Actions.

the spacecraft from the ground and schedules them for ex-

ecution.
Q Timer (gyro_on)

) —>(e)
7 gyro_off
7 gyro_on 7 gyro_off
N
(c)
-

State { (X,Y) | X = gyro_power, Y = refiable_dat }

Figure 8: State Graph

The gyro is powered on in response to a 7gyro-on com-
mand, and is powered off upon receipt of the 7gyro.of f
command. It produces reliable data only after the inertial
sensor has been turned on for 40 seconds after the gyro
is powered on. The gvro turns on the inertial sensor by
scheduling the 7In1p command and turns it off by issuing
the 7Inlpr command. 40 seconds after the inertial sensor
is turned on, it notifies the gyro that its’ data is reliable
by issuing the timer(gyro) command. At point the gyro is
considered to be functioning reliably.

The accelerometer functions in a similar fashion. When
it is turned on via the Taccl_on command, it also requires
that the inertial sensor be switched on. If the gyro has
previously turned on the inertial sensor, the accelerometer
does not have to do so. When the gyro is powered on
after the accelerometer has already turned on the inertial
sensor, the gyro will first switch off the sensor and then
turn it back on. This is done because the gyro requires
that the inertial sensor be initialized.

The gyro heater is switched on by the Thtr_on command
and off by the 7htr_of f command.

Figure 8 contains a finite state machine for the gyro,
Fsm’s for the inertial sensor, and the heater may be found
in [ALIKA91]. Each state is represented by two variables,
indicating whether the power is turned on and whether
the data is reliable. A transition between the states of an
fsm occurs as a consequence of a command executed at the
fsm. An altered state can, in turn, cause the generation
of new commands. An example of such "state actions” is
contained in the table 1 below devoted to gyro actions.

Several entries in the table indicate that an error state
Lias been reached. In order to determine whether such a

state occurs, constraints on allowable transitions are ex-
amined after the execution of each command. These con-
straints, based in part upon the Galileo flight manual, are
described by the following pseudo-code:

1. whenever (gyro.on < — — true)

(gyroont — htront < 1 hour and

htr_on.v = true) <=> error

2. whenever (gyro.on < — — false)
(aacs.mode = inertial) <=> error

3. aacs_mode.t — gyro_on.t < 2 hours <=> error

Acknowledgments

Heartfelt thanks to Mani Chandy for arranging CT’s
sabbatical at JPL and for reviewing the manuscript and
providing criticism. Thanks to John Horvath at JPL for
hosting CT’s visit. Thanks are in order to Richard Fagen,
director of the Campus Computing Organization of the
California Institute of Technology for providing us with
computational facilities and to Paul Messina, director of
the CCSF at CalTech for providing us with super-computer
access.

References

[ALKAO1] Alkalaj 1., "Towards a Specification Lan-
guage and Programming Environment for
Concurrent Constraint Validation of Space-
craft Commands”, JPL, Pasadena, Calif.

1991.

Boukerche A., Performance Analysis
of Distributed Simulation”, M.Sc. thesis,
Mc@Gill Univ., School of Computer Science,
Montreal, Canada, 1990.

[BOUK90]

[COTE91] Cote C., "Pseudosimulation in Distributed
Simulation”, M.Se. thesis, McGill Univ.,
School of Computer Science, Montreal,

Canada, 1991

Cote C. and Tropper C., "On Distributed
and Pseudosimulation”. 1992 Workshop on
Parallel and Distributed Simulation, SCS,
Vol. 24, n. 3, Jan 1992, pp. 97-106.

Dunigan T. H., "Performance of the In-
tel iPCS/2 Hypercube”, Technical Report
ORNL/TM-11491, 1990, Oak Ridge Na-
tional Laboratory, Oak Ridge, TN, 37831

Fujimoto R., ” Parrallel Discrete Event
Simulation”, Communication of the ACM,
October 1990.

Misra J. and Chandy K. M., ” A Distributed
Graph Algorithm:Knot Detection”, ACM
Transactions on Programming Languages
and Systems, vol. 4, no. 4, Oct. 1983, pp.
678-686

Misra, J. , "Distributed Discrete Event
Simulation”, ACM Computing Surveys, 18
(1), March, 1986, pp 39-65

[COTE92)

[DUNI90]

[FUJI90]

[MISR83]

[MISRS6]

150

[NICOSS]

[TROP92]

Nicol, D., "Parallel Discrete Event Simu-
lation of FCFS Stochastic Queueing Net-
works”, Proc. ACM SIGPLAN Symposium
on Parallel Programming Environments,
Applications, and Languages, Yale Univer-
sity, July, 1988

Tropper C., Boukerche A., "Parallelizing
the Sequencing Problem”, TR-SOCS, 1992,
McGill University, Montreal, Canada

