
Compositional Analysis of Modular Logic Programs

Michael Codish* Saumya K, Debray$ Roberto Giacobazzi~

Abstract

This paper describes a semantic basis for a composi-

tional approach to the analysis of logic programs. A

logic program is viewed aa consisting of a set of mod-

ules, each module defining a subset of the program’s

predicates. Analyses are constructed by considering

abstract interpretations of a compositional semantics.

The abstract meaning of a module corresponds to its

analysis and composition of abstract meanings corre-

sponds to composition of analyses. Such an approach

is essential for large program development so that al-

tering one module does not require re-analysis of the

entire program. We claim that for a substantial class

of programs, compositional analyses which are based

on a notion of abstract unfolding provide the same pre-

cision as non-compositional analysis. A compositional

analysis for ground dependencies is included to illus-

trate the approach. To the beat of our knowledge this

is the first account of a compositional framework for

the analysis of logic programs.

1 Introduction

It is widely acknowledged that as the size of a pro-

gram increases, it becomes impractical to maintain it

as a single monolithic structure. Instead, the program

*Department of Computer Science, KU Leuven, Belgium.

codish@cs .kuleuven .ac. be.

i Department of Computer Science, The University of Ari-

zona, Tucson, AZ 85721, USA. debray@cs. arizona. edu. Sup-

ported in part by the National Science Foundation under grant

number CCR-8901 283.
$Djpwtimento di Informatica, Universit& di Piss, CO~O

Italia 40, 56125 Piss, Italy. giaco@di. unipi. it. Supported

in part by the Esprit Basic Research Action 3012- Compulog.

Permission to copy without fee all or part of this material ie

granted provided that the copies are not made or distributed for

direct commercial advantage, the ACM copyright notice and tha

title of tha publication and ite date appear, and notice is given

that copying is by permission of the Association for Computing

Machinery. To copy otherwise, or to republish, requires a fee

and/or specifio permission.

ACM-20th PoPL-l/93-S.C., USA
@ 1993 ACM 0.89791.561.5/93/0001 /0451 . ..$1.50

has to be broken up into a number of smaller units

called modules that provide the desired functionality

when combined. Modularity helps reduce the com-

plexity of designing and proving correctness of pro-

grams. Modularity helps also in developing adaptable

software. Since the program specifications can change

while the program itself is being constructed, a modu-

lar structure of programs and a corresponding modu-

lar analysis can reduce the updating complexity both

in program development and in program analysis. In

contrast to this situation, however, current works on

dataflow analysis of logic programs typically assume

that the entire program is available for inspection at

the time of analysis. Consequently, it is often not pos-

sible to apply existing dataflow analyses to large pro-

grams, either because the resource requirements are

prohibitively high, or because not all program compo-

nents are available when we wish to carry out the anal-

ysis. This is especially unfortunate because large pro-

grams are typically those that stand to benefit most

from the results of good dataflow analysis.

In this paper, we give a formal account of how mod-

ular logic programs may be analyzed. The basic idea

is more or less standard: we consider a semantics to

modular programs, then study how such a semantics

may be safely approximated and how the results of

such approximations may be composed to yield flow

analysia results for the entire program. We demon-

strate this approach by giving a compositional ground

dependencies analysis for modular logic programs. Se-

mantic treatments of modules in logic programs have

been given by a number of authors (see, for exam-

ple, [7, 22]), typically based on nontrivial extensions

to Horn clause logic that lead to complex semantics;

it appears to us that the development of abstract in-

terpretations based on such semantics is not entirely

straightforward. The semantics we consider here as
a basis for abstract interpretations is a simplification

of that proposed in [4]. The essential idea is to treat

modules as programs in which undefined predicates

are considered open. The meaning of a module is given

451

http://crossmark.crossref.org/dialog/?doi=10.1145%2F158511.158703&domain=pdf&date_stamp=1993-03-01


in terms of iterated unfoldings of the procedures de-

fined in it, except that the open (i.e., imported) pred-

icates are not unfolded—the result is to specify the

meaning of a module in terms of structures that de-

pend only on the meaning of the open predicates. It

turns out that composition of modules is described

using the same semantic function—namely, iterated

unfolding—as that used for describing the meaning of

a module, leading to a conceptually and mathemati-

cally simple and elegant treatment.

This semantics is attractive as a basis for abstrac-

tion as it resembles the semantics of [14] which pro-

vides the basis for abstract interpretation as described

in [2] and [8]. The use of clauses aa semantic ob-

jects leads to interesting technical complications for

abstract interpret ation, in that there are two indepen-

dent dimensions along which we need finite descrip-

tions in the abstract domain, namely, finite descrip-

tions of sets of substitutions (the “usual” dimension),

and also finite descriptions of unbounded sequences of

atoms. This is not a matter of purely theoretical inter-

est: in most Prolog systems currently available, e.g.,

BIM and Sicstus Prologs [3, 6], there are no a pm”ori

restrictions on the dependencies between the differ-

ent modules in a program (a module A depends on a

module B if a procedure defined in A calls a procedure

defined in B), and it is entirely possible to have a set of

modules mutually dependent on each other. As a prac-

tical matter, therefore, it is important to be able to

deal with modules with arbitrary inter-module depen-

dencies. Our general treatment—which we call sym-

met ric composition--shows how these problems may

be addressed. However, it may incur a loss in pre-

cision because of the need to approximate objects of

unbounded size using descriptions of bounded size in

a way that is not usually encountered in abstract in-

terpretations. We identify a special case, where the

dependencies between modules is hierarchical, where

it can be guaranteed that there will be no need to sac-

rifice additional precision when dealing with what we

call the directed composition of modules.

The rest of the paper is organized as follows: Section

2 presents briefly some preliminary definitions and no-
tations. Section 3 describes the concrete semantics

which is the basis for abstraction. Section 4 intro-

duces the general compositional abstract semantics,

while Section 5 describes a special case where abstrac-

tions are defined in terms of abstract unfolding and

presents an example for ground dependencies analysis.

Section 6 illustrates how our approach can be used for
compositional analysis. Section 7 discusses how some

restrictions on modules, assumed in earlier sections,

can be relaxed. Section 8 discusses related work, and

Section 9 concludes.

2 Preliminaries

In the following we assume familiarity with the stan-

dard definitions and notation for logic programs [20]

and abstract interpretation [11, 12]. Throughout, we

will assume a fixed set of function symbols X, a fixed

set of predicate symbols II and a fixed denumerable set

of variables Var. With each function symbol ~ G E

and predicate symbol p E II is associated a unique nat-

ural number called its arity a (predicate or function)

symbol f with arit y n is written f/n. The non-ground

term algebra over Z and Var is denoted Z’erm(X, Var)

or Term for short. The set of atoms constructed from

predicate symbols in II and terms from Term is de-

noted Atom(ll, X, Var) or Atom for short. The pow-

erset of a set X is denoted by P(X). A goal z is a se-

quence of atoms, and is typically written (al, . . . . an)

or simply as al, . . .. an. We sometimes view ii as a
set and write b G ii. The empty sequence is denoted

by ( ). The concatenation of goals & and ~2 is de-

noted $1:: bz. A Horn clause is an object of the form
h + $ where h is an atom, called the head, and ~ is

a goal, called the body. The set of clauses constructed

from elements of Atom is denoted C/ause(II, S, Var)

or Clause for short. The set of variables occurring in

a syntactic object t is denoted by vars(t).

A substitution is a mapping from Var to Term which

acts as the identity almost everywhere: it extends to

apply to any syntactic object in the usual way. The

identity substitution is denoted c. The set of idempc-

tent substitutions is denoted Sub. Following tradition,

the application of a substitution Oto an object t will be

written tO rather than t9(t).We fix a partial function

mgu which maps a pair of syntactic objects to an idem-

potent most general unifier of the objects. A state-

ment d = mgu(s, t) implies that s and t are unifiable.

The notation for mgu is extended aa usual for sets of

equations. We write mgu((al, . . . . an), (bl, . . . . b~)) to

denote the most general unifier of the set of equations

{al= tq,..., an = b~}. Note that mgu(( ), ( )) = c.
A variable renaming is a substitution that is a bi-

jection on Var. Two syntactic objects tland t2are

equivalent up to renaming, written tl- tz,if tlp = tz

for some variable renaming p. The equivalence class

of t under w is denoted by [t]~.Given an equivalence

class ~ of syntactic objects and a finite set of variables
V, it is always possible to find a representative t of

~ (i.e. an object t such that [t]- = ;) that contains

no variables from V. For a syntactic object s and a

set of equivalence classes of objects 1, we denote by

(cl,.. ., c~) <, 1 that c1,..., c~ are representatives
of elements of 1 renamed apart from s and from each

other, namely, that

1. [Ci]w E 1;

2. vars(c$) n vars(s) = 0, 1< i < n; and

452



3. i + j implies vars(ci)nvars(cj) = 0, 1 S i,j < n.

Note that the empty tuple is trivially renamed apart

from any object s and (possibly empty) set 1, i.e.,

() <,1.

In the discussion that follows, we will be concerned

with sets of clauses modulo renaming, i.e., subsets of

[Clause]-. For simplicity of exposition, we will abuse

notation and assume that a clause represents its equiv-

alence class and write Clause rather than [Clause]-.

We focus on logic programs which are constructed

from predicate disjoint modules (considered also in

[15, 17]). If PI,..., P. are logic program modules,

then P =%~1U Pi is a modular logic program. A mod-

ular logic program is predicate disjoint if the predi-

cates defined in each module are disjoint from those

defined in the others. For logic program (or mod-

ule) P, open(P) denotes the set of predicates that

occur in the body of a clause in P but are not de-

fined in P. For any program P, we denote by @p the

set { [p(~) 4- p(E)]W I p C open(P) }: as we will see,

these tautologies play an important role in defining the

semantics of P.

3 Bottom-up semantics for

composition

This section presents the semantic basis for composi-

tional abstract interpretations. The semantics is an

instance of the compositional bottom-up semantics of

Bossi et al. [4], specialized for the case of predicate

disjoint modules. We propose two notions of com-

position which provide the basis for composition of

analyses. The first, “symmetric composition”, is that

introduced in [4]. It is more general and applicable

to the analysis of arbitrary modular logic programs.

However the second, “directed composition”, provides

for potentially more precise analyses when programs

have a hierarchical structure. It allows us to analyze

a module while “plugging in” analyses for predicates

defined in other modules that are lower in the hierar-

chy.

Definition 3.1 An interpretation is any element in

Int = p( C’Jause).

The concrete semantics is formalized in terms of un-

folding of clauses. The unfolding operator unf speci-

fies the result of unfolding clauses from an interpreta-

tion PI with clauses from an interpretation P2.

Definition 3.2 [unfolding] : The unfolding operator

unf : Int x Int * Int is dejined as

unf(Pl , P2) =

[

?=[(h *J, :: . . . :: Jn)c7]z,

~ ~flw: ~:,+ g~,.. .,~n]- CR, (n 20),

. . . ,hn + L4.} <c P2,

u = mgu((gl, . . ..gn). (hi, hn))hn)) 1

Intuitively, the unfolding operator yields every pos-

sible way to unfold each literal in each clause of PI

once using clauses in Pz. This operator is of inter-

est ss it can be applied to formalize both top-down

and bottom-up semantics for logic programs [19], The

following formalizes a bottom-up semantics for open

logic programs in terms of “iterated unfolding” — that

is, repeatedly unfolding the clauses in a program until

further unfolding prod~ces no change: -

Definition 3.3 ~xpoint semantics [4]]:
The jixpoint semantics of a program P is

the function F : Int * Int, dejined as

lfp( T$), where T$ : Int * Int is defined as

unf(P, I U @p).

Several aspects of this definition demand

given by

7(P) =

T$(I) =

explana-

tion. First, compare with the standard TP fixpoint

semantics for Horn logic programs. The Tp opera-

tor infers (ground) facts from the clauses in the pro-

gram given facts in an interpretation for the body

goals. This process can also be viewed as a kind of

unfolding where facts (i.e, unit clauses) are used to

unfold program clauses, Once we consider modular

programs, however, this approach is too simplistic be-

cause if we wish to give a compositional semantics then

open predicates, i.e., those imported from other mod-

ules, have no definition available. The solution to this

problem proposed in [4] is to unfold only those predi-

cates which have a definition, so that the meaning of a

program becomes dependent (as intuitively it should)

on the meaning of its open predicates. Technically,

this is accomplished by letting @p to add tautologi-

cal clauses for the open predicates and to unfold all

predicates in the body of a clause. Notice that the

unfolding of an undefined predicate with a tautologi-

cal clause is basically a “no-op .“ Moreover, note that:

If open(P) = 0 then @p = 0 and T~(l) = tinf(P, 1).

When I consists of unit clauses (facts), the fixpoint

operator in this case gives precisely the generalized

(non-ground) fixpoint semantics of [14].

Proposition 3.4 [symmetric composition [4]] : Let

PI and P2 be modules, then F(P1 U P2) = F(F(P1) U
3( P2)).

Example 1 Consider the logic program P (a portion

of a quicksort program), consisting of the following two

modules:

453



P SP.’ SPM(X,[I, [I>[l).
Splat(x, [YIL], [YIL1], L2) +

gt(x, Y), Sp/it(x, L, Ll, L2)<

Sphf(x, [YIL], Ll, [YIL2]) +
/e(X, Y), sp12t(X, L, Ll, L2).

P/g: gi(s(o), o).

gt(s(x), s(Y)) - gt(x, Y).

/e(O, O).

/e(O, s(0)).

/e(s(X), s(Y)) t /e(X, Y).

The unfoldings of PSP specify the possible ways of split-

ting a list of values into two lists of values; those

“larger than” a given X and those “smaller than” X.

In the module P,P the domain of values and the in-

terpretation of ‘larger” and ‘smaller” are open, since

the predicates le/2 and gt/2 are open. Evaluation of

F(P~P) proceeds as follows:~

1. Spht(x, [],[1,[ l).

2. Split(x, [YJ, [Yl], [ ]) + gt(x, YJ.

spiit(X, [Yl], [], [YI]) +- Wx, YI).

3. spiit(X, [Yl, Y2], [l’1, Y21, [I) +

gt(x, Y~), gt(x, Y~).

Spht(x, [Yl, Y2], [yI],[Y2]) +

gt(X, YI), /e(X, Yz).

sp~it(x, [Yl, Y2], [Y2], [YI]) +-
gt(X, Yz), /e(X, Yl).

split(X, [Yl, Y2], [], [l’1, Y2]) +-

/e(X, Y~), /e(X, Yz).

etc.

The unfoldings of P19 specify the relations “less

or equal” and ‘greater than” on integers. Since

open(Plg) = 0, the result corresponds to the se-

mantics of [14]: {gt(s(’0), O), le(O, O), le(O,s(0)),

gt(s(s(o)),s(o)), . . . }. The meaning of P,, U P,, can

be evaluated directly or by applying Proposition 3.4.
In either case the result corresponds to the standard

meaning as provided by the semantics of [14].

4 Abstract semantics and com-

position

We assume the standard framework of abstract inter-

pretation as defined in [11] in terms of Galois inser-

tions. We let (AInt, U, n, Q denote a complete lat-

tice of abstract models, where each abstract model de-

scribes a set of clauses. (Int, a, Alnt, -y) is a Galois

1we i~u~trate the &USeS added by successive iterations of

unfolding.

insertion, i.e., a : Int * AInt and -y : AInt * Int are

monotonic mappings, and additionally, a(~(l)) = 1

and I’ ~ 7(41’)) for each 1’ G Jni and 1 c Alnt.

The abstract semantics is a function ~ * : AInt -

AInt which assigns an abstract model to abstractions

of programs. The abstract meaning of a program P is

FA(cr(P)). For now, we assume only that 7A is safe

with respect to the concrete semantics, namely, that

for every 16 Int, Q(F(I)) ~ 7A(@(I)).

Abstract (symmetric) composition is analogous to

concrete composition. The following theorem states

the correctness of applying abstract composition for

program analyses based on any safe abstract seman-

tics.

Theorem 4.1 [correctness of abstract composition]

Let (Int, cr, AInt, ~) be a Galois insertion and let

FA : AInt +- AInt be a monotonic and safe approxi-

mation of F. Then, for any program modules PI, P2 E

Int, cr(F(P~ U Pz)) ~ FA(FA(a(P~)) U FA(a(Pz))).

PROOF. Assume the premise of the theorem and let

P1, P2 E lnt. Recall that a is continuous in any Galois

insertion [11].

a(F(P~ u P2)) = cY(F(F(P~) u F(P2)))

[ Proposition 3.4

~ @(a(F(P~) u Y(P2)))

[ safety

= FA(a(F(Pl)) u a(7(P2)))

[ a continuity

1

1

[ safety and monotonicity ]
0

5 Compositional Analysis

In this section, we illustrate the ideas sketched in

the previous section in a concrete way. We focus

on abstract interpretations induced from a set of ab-

stract substitutions A Sub, and illustrate two exam-

ples of compositional analyses for detecting “ground

dependencies’’ —which describe the manner in which

the groundless of a variable in a clause depends on

the groundless of other variables—induced from an

appropriate e domain of abstract substitutions. In the
first example we introduce the set VClause of clauses

in which all the terms are distinct variables, Abstract
substitutions describe instances of these clauses pro-

viding a domain of abstract interpretations. This do-

main illustrates the technical problems that can arise

in the analysis of general programs. In the second ex-

ample, we apply an additional level of abstraction to

handle this problem. In the following let (A Sub, lz)

be a complete lattice

(p(Sub), ~S, Asub,-ys)

of abstract substitutions, let

be a Galois insertion and let

454



VClause =

Each element of VC’lause is an equivalence

}c’

class

of clauses modulo renaming, and is syntactically rep-

resented as a clause. The idea is to associate each

representative of VClause with an abstract substitu-

tion that describes a set of its instances. This is ac-

complished in Definitions 5.2 and 5.3 (below) by for-

malizing abstract interpretations as mappings from

VClause to ASub. The ordering (likewise the join and

the meet) on VClause -+ A Sub is determined by the

ordering on A Sub. Namely, for Ila, 120 G VClause *

ASub, l? ~ l; a Vc. If(c) ~ l;(c). In the follow-

ing it is convenient to view an abstract interpretation

Ia : VClause - A Sub as an equivalent binary rela-

tion:

{ (c,~) I c C VClause, K = l“(c) }.

Example 2 If ASub = p(Sub) then the relation gt

from Ezarnpie 1 is described by

{

(9i(zl, Z2); {21 + s(o), X2 l-+ 0}),

1(gt(z,, z,) + gt(zs, z,); {z, = S(z,), 22 = z.}) “

As an example of a domain of abstract substitutions,

consider the domain Dep adopted from [9]:

Definition 5.1 [dependency relation] : A relation R

over a lattice X is additive ifl (x R x’ A y R y’) ~

(z u y) R (z’ u y’). A dependency relation R is an ad-

ditive equivalence relation (rejlexive, symmetric and

transitive) over P( Var). We let Dep denote the com-

plete lattice of dependency relations ordered by impli-

cation (containment).

For notational convenience, we let an arbitrary rela-

tion represent the smallest dependency relation im-

plying (i.e., containing) it. Furthermore, we let

“WI +-+ w{,..., Wn ++ WJ” denote the rela-

tion {( WI, W{),. . . . ( W., W;)} and drop set brackets
when sets are singleton.

A dependency relation K describes those substi-

tutions d satisfying the condition that for every

(V, W) G K, the terms in VO are ground iff the

terms in WO are ground. A particular case is when

V = 0 (or respectively W = 0); in this case it means

that the terms in We (or respectively Vd) are defi-

nitely ground. The corresponding abstract interpre-

tation is defined by the following: Let ~ E p(Stib)

and K c Dep. Define CYD : p(Sub) - Dep and
yD : Dep + @(Sub) by:

{

ve c e.
@D(~) = (V, W) 1vars( VO) = vars( WO) ;

{

V(v, w) c K.
y~(tc) = e 1vars( VO) = vars( WO) “

Example 3 Let O = {z I+ O, y ++ O} and d’ =

{z #O, y w s(0)}. Then ~D({d, O’}) is the small-

est dependency relation which contains {x, Y} w 0.

Note that in our notation this is written simply as

a~({e, e’}) = {z, y} -0.

It is straightforward to prove that

(p(Sub), CYD, Dep, ‘YD) k a Galois insertion. We now

describe how a domain of abstract interpretations is

induced from (p(Sub), a,s, ASub, 7s).

Definition 5.2 [abstract interpretations I] : Define

~ : ( VClause + ASub) - Int and & : Int -

( VClause + ASub) by:

{ 1(C,lc) c la, d

~(1”) = [4- e E -fs(~) ,. an

{

c G VClause,
a(l) = (c, /c)

}K = as{mgu(c, c’) I c’ <c 1} “

Example 4

Let ASub = Dep and

{

/e(O, O),

I= le(O, s(0)),

}ie(s(X), s(Y)) - le(X, Y) “
Then,

{

(le(z, y); {z, y} ~ 0),

1‘(~) = (/e(z, y) + /e(z’, y’); 2 + z’, y ++ y’) “

In the following we denote AIntD the domain of

abstract interpretations where A Sub = Dep.

Unfortunately ii and ~ as defined above do not pro-

vide a Galois insertion as ~ is not injective. This

means that several distinct elements in ( VClause +

A Sub) describe the same set of clauses. However this

is easily fixed, as suggested in [12], by letting ~ induce

an equivalence relation s on ( VClause + A Sub):

Example 5

If ASub = Dep, If = {(le(z, y); {z, y} s 0)} and

1; = {(le(z, y); {z, y, z} - 0)}. Then, ~(1~) = ~(1~)

and consists of all ground instances of /e(z, y).

Definition !5.3 [abstract interpretations II] : Let

AInt = ( VClause * ASub)/= where = is the equiv-

alence relation induced by Y on ( VClause h ASub);
i.e., I? ~ 1: ifl~(l~) = ~(1~). Define 7: Alnt + Int

and a : Int + AInt by lifting ~ and G respectively:

i.e., Y([l”]=) = ~(Ia) and a(l) = [ti(l)]~.

Notice that the equivalence relation = also provides

variable hiding. Given a clause description (c, K),
where c c VC1ause and s G A Sub, the relevant vari-

ables for the analysis are only those in vars( c). The in-

tuition is that if {(c, K)} s {(c, K’)}, and K # K’ then K

and tc’ describe the same set of abstract substitutions,

455



when restricted to the variables in vars( c). We do not
require ASub to be a finite height lattice (in fact Dep

is not of finite height). However, we require that for

every c c VClause, the set {[(c, K)]= I K c ASub} is

finite. It is not difficult to show that (Int, a, Alnt, 7)

is a Galois insertion.

A safe abstract semantics can now be defined in

terms of abstract unfolding which is in turn defined

in terms of an abstract unification function mguA :

(Atom” x ASub) x (Atom x ASub)* + ASub which

is assumed to satisfy the (safety) condition that

if mgv~((ii; ~o), (( bl; ~1), . . ..(b~. Kn))) = K, 6, ~

7s(Kt) (0 S i S n), and mgu(iit%, {bldl, . . ., bnf)n)) =
L9,then O c 7(K).

Example 6 The following is a safe abstract unifica-

tion function for Dep similar to that introduced in [9].

mgu~((~; ~o), (( bl; ~l),. ... (b~; ~n))) =

,Qo K, U { ({z}, vars(t)) I z ~ t G mgu(ii, i) } .

where ~ = (bl, . . . . bn). For instance:

mgq$((gt(z’, /); 0), (gt(x”, y“); X“ + 0, /’ + 0)) =

X’++x’’ t+g, y’wy ’’+-+@

indicating that X1, y’, X1l, and y’t are all ground.

Definition 5A [abstract unfolding]2 : The abstract

unfolding operator unfA : AInt x AInt + AInt is

defined as:

unfA(Pl, Pz) =

u

~=(h+tl:: . . . ::tn; k),

c=(h+gl ,.. .,9n; ~) E~l,

((hi +II; KI),...,

(h~ + ?.;%)) <c P2,

k = mgu A
(

((91,...,9n), K),
((hi; m), . . . . (hn;~n)) )

The abstract fixpoint semantics

terms of abstract unfolding by:

is now defined in

Definition 5.5 [abstract jixpoint semantics]: Define

3A : AInt + AInt as FA(Pa) = ljp(T#~) where
T$a : AInt + A1nt is defined by

T$~(Ia) = unfA(Pa, Ia u O>.)

and @~~ is the natural extension of @p for abstract

programs and has the property that @\a = CY(@P).

2Elements of A Sub are, in general, in%ite objects. To for-
mally “rename apart” objects of A Int it is necessary to assume

that every element of A Sub can be represented by a finite object,
which is not unreasonable.

Proposition 5.6 If mguA is a safe abstract unifica-

tion function, then unfA is a safe abstract unfolding

and 3A is a safe abstract semantics, namely, for every

11, Iz E Int, (i) ~(unf(Il, Iz)) G unfA(~(Il), 412));

and (ii) a(F(Il)) ~ FA(a(.fl)).

Theorem 4.1 can now be applied to justify compo-

sitional analyses. However, it is interesting to note

that when AInt is induced from ASub we can prove

a stronger result which implies that composition does

not introduce additional loss of precision, i.e., that

~A(l~ U If) = FA(FA(I~) U FA(Ij)) The proof is

similar to that of Proposition 3.4. It relies on the ob-

servation that (abstract) unfolding is an associative

binary operator that is left-distributive over the com-

position of programs, and that 3A is idempotent.

Symmetric Composition: Analysis of

General Modules

As mentioned earlier, existing Prolog implementations

allow arbitrary inter-module dependencies. An inter-

esting technical problem arises in this case: abstract

unfolding may introduce arbitrarily large clauses so

that analyses can no longer be guaranteed to termi-

nate. This necessitates a second (and orthogonal) ab-

straction to deal with unbounded clause bodies in the

abstract semantics. One proposal to deal with ab-

stract domains containing infinite chains is to use some

kind of widening/narrowing approach to restrict the

analysis to a finite subspace of the entire domain [13].

Here we consider a somewhat simpler solution that can

be formalized in the standard framework of abstract

interpretations by restricting AInt to be a finite height

lattice. We apply a further level of abstraction to pro-

vide finitary descriptions of (sets of) arbitrarily large

abstract clauses. A domain VClaus Q c VClaus e in

which clauses are restricted to have bodies containing

at most one occurrence of a predicate symbol is in-

troduced. In this case, since II may be assumed to

be finite, the new abstract domain, denoted AInt*,

becomes finite. This abstraction, called star abstrac-

tion and originally introduced in [9], provides an ap-

propriate framework to develop compositional analy-

ses. We demonstrate this for the case of ground de-

pendencies analysis. The basic idea is to collapse all
occurrences of the same predicate in a body to one

“canonical” atom, representing any possible sequence

of atoms with that predicate symbol. The collaps-

ing of a sequence p(il), . . . . p(i&) of atoms is a pair

(P(i); K) where K G Dep captures the intuition that
each argument x~ of p (it) represents the set of the j”~

arguments in p(il ), . . . . p(im). The following defini-

tion formalizes this as an abstraction function:

456



Definition 5.7 [star abstraction] : a% : AIntD +

AInt~ is defined bg:

cr*(l”) =

{

?=(h+bl::..,:: bm; i&c,),

u? (h t- T,/c,) E 1“,

((bl; ICI), .. . . (b~; K~)) <~ ccdiapse(h + ~) }

where collapse : VClause + [p(Atom x Dep)]~ is de-

jined by:

collapse(h + ~) =

{

2= [(p(z); zl ~ xl,..., % -xn)]N,

~ pln En, 2 =_{xl, . . ..zn}.
ii(lvam(h +b)=O, l~i <n,

Xi={~;lp(~l,...,~~)E~}#O

Notice that as a result of star abstraction, multiple

occurrences of gt(. . .) goals have been ‘collapsed” into

a single occurrence.

We do not fully formalize here the star abstrac-

tion as a Galois insertion (and hence as an abstract

interpret ation in our framework). However, we ob-

serve that ak is a complete join-morphism which im-

plies that an adjoint concretization mapping -y* :

AInt~ + AIntD does exist and is determined by

Y*(I) = U { 1’ [ CY*(I’) = I } . Since the composi-
tion of Galois insertions is also a Galois insertion [12],

(ht, a*ocr, AM5, YOM) provides a suitable basis for
abstract interpretation. It is the second level of (star)

abstraction which guarantees termination of composi-

tional ground dependencies analysis for arbitrary logic

program (modules) by taking for unfA in Definition

5.5 the function unf* : AInt~ x AInt~ + AInt&

defined by

The corresponding function 3A : AInt~ + AInt~

is denoted by P. The resulting abstract semantics

can also be thought of as being produced by an ab-
stract unfolding operator unfA that never produces

multiple literals with the same predicate symbol in an

unfolded clause body, instead collapsing them into a

single canonical literal—that is, where all the “action”

takes place during abstract unfolding rather than in a

separate abstraction step.

We illustrate (the result of) a compositional ground

dependency analysis for the split relation defined in

Example 1. The modules P,P and Prg are analyzed

independently and then the results are composed.

Example 8 Recall the program P.P U Pig from Exam-

ple 1. The abstract meanings of the two modules P8P

and P/$ are given by P(P.P) and P(Plg) respectively:

P(P$P) =

{

(gt(z, y); z -0, y - 0),

}
‘(p~9) = (/e(z, y); z +0, y *0) “

The abstract meaning of the composition of the two

modules is then obtained as

P(F(P,p) u P(plg)) =

{

(split(z~,zz,zs,zq);zz w 23 ++ 24- 0),

(9qz, Y); z - O,Y - 0),

(/e(z, y); z *O, y ~0) }

Intuitively, this is what we ezpect: using the abstract

semantics of the module P19, we have inferred that the

second, third, and fourth arguments of the predicate

split must be ground. This is in fact the best we can

do — the first argument of split may in fact not be

ground, given the jirst clause defining this predicate

(see Ezample 1).

Directed Composition: Analysis of Hi-

erarchical Programs

As discussed above, a compositional analysis that first

analyzes different modules in isolation, then composes

the resulting analyses, may have to deal with the pos

sibilit y of unbounded clause bodies during analysis,

typically by sacrificing some precision to gain termi-

nation. However, a common program design technique

is to structure different modules in a hierarchical way,

so that components of a program are defined and un-
derstood in terms of previously defined components.

If the modules in a program are structured hierarchi-

cally, it is possible to take advantage of this fact and

457



obtain a compositional evaluation of the program that

does not involve clause structures of unbounded size.

The underlying idea is quite straightforward. Con-

sider the program of Example 1, where P~g is lower

in the hierarchy of modules than PSP. We can use

the (abstract) meaning of Plg to evaluate the (ab-

stract) meaning of P, i.e., considering unfoldings of

P’ = P,p U F(Plg ). While P’ is an infinite pro-

gram, it will have a finite abstraction. Furthermore,

as open(P’) = 0, unfoldings will produce only unit

clauses, i.e., clauses with empty bodies. When viewed

as a program analysis, this corresponds to “plugging”

the analysis of Plg into the analysis of P,P instead

of composing the respective analyses. While a “pure”

composition is preferable, the latter may provide more

precise results as it requires less abstraction, and sim-

pler abstract models for the program.

Proposition 5.8 [directed composition]

For any two (predicate disjoint) modules P1

F(PI u P2) = F(P1 U7(P2))?

PROOF. Consider any two modules PI and

have

F(PI u 7(P2)) = X(F(PI) UF(Y(P2)))

[ by Proposition 3.4 ]

= F(F(PI) u F(P2))

[ 7 is idempotent ]

= F(PI U’P2)

[ by Proposition 3.4 ]

and P2,

Pz. We

❑

The following result shows that a “bottom-up” com-

position of modules is sound:

Theorem 5.9 Let (lnt, a, Altit, -y) be a Galois inser-

tion and let FA : AInt + AInt be a monotonic

and safe approximation of F. Then, for any pro-

gram modules PI, Pz ~ Int, we have @(F(Pl U P2)) ~

FA(a(Pl) u @(a(P2))).

The following example illustrates a hierarchical de-

pendency analysis (i.e. taking A Sub = Dep).

Example 9 Consider the logic program dejining

qs relation for a quicksort program, where split is
fined in Example 1:

the

de-

Pq, : qs([ ],[ ]).

qs([xlxs], Ys) +

split(X, Xs, Ll, L2), qs(Ll, h),
qs(L2, Bs), append(Ls, [X IBS], Ys).

P “ append([ ], X,X).am.. .
append([Xl w], Y, [X12]) + append(W, Y, Z).

The analysis starts from the module PaPp. The ab-
stract meaning of append is obtained as:

(fP( T$P.PP) =)

{

(append(xl, 22, X3);

}[z, -0,22 = x,] u [{x,, X2} ~ x3]) “

Notice that the intersection (the lub on Dep) of (the

smallest dependency relation containing) {xl, X2} *

X3 and (the smallest dependency relation containing)

xl - 0, Zz - X3 is (the smallest dependency rela-

tion containing) {xl, x2} + X3. so FA(cr(Papp)) =
{(append(zl, Z2, 23); {xl, 32} - Z3)}. The abstract

meaning of Plg (from Example 1) is

a(P/g) =

{

(gt(z, y); z +0, y -0),

(gt(z, y) + gt(z’, y’); z - z’, y - y’),

(le(z, y); z ~ O,y ~0),

(Ie(z, y) + le(z’, y’); r * z’, y w y’) 1

To approximate the meaning of P,p U Pig we apply

(abstract) directed composition:

@(cr(Psp) u 3A(a(plg))) =

{

(split(xl, x2, x3, x4); x2 * x3 + x4 +-+ 0),

(gt(z, y); z eo,y ++0),

(le(z, y); x ++ 0, y ++ 0) }

Observe that the result is the same as evaluation of

F’%(PSP u P/g). An additional application of (a~-

stract) directed composition provides the following ap-

proximation of the meaning of Pq8 U PaPp U P,P U Pig:

{

(qs(zl, q?); z~ ~ q),

(append(xl, 22, z3); {zl, 22} ++ z3),

(gi(z, y); z -0, y ~ 0),

(Ie(z, y); z + 0, y * 0),

(spiit(zl, $2, x3, x4); X2 +X3 -X4 -0) 1

Abstract Composition: Precision vs.

Termination

The first part of this section demonstrates that, in gen-

eral, the (symmetric) composition of program analy-
ses may require an additional layer of abstraction im-

plying a potential loss of precision. The second part

illustrates that a weaker form of (directed) composi-

tion can be applied to analyze programs with a hierar-

chical structure. In this case analyses are potentially

more precise. However, this approach is limited to
programs with a hierarchical structure and in partic-

ular to closed programs (i.e., programs in which ev-

ery predicate is defined in some module); moreover,

458



the composition is weaker and in particular, a mod-

ule cannot be analyzed until all “lower” modules are

available and have been analyzed.

In the following we provide some syntactic char-

acterizations which strengthen both of the above ap-

proaches to compositional program analysis. The first

characterization identifies a CISSSof bounded program

modules. Unfolding clauses in such modules does not

create clauses of unbound length. Consequently, if a

program consists of bounded modules then a single

layer of abstraction is sufficient for symmetric com-

position of analyses. The basic idea is to detect the

absence of loops in the program’s call graph which

might cause a problem. Note that not all loops create

unbounded unfoldings. A convenient way to express

this criterion is by way of a context free grammar.

The second characterization identifies a class of

semi-hierarchical programs which can be analyzed us-

ing one layer of abstraction with directed composition.

This class is richer than the class of hierarchical pro-

grams assumed above. To be more general, and in

particular to allow predicates which are undefined in

all modules, it is necessary to disallow certain combi-

nations of recursion and calls to open predicates. Our

approach draws on the notion of stratification (intro-

duced in [1] to support a safe use of negation), iden-

tifying those programs where only negated relations

whose meaning is fixed beforehand are allowed. The

basic idea is that modules which call open predicates

may be allowed in the hierarchy as long as there exists

a bound on the number of their occurrences in unfold-

ings. A syntactic condition is defined in terms of the

condition for checking bounded modules.

The following formalizes the call graph of a program

in terms of a context free grammar.

Definition 5.10 [call grammarJ : Let P be a mod-

ule. Let atoms(P) and open_ atoms(P) denote the

atoms and, respectively, the open atoms (i. e., any

atom whose predicate symbol is in open(P)), occur-

ring in P. The call grammar of P is the context-

free grammar Gp = (N, T, Q, S) defined as follows:

the set of nonterminals is given by N = (atoms(P) \

open-atoms(P) )U{S}, where S is a distinguished non-

terminal that is the start symbol of GP; the set of ter-

minal symbols is given by T = open. atoms(P); and

the set of productions Q is given by the following:

- For each A e atoms(P)\ open. atoms(P) there is

a production

S-A.

- For each clause ‘h : – b~, . . . . b~’ in P there is a

production

h---+ bbn.. bn.

- For each pair of atoms (b, h) e atoms(P) x

atoms(P) such that b occurs in the body of a

clause, h is the head of a clause and b unifies

with (a renaming of) h there is a production

b-h.

Example 10 Consider the following program, which

computes the transitive closure of a binary relation b:

tc(x , Y) + b(X, Y).

tc(U, V) + b(U, W), tc(W, V).

Assume that the only open predicate in this program

is b. The call grammar for this program is G =

(N, T, Q, S), where:

N = {S, tc(x, Y), tc(u, v), tc(w, v)};

T = {b(X, Y), b(U, W)};

and whose productions are given by

s - ic(x, Y) [ tc(u, v) I tc(w, v)

tc(X, Y) + b(X, Y)

tc<U, V) - b(U, W) tC(~, V)

tc(w, v) + tc(x, Y) \ tc(u, v)

The structure of this grammar becomes more obvious

if we rename the grammar symbols as follows:

tc(X, Y) + A,ic(U, V) = l?, tc(W, V) + C

b(X, Y)+a, b(U, JV)+b

The productions of the grammar then become:

S- AIBIC

A-a

B+bC
C-+A[B

Observe that L(G) = { b“a I n >0 } is not fnite.

Theorem 5.11 Let P be a module with call grammar

Gp. If the language L(GP) of GP is finite, then the

number of atoms occurring in the clauses in 7(P) is

bounded.

PROOF. (outline)

Given a program P, let the rank of a clause c in X(P)
be the smallest number of unfolding steps necessary to

obtain c from P. It can be shown that for any program

P, for every clause c 6 F(P) there is a string w in

L( GP) such that the number of atoms in the body of

c is equal to the length of w: the proof is by induction

on the rank of c. Now suppose that L( Gp ) is finite.
Let N be the length of the longest string in L( Gp),

then no clause in %(P) can have more than IV atoms

in its body. The theorem follows. •1

459



Note that it is decidable whether the language of
an arbitrary context-free grammar is finite [18]. The-

orem 5.11 therefore gives a decidable sufficient con-

dition for determining whether, for any given module

P, the clauses in F(P) are bounded. The following

example illustrates the application of this approach.

Example 11 Consider the following program, which

generates the list of prime numbers up to N for any

given natural number N:

We

noi.

primes(N, L) +

N<2, L= [].

primes(N, L) +

N ~ 2, intlist(N, Ll), primes.l(Ll, [2], L).

primes_l([ ], LO, Ll) +

rever.se(LO, Ll).

primes.l([HIL], LO, Ll) +

divisibie(LO, H), primes-1 (~, LO, .L1).

primes-1 ([.HIL], LO, Ll) +

not_divisible(LO, H), primes.l(L, [.HILO], Ll).

omit the definitions of intlist/2, divisible/2,

divisible/2. The idea of this program is to exam-

ine a list of numbers, checking each number to see if

it is divisible by any of the primes found up to that

point—if it is not, it is added to the list of primes

found, and the process continues with the remaining

numbers. However, because of the way primes are

added to the list as they are found, the list is generated

‘backwards”, an d has to be reversed at the end.

Now suppose that the only open predicate in this

program is reverse/2, which is imported from a li-

brary. The corresponding context-free grammar has

a jinite language, since the only nonterminals that de-

rive a nonempty string are primes and primesS, each

of which derive only the symbol ‘reverse(LO, Ll)’. It

follows from this that unfolding this program does not

produce clauses of unbounded size.

Before introducing the class of semi-hierarchical

programs we need the following notation:

Definition 5.12 [leveling, closure] : Let P =a~l P%

be a modular logic program. A leveling of P is a partial
order < on the modules of P. The closure of a module

Pa E P (with respect to a leveling ~) is the program :

closure< (Pi) = U Pj.
Pj 5 p%

Definition 5.13 [semi-hierarchical programs] : Let

P =,~1 Pa be a modular logic program. We say that

P is s~mi-hierarchical if there exists a leveling s of P

such that closure< is bounded for i = l.. n.

In particular, note that a program consisting of

bounded modules is semi-hierarchical, since the empty

partial order serves as an appropriate leveling for such

a program. The following example considers the pub-

lic domain tokenizer for Prolog written by Richard

O’Keefe.

Example 12 Consider a program consisting of the

following modules:

p~ok : Defines a tokenizer for Prolog. The open pred-

icates of this module are append, defined in Put,l,
and I/o primitives defined in P*Y$.

Putil : Defines a set of user defined utilities, including

the append program from Example 9. It contains

no open predicates.

P ,Y, : Dejines a set of system defined I/O primitives.

It contains no open predicates.

We include here part of P@:

read. tokens( TokenList, Dictionary) +

read-tokens(32, Diet, List OfTokens),

append(Dict, [ ], Diet),

Dictionary = Diet,

TokenList = List OfTokens.

read-tokens([atom( end_of@e)], [ ]).

read-tokens(–1, _, _) + fail.

read-tokens( Ch, Diet, Tokens) +
Ch =< 32,

getO(NeztCh),

read_tokens(Next Ch, Diet, Tokens).

read-tokens(40, Diet, ~(’ I Tokens]) +

getO(NeztCh),

read_tokens(Next Ch, Diet, Tokens).

read-tokens(41, Diet, ~)’ I Tokens]) +

getO(NeztCh),

read_tokens(Next Ch, Diet, Tokens).

The program Ptok U Put,t U P,Ys is hierarchical: pt~k

is ‘above” the modules PUt~l and PSYS. While the pro-
gram P = PtOk U P.Y, is not hierarchical, it is semi-

hierarchical. Hence P can be analyzed wtthout consid-

ering the meaning of append.

6 Reusing Analyses

The goal of this work has been to develop a formal

technique for the compositional abstract interpreta-

tion of modular logic programs. With such an ap-

proach, if some modules in a program change during

development, it is necessary to reanalyze only those

modules that have changed: the abstract semantics

computed for the other modules can be reused without

460



any problems, and the new abstract semantics for the

program computed simply by composing them with

the (new) abstract semantics computed for the mod-

ules that have changed. (Contrast this to the work of

[10, 24], where it is necessary to reanalyze not only the

modules that have changed, but (potentially) also any

module that depends on a changed module.) In this

section, we illustrate this reuse of abstract semantics

with an example.

Example 13 Consider again the program of Example

1: suppose the module Plg is changed to use a diflerent

formulation of the predicates gt and Ie:

gt(s(x), x). ‘4

gt(s(x), Y) + gt(x, Y).

gt(s(x), s(Y)) - gt(x, Y).

le(X, X).

/e(X, Y)+ gt(Y, X).

Let the changed module be denoted by Pig. Its ab-

stract semantics, using the same abstract domain as

in the previous examples, is given by

P(P&) =

The new abstract semantics for split can now be ob-

tained without reanalysis, by simply composing the

(previously computed) abstract semantics of split with

the (new) abstract semantics for gt and le:

P(P(P$P) u P(P(g)) =

It can be seen from this that the change to the defini-

tions of the predicates gt and le leads to a slightly dif-

ferent abstract meaning for the predicate split: whereas

in Example 8 it was inferred that each of the sec-

ond, third and fourth arguments of split was definitely

ground, we now infer that these three arguments are

either all ground, or are all nonground. On examin-

ing the program Pig, it is apparent that this is, in fact,

what should be inferred.

7 More General Composition

The main focus of this paper has been on the compo-

sitional analysis of predicate disjoint modules. This

choice is motivated by the fact that module based im-
plementations of logic programming languages typi-

cally provide this functionality. Moreover from a tech-

nical point of view, the assumption that modules are

predicate disjoint simplifies somewhat our presenta-

tion. For example, we do not need to introduce “im-

port” declarations to the syntax since only predicates

which are not defined in a module may be open.

However, it is worth noting that from the analy-

sis point of view there is no real obstacle in provid-

ing for compositional analysis of programs which are

not predicate disjoint. Moreover, although most im-

plementations do not support such modules, the pos-

sibility of spreading the definitions of a predicate in

different modules is useful, for example, in distributed

deductive databases. This allows different modules

to represent different views of the knowledge about a

predicate.

To substantiate our claim, we note that the com-

positional semantics defined in [4] (which is the basis

for our framework) is not restricted to predicate dis-

joint modules. Instead, each module is conceptually

accompanied by a declaration of its open predicates.

The concrete fixpoint semantics is defined as before,

by allowing tautological clauses in @p for each open

predicate. Moreover, Proposition 3.4 holds for arbi-

trary modules while Theorem 4.1 and Proposition 5.8

extend with no difficulty.

The following example illustrates the feasibility of

applying compositional analysis to programs which

contain modules which are not predicate disjoint.

Example 14 Consider a program consisting of the

following modules:

P%at : Dejining the evaluation of arithmetic expres-

sions over the integers and including definitions

for predicates integeril, plus/3, times/3, and

eval/2. The clauses for eval/2 include:

eval(A + B, Y) +

eval(A, A’), eval(l?, l?’),

PIus(A’, B’, Y).

eval(A * B, Y) +

eval(A, A’), evai(l?, B’),

times(A’, B’, Y).

eval(X, X) t- integer(X).

PTea{ : Defining the evaluation of arithmetic expres-

sions over the reals and including de~nitions

for predicates real/1, sinus/2 and eval/2. The

clauses for eval/2 include:

evai(sin(A), Y) +

eval(A, A’), sinus(A’, Y).

evai(X, X) + real(X).

The predicate eval/2 is assumed to be partially defined

and hence open in both P;~t and PT~~l. Consider a

ground dependency analysis of these modules. For l’,~t

we could expect the following result of an analysis:

461



P(P*nt) =

[

(integer(x); z - 0),

(Plu$(z, y, 2); {$, Y} * z),

(times(z, y, z); {z, y} - z),

(evd(z, y); {z, y} - 0),
(eval(z, y) t evd(z’, y’); z ~ z’, y e y’) }

The last tuple derives from the fact that eval/2 is open

and hence has an added tautological clause. Likewise,

the anticipated result of an analysis for P,eal is:

P(Pre.() =

{

(reai(z); z * 0),

(sinus(z, y); z + y),

(eval(z, y); {3, y} + 0),

(eval(z, y) + eval(z’, y’); z ~ z’, y ~ y’) 1

Now consider the analysis for P = Pint U P,~al. There

are

1.

2.

8

two possible views:

If eval/2 is assumed closed in P then we should

consider unfoldings of P(Pint) and P(P~~ol)

giving

(integer(z); z - 0),

(pius(z, y,z); {~, v} - z),
(times(z, y,z); {z, y} ~ .%),

(real(z); x w 0),
(sinus(z, y); z e y),

(evai(z, y); {r, Y}+O) 1
On the other hand if eval/2 is assumed open

then we should consider unfoldings of P(P,nt)

and F(P~~~r) together with the tautological clause

eval(z, y) + eval(z, y) giving:

(integer(z); z + 0),

(p/us(z, y, z); {z, y} - z),

(times(z, y, z); {2, y} ~ z),

(real(z); z + 0),

(sinus(z, y); z * y),

(eval(z, y); {z, y} ~ 0),

(eval(x, y) + eval(z’, y’); z ~ z’, y - y’)

Related Work

Several compositional semantics for logic programs

have been proposed in the literature. These include
Mancarella et al. [21], Gaifmann et al. [16] and Bossi

et al. [4]. In [21] the compositional semantics is pre-

vided by composing the Tp functions associated with

program modules. Gaifmann et al. propose to adopt

clauses as semantic objects in order to characterize
partial computations (from the head to the body) and

to enable different notions of composition. Bossi et al.

also consider clauses as semantic objects. They pro-

pose a bottom-up approach providing a semantics that

resembles the non-ground Tp operator of [14]. Logi-

cal semantics for modules in logic programs have been

proposed by a number of authors [7, 22]. These are

typically based on various extensions to Horn logic:

for example, Chen’s treatment of modules [7] is based

on second-order logic, while Miller’s [22] uses implica-

tion goals in clause bodies. In either case, the seman-

tics appears to be somewhat more complicated than

that considered in [4], and we conjecture that a formal

treatment of abstract interpretation based on such se-

mantics would require considerably more machinery

than that given here.

The problem of program analysis across module

boundaries for imperative langua$es has been consid-

ered by a number of researchers: Cooper et al. [10] and

Tichy et al. [24] are concerned primarily with low-level

details of maintaining information to allow a compiler

to determine whether a change to one program unit

necessitates the recompilation of another, separately-

compiled, unit, while Santhanam and Odnert [23]

consider register allocation across module boundaries.

While the motivation for their work is related to ours,

the treatment is significantly different in that no at-

tempt is made to give a formal semantic account of

the problem or the proposed solutions. These authors

have no notion of “composition of abstract seman-

tics” analogous to ours; because of this, if the dataflow

characteristics of a module in a program changes, it

is necessary to reanalyze other modules that depend

on it—in the worst case, this can lead to reanalysis

of everv module in the momam. By contrast, in our
“ . .

approach it is necessary to reanalyze only the mod-

ules that have actually changed: the effects of these

changes are propagated by composition of abstract se-

mantics.

9 Conclusions

We have described a compositional approach to the

abstract interpretation of modular logic programs. In

the proposed framework the analysis of a program can

be derived by composing the analyses of its constituent

modules. For a substantial class of hierarchical pro-

grams, composition does not entail a sacrifice of pre-

cision.

In addition to reducing the conceptual complexity
of large programs and enabling the analysis of pro-

grams developed by teams, we expect that our frame-

work will prove useful in developing new applications

which focus on the analysis of the interaction between

modules.
Finally, this paper has focused on the abstraction

of a bottom-up compositional semantics. However the

approach taken is of general interest. In particular

the ideas of considering hierarchical programs and star

462



abstraction are applicable also for the development of

top-down frameworks for compositional analysis.

Acknowledgements: The stimulating discussions

with Maurizio Gabbrielli and Giorgio Levi and the

comments of Gerda Janssens are gratefully acknowl-

edged.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

K. R. Apt, H. Blair, and A. Walker. Towards a

Theory of Declarative Knowledge. In J. Minker,

editor, Foundations of Deductive Databases and

Logic Programming, pp. 89-148. Morgan Kauf-

mann, Los Altos, Ca., 1988.

R. Barbuti, R. Giacobazzi, and G. Levi. A Gen-

eral Framework for Semantics-based Bottom-up

Abstract Interpretation of Logic Programs, Tech-

nical Report TR 12/91, Dipartimento di Infor-

matica, University di Piss, 1991. To appear in

ACM l%ansactions on Programming Languages

and Systems.

BIM_Prolog reference manual. B.I.M. B -3078,

Everberg, Belgium.

A. Bossi, M. Gabbrielli, G. Levi, and M. C. Meo.

Contributions to the Semantics of Open Logic

Programs. In Proceedings of the International

Conference on Fifth Generation Computer Sys-

tems 1992, pp. 570-580, 1992.

M. Bruynooghe, G. Janssens, B. Demoen, and

A. Callebaut. Abstract Interpretation: Towards

the Global Optimization of Prolog Programs. In

Pvoc. Fourth IEEE Int ’1Symp. on Logic Program-

ming, pp. 192–204. IEEE Comp. Sot. Press, 1987.

M. Carlsson and J. Widen. SIC’Stus Prolog Users

Manual. SICS, Sweden, 1988.

W. Chen. A Theory of Modules Based on Second-

Order Logic. In Proc. Fourth IEEE Int’1 Symp.

on Logic Programming, pp. 24–33. IEEE Comp.

Sot. Press, 1987.

M. Codish, D. Dams, and E. Yardeni. Bottom-

up Abstract Interpretation of Logic Programs.

Technical report, Dept. of Computer Science, The

Weizmann Institute, Rehovot, 1990. To appear in

Theoretical Computer Science.

M. Codish, M. Falzschi, and K. Marriott. Sus-
pension Analysis for Concurrent Logic Programs.

In K. Furukawa, editor, Proc. Eighth lnt’1 Conf

on Logic Programming, pp. 331– 345. The MIT

Press, Cambridge, Mass., 1991.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

K.D. Cooper, K. Kennedy, and L. Torczon. In-

terprocedural Optimization: Eliminating Unne-

cessary Recompilation. In Proc. SIGPLAN ’86

Symp. on Compiler Construction, pp. 58-67,

1986.

P. Cousot and R. Cousot. Abstract Interpreta-

tion: A Unified Lattice Model for Static Analysis

of Programs by Construction or Approximation

of Fixpoints. In Proc. Fourth ACM Symp, Prin-

ciples of Programming Languages, pp. 238–252,

1977.

P. Cousot and R. Cousot. Systematic Design of

Program Analysis Frameworks. In Proc. Sizth

ACM Symp. Principles of Programming Lan-

guages, pp. 269-282, 1979.

P. Cousot and R. Cousot. Comparing the

Galois Connection and Widening/Narrowing

Approaches to Abstract Interpretation. In

M. Bruynooghe and M. Wirsing, editors, Proc. of

PLILP’92, volume 631 of Lecture Notes in Com-

puter Science, pages 269–295. Springer-Verlag,

Berlin, 1992.

M. Falaschi, G. Levi, M. Martelli, and

C. Palamidessi. Declarative Modeling of the Op-

erational Behavior of Logic Languages. Theoret-

ical Computer Science, 69(3):289–318, 1989.

H. Gaifman, M. J. Maher, and E. Y. Shapiro. Re-

active Behavior Semantics for Concurrent Con-

straint Logic Programs. In E. Lusk and R. Over-

beck, editors, Proc. North American Conf. on

Logic Programming ’89, pp. 553-572. The MIT

Press, Cambridge, Mass., 1989.

H. Gaifman and E. Shapiro. Fully abstract

compositional semantics for logic programs. In

Proc. Sixteenth Annual ACM Symp. on Prin-

ciples of Programming Languages, pp. 134-142.

ACM, 1989.

R. Gerth, M. Codish, Y. Liechtenstein, and

E. Shapiro. Fully abstract denotational seman-

tics for Concurrent Prolog. In Proc. Third IEEE

Symp. on Logic In Computer Science, pp. 320-

335. IEEE Computer Society Press, 1988.

J. E. Hopcroft and J. D. Unman, Introduction to

Automata Theory, Languages, and Computation,

Addison-Wesley, 1979.

G. Levi. Models, Unfolding Rules and Fixpoint
Semantics. In R. A. Kowalski and K. A. Bowen,
editors, Proc. Fifth Int’1 Conf. on Logic Program-

ming, pp. 1649–1665. The MIT Press, Cambridge,

Msss., 1988.

463



[20] J. W. Lloyd. Foundations of Logic Programming.

Springer-Verlag, Berlin, 1987. Second edition.

[21] P. Mancarella and D. Pedreschi. An Algebra of

Logic Programs. In R. A. Kowalski and K. A.

Bowen, editors, Proc. Fifth Int’1 Conf. on Logic

Programming, pp. 1006–1023. The MIT Press,

Cambridge, Mass., 1988.

[22] D. Miller. A Theory of Modules for Logic Pro-

gramming. In Proceedings IEEE symposium on

Logic Programming, pp. 106-114, 1986.

[23] V. Santhanam and D. Odnert, “Register Alloca-

tion across Procedure and Module Boundaries”,

Proc. ACM SIGPLAN-90 Conference on Pro-

gramming Language Design and Implementation,

White Plains, NY, June 1990, pp. 28-39.

[24] W.F. Tichy and M.C. Baker. Smart Recompila-

tion. In Proc. Twelfth ACM Symp. on Principles

of Programming Languages, pp. 236–244. ACM,

1985.

464


