N

N

Extending record typing to type parametric modules
with sharing
Maria Virginia Aponte

» To cite this version:

Maria Virginia Aponte. Extending record typing to type parametric modules with sharing. [Research
Report] RR-1905, INRIA. 1993. inria-00074768

HAL Id: inria-00074768
https://inria.hal.science/inria-00074768
Submitted on 24 May 2006

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://inria.hal.science/inria-00074768
https://hal.archives-ouvertes.fr

%I 1N RIA

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Extending record typing
to type parametric
modules with sharing

Marfa Virginia. APONTE

N° 1905
Mai 1993

_ . PROGRAMME 2
Calcul Symbolique,

Programmation
ct Génic logicicl

apport
de recherche

Fron EEPRPR

1993

Extending Record typing

to type parametric modules with sharing

Maria Virginia Aponte!

! Author’s adress: INRIA Roquencourt, Projet Formel, B.P. 105, 78153. Le Chesnay, France.
E-mail: Maria.Aponte-Garcia@inria.fr

Extending Record typing
to type parametric modules with sharing

Abstract

We extend term unification techniques used to type extensible records in order to solve the
two main typing problems for modules in Standard ML: matching and sharing. We obtain a
type system for modules based only on well known unification problems, modulo some equa-
tional theories we define. Our formalization is simple and has the elegance of polymorphic type
disciplines based on unification. It can be seen as a synthesis of previous work on module and

record typing.

Typage des modules paramétriques avec partage

Abstract

Nous étendons les techniques d’unification utilisées pour typer les enregistrements extensibles
dans les langages fonctionnels polymorphes afin de résoudre les deux problemes majeurs du ty-
page des modules de Standard ML: le filtrage et le partage. Nous obtenons un systeme de types
pour les modules qui s’appuie uniquement sur des problemes bien connus d'unification équa-
tionnelle. Notre formalisation est simple, et a I'élégance des disciplines de typage polymorphe
basées sur 'unification.

Introduction

Building programs from modules can be safely done ouly if modules can be connected coherently.
The difficulty of module coherence checking depends on the complexity and power of the module
system considered. The SML module system [5. 7} is. among the modular programming langunages
with decidable checking, the most expressive existing one. SML modules allow multiple but consis-
tent views of the same module (sharing). and parametrization of a module (functors) by a module
specification (signatures). and they can be typed statically. Morecover, the module language itself
is lavgely independent of the SML cove language, and therefore provides a starting point to build
module systems for many different programining languages.

Previous work on the static semantics of SML modules had been based on special-purpose
term algebras to represent modules and on specific and complex static semantic notions [3, 7, 6],
or does not address sharing nor multiple views of modules [4]. We show here that, this static
description can be completely expressed by classical typing techniques such as polymorphic typing
and the techniques developed to type extensible records. Moreover, our type discipline leads to
efficient typechecking algorithins, thanks to a local formalization of module consistency verification.
Finally, in our discipline the exclusion of defective signatures comies for free. This stands in contrast
with previous type systems. where static semantic constraints are globally imposed on inferred types
in order to reject defective signatures. In owr system. these conditions are ensured directly by the
unification process.

We adapt the algebra of extensible record types proposed by Rémy [8, 10] to encode the types
of modular objects. and extend its equational theory to perform unification on the terins obtained.
The two main problems in module checking — matching a structure against a signature; finding
types for signatures containing sharing constraints — are then expressed as unification problems
mmodulo certain equational theories, We show that both problems have a principal solution whenever
they have a solution. We then reformulate the module checking problem as a type system using
these results. For this type system. we easily obtain a result on principal signatures, the equivalent
of the principal type result for the ML core language. Finally, we show that principal signatures
are no more than principal solutions for the problem of typing a signature by unification.

We start by presenting an overview of the ryping problems related to SML modules. In section
2 we present the mocnle language. In section 3 we discuss the analogies between record types and
modules and preseut Rémy's extensible records and our language of module types. In the next two
scctions we give our solntions for the marching and the sharing problems. In section 6 we present
a type system for modules and results on principality, consistency and defective signatures.

1 Overview of SML modules typing problems

Many modular languages have sonie form of encapsulation of types and values. This kind of basic
module is called a structure in SML. Somne languages also have perameterized modules, which are
called functorsin SML. A functor takes structures as arguments and produces structures as results.
When parametrizing a functor by a structure variable, a specification of the structure components
must be provided; in SML, the specification for a structure is called a stgnature.

structure S =
struct
datatype t = C of int
fun ts (C x) = C (x+1)
structure A = struct ... end
end;
signature ¥ =
sig
type t
val ts : t — t
end
structure §' = S : §;

Figure 1: Exainple of a signature constraint.

1.1 Signature Matching

A structure and a signature can be matched when the former satisfies the type specifications of the
latter. Following the requirements of independence in modular development, it must be possible
to have structures richer than their specifications. and also several wiews of the same structure.
Then, a signature can be matched against a richer structure, resulting in a constrained view of
that structure. Another way of constraining a structure is by matching it against the signature of
a functor argument. Figure 1 shows an example of a structure S and a signature ¥ that can be
matched successfully. The resulting structure S’ is a view of S where the sub-structure A is absent.

1.2 Polymorphism and generative typing

ML is a language with generative typing: two different type declarations produce two incompatible
types. Each type constructor in ML is associated with a unique mark, or stamp, which is fixed
through the program life. Type equality is determined by comparing type stamps.

The notion of type stamps is naturally extended to stamps in structures. Each structure declara-
tion has a new stamp assigned (for instance, the structure S in figure 1). Nevertheless, constrained
structures keep their original stamp: different views of the sane structure share the same stamp.

Thus, the type of a structure can be represented by its stamp together with the representations
of its components. Figure 2 shows a picture of a possible representation of structures S and S'.
Stamps m, n, and p are drawn inside circles. while components appear on arcs. In this paper, since
we do not consider the typing of objects from the core language. we omit their type representation,
and draw them as filled circles. This representation is both intuitive, and very near from the
encoding of structures proposed by Harper. Milner and Tofte. As we shall see later, our encoding,
which carries information. can be more advantageous checking module coherence.

Signatures can be represented in a similar fashion. The only difference is that stamps are no
more fixed. but can take many “stamp values”™ when matching different structures. Intuitively, a
signature can be seen as a structure where stamps are universally quantified variables. Roughly
speaking. one can consider structure and signature types in modules, respectively as the equivalent
of simple types and type schemes in the core language. This elegant analogy was first proposed

S}

by Harper, Milner and Tofte [3] when deseribiug the semanties of SML modules. "Figure 2 shows
a representation of the signature £. The dashed circles stand for universally ¢nantified stamps: =
atdd y in this example.

Harper, Milner and Tofte [3, 7] and Tofte [11] developed several static semantic descriptions of
SMIL modules nsing this analogy. In particular, they described matching as a process combining
instantiation of universally quantified stamps with enrichment of signatures when they have less
information than the matched structure. In this paper, we give a new description of the matching
process, using techniques from subtyping with extensible records.

1.3 Typing sharing constraints

Two different structures can share the same type component. For instance, S'.t and S.t are the
same type. In contrast, different specifications in different signatures are assumed not to share
types, since each specification can be implemented by different actual types. Sometimes, however,
one may need to consider two separate specifications as standing for the same type. The way to
require this behavior is by adding sharing constraints in signatures. Consider the functor F in
figure 3 using the signature ¥ of figurc 1. F would be ill-typed without the sharing constraint in
the functor heading. Sharing can also be specified on structure and type identifiers. which can be
either internal or external to signatures. The signature P is an example of sharing between internal
and external structures.

1.4 Consistency

As SML allows having different views of the same structure, solving sharing constraints cannot be
done by classical unification, but instead by a process identifying stamps in components. Indeed,
some kind of consistency between the structures sharing a given stamp must be also verified. From
now on, we omit value and type components from module representations and concentrate only on
sub-structure components and stamps. We justify this choice in the next section.

The weakest condition we can request on module consistency is that all the structures sharing
the same stamp have the same stamp on their common components. Cousistency can be casily
preserved by the pruning process of signature constraint, as there is no need to create nor to destroy
sharing when constraining a structure.

In contrast, solving sharing does need to verify that consistency is preserved while performing
stamp identification. This is not straightforward. Consider the signature P of figure 3. It has a
sharing constraint between a structure M and the structure S’ described in figure 1. There, S’ is a
constrained view (without the sub-structure A) of S . On the other hand, M has an A component.
In spite of the fact that S does not appear in the sharing constraint, one must look at it while

Figure 2: Representation of S, 8" and &

functor F (X:EZ, Y:E sharing X.t =Y.t) =
struct

fun t_two = (X.ts) o (Y.ts)
end;

signature P =

sig

structure Y
sig
structure A : sig end;
end:

sharing ¥ = 8’

end

Figure 3: Sharing constraints

solving the sharing, and, in general, we must look at any structure sharing a stamp with M or
S’. Otherwise. a naive solution will lead to an inconsistent assembly of structures, and then to an
incorrect signature, as in figure 4. The structure M* is obtained from M by solving the sharing
between M and S’ in a local way, only looking at these two structures. The result is incorrect since,
without considering the sub-structure A of S, the y variable is not identified with p. The structures
S and M* are inconsistent, because they share the stamp m and have a common component A with
two different stamps. Thus, the unification process must verify on the whole assembly of structures
to preserve consistency and obtain correct signatures.

As we will see in the next section, M* is not only inconsistent with the current typing cnviron-
ment. but it is also a defective signature.

1.5 Defective signatures

Not every signature one can build from stamps and sub-structure components can be considered
legal. For instance, we can find signatures that are impossible to match with any possible structure
for a given module typing context. In this section, we prescent the notion of defective signature
used by Milner and Tofte {6] (they also call them monsters) to describe signature types that do not
make sense with respect to a given typing context, but which could be inferred under their type
rules if no care were taken. In the study of new type disciplines for SML modules, the problem is

s= (m) s' = (m) sharing M=V

Figure 4: An inconsistent assembly of structures

structure E = struct end:
signature 8 =
sig
structure R
sig
structure A : sig end
end;
sharing R = E
end

Figure 5: Creation of an ill-formed signature

to determine whether defective signatures can be inferred, and if so, how to exclude them. In SML
modules, signatures belong to the language constructions and they are actually part of the code;
they are used in particular to build functors. Defective signatures are then bad code, and it is nice
to have a typing discipline clever enough to reject them.

Qur aim in this section is to characterize defective signatures and give some examples. In section
6.4 we show how within our type discipline it is impossible to obtain defective signatures for the
same examples: our type system fails in typing them.

Milner and Tofte introduced some global conditions on inferred types in order to exclude defec-
tive signaturcs. We use these couditions to characterize defective them.

The first one is well-formedness. Recall that signatures have universally quantified variable
stamps. If a free stamp occurs in a signature, this means that it is shared with at least one real
structure in the type context. A signature is well-formed if all the components attached to that
free stamp have also free stamps. Consider the declarations of figure 5 and their corresponding
“types” in figure 6. We call ©~ the type of © before solving the sharing constraint, and © its type
after solving it. This latter is ill-formed since the bound stamp z is under the free stamp p. Since
there is no other structure than E having a stamp p and also an A component, it is impossible to
match the result signature © with auy existing structure, and even to creatc a new structure able
to match it. In section 6.4 we show how our type rules fail in assigning a type to ©.

The second global condition is covering. We introduced it using the examples in figures 7 and

3—:‘ e = c::z:n
l r } .
T sharing -

\J/ ~ 2 E — @

2 |:z:»

Figure 6: An iil-formed signature

(V4]

structure Cy = struct end:
structure Cyp = struct end:
signature =

sig

structure A:

sig structure B: sig end end;

sharing A = Cy; sharing AB = Cy
end

Figure 7: Uncovering within a sigr.ature

8. The signature € in figure 8 is well-formed but will never match any real structure. The reason
is that no structurc having the stamp m can have a sub-structure B on it: the structure C; where
m comes from was originally created empty. Roughly speaking, a structure S having a fixed stamp
m is covered by the typing context ', if, for every) component. of S, there is in I' a structure S’
sharing m, and which has a @ component. In figure 8, the sub-structure A of Q is uncovered as
the only structure sharing m with A is C| and it does not contain any DB component.

Harper, Milner and Tofte impose well-formedness as a global constraint on any inferred object
and covering on any inferred signature, thus rejecting defective signatures. In section 6.4 we
show how, with our encoding, matching. and sharing resolution. we do not need any of these
side conditions to guarantee that only legal signatures are obtained: our type discipline directly
fails to assign types for the two examples above.

2 The language ModL

The matching and sharing problems can be studied in a simplified language where modules contain
only stamps and inforination about their sub-structure components. This is justified as the match-
ing between value types, exception types, and type declarations can be easily defined using the
classical subsumption ordering between polymorphic types. Also. following the SML Definition 7],
we do not consider sharing between value types. Finally, most of the problems of sharing between

N\
Vs
i

3

I
5
I
L}

’

N

UG t———— T hl————— 3}
-7 .
o
Vs
AS

7
N\

sha’gng c = @ —

N
7/

I'd
N

o]
O

sharing o @
=~ Dy =

Figure 8: Creation of an uncovered signature

Strexp = Strid)

| Strexp . Strid

I Strexp @ Sigid

| Funid (Strexp)
!

struct Decc end

Dee 1=
Dec ; structure Strid = Strexp

Sigexp = Sigid

| sig Spec end
Spec si=

| Spec ; structure Strid : Sigexp

| Spec ; sharing Longid = Longid
Funexp ::= func (Strid : Sigid) Strexp
Longid ::= Strid

| Longid . Strid
Program structure Strid = Strexp

functor Funid = Funexp

| signature Sigid = Sigexp
f
| Program in Program

Figure 9: The language ModL

typc declarations can be solved in the same fashion as sharing between sub-structures. What is left
to study, then, is the matching and sharing problems with respect to identification of stamps, and
consistency and enrichment with respect to sub-structures.

ModL was first introduced by Harper, Milner and Tofte (7] and Tofte {11] to study SML module
typing. The language we present is a slight modification of their calculus, where the functor
construction has been split in two syntactic constructions to make typing rules shorter. ModL is a
simplification of SML modules with no values, type declarations, or exceptions, but only structures,
signatures, and functors. We assume three disjoint identifier classes: Strid for structures. Sigid for
signatures and Funid for functors. The ModL syntax is presented in figure 9.

3 Extensible records and modules

Modules and records are both built from labeled components. Moreover, module matching allows
signatures to be matched with richer structures, much as greater records can be accepted in place
of records with less information. For records, this problem is strongly connected to subtyping.

Our proposal exploits the similarity between the record and module type representations and
between their typing problems.

r= |la:e.0]b:eyT| abs.p t= la:pre.a| abs.p’ | r* = |a: pre.o|b: abs.t| abs.p"

Figure 10: Record extension by unification

3.1 Extensible record terms

The basic idea behind Rémy’s discipline is to have record types defining different sets of labels and
then allow unification on types of different sizes. Rémy's records are defined by a term algebra
togethier with an equational theory controlling their unification. They use row wariables, which
where first introduced by Wand [13], to allow the extension of a record by new fields in a polymorphic
way. They also use flags on fields indicating their presence or absence. For instance, the record type
t asking for the presence of the field a (if for instance, a function extracts it from its argument),
with an arbitrary type « is shown in figure 10.

Extension is performed by substitution on row variables during unification against a larger
record. In figure 10 the type ¢ has a row variable p’, so it can be cxtended. But a is the only
component that ¢t must ask for. Therefore, p' is tagged by abs, and thus any subsequent extension
will lead to absent fields.

Variable flags are used when a field can be taken either as present or absent, giving the pos-
sibility to render some type information invisible. Subtyping is achieved by allowing unification
on types with different sizes: variable flags get instantiated to present or absent, row variables are
instantiated to make types richer.

Consider the example of figure 10. The rccord type r has fields a and b with types ¢ and 7.
Both fields are tagged by variable flags, so they can be taken as present or invisible. In a similar
way. r can be extended only by absent fields. The unification of » and t results in a term 7* where
the flag variable of @ in r is instantiated to present, the row variable of ¢ is extended by a:: absent
b field. nidl the b flag is instantiated to absent.

3.2 The module terms

In figure 10, if we take r as the type of a structure, and t as the type of a signature specifying an a
-component, then, the result from the unification above is exactly the signature constraint of r by
t; that is, in the resulting term, the b component is no longer visible.

We exploit this similarity and present the grammar corresponding to module terms. Unfortu-
nately. Rémy’s theory is not powerful enough to express all matching cases one wants to type in
modules. The problem comes from the encoding of subtyping using variable flags. Once a flag
variable has been instantiatcd, say, to present, it can no longer be compared with the same field
component having an incompatible absent flag, even if this flag naturally represents less informa-
tion. Thus, some cases of signature matching cannot be typed. Consequently, we do not use flag
variables in our encoding of terms, but only absent and present flags. The problem with this is how
to achieve subtyping during matching. We shall do it by introducing in the next section an order
between terms tagged by abs and pre.

Record terms arc very general and admit many concrete signature of symbols. In our version
above, we simply add stamps and write some symbols differently to be closer to the module termi-
nology. The structure constructor Str takes pairs of stamnps and s ructure environments. Rows are
either variables, sequences of fields, or the empty row made of a non-labeled ficld. Rémy’s records
are sorted to restrict the terms that can meet by unification, and also to forbid label repetition. To
simplify the notation, we do not give the details of sorts, but keep these restrictions in mind when
considering the type rules and the record equations. The symbol @ is the empty structure, which
will be used to prevent extension on structure types. We write 7 the for term language obtained.
The assertion list) : o) =1 ... 2 a, : 0, 2 [] is also written {a) : 01;...;a, : 0,]. The symbols «, 8

Figure 11: Matching modules

are structure variables. x is a row variable. 8 is a field variable. and 2 is a stamp.

o == a | Str(z.p) | @ structures
¢ = {1 (a:0) g assertion lists
o = ¢ | o—oo functors
p == x| atep rows
| e | 7-{a:0:0)
e = 8| w0 fields
7 .= abs | pre flags

The equatioﬁal theory of record terms allows commutativity of ficlds and the extension of row
variables. We present the laws below and write E for this theory and E forits equality.

[ls

b:eia:

m

a:sibigip 1P

7\'~(a:a:7)£a:7r~a;7r~r

The first axiom ‘states E-equality modulo the reordering of ficlds. The second, states the
distributivity of flags over the a : _: - row constructor. This axiom allvws the extension of a row by
new components. For instance, in our encoding, a row variable in a signature has always the form
abs - . We can extend it by an ¢ component plus a non-extensible row by substituting a : ¢; @ for
«. Using the second axiom we obtain the term (in the right hand side):

abs-(n:5: %) £ a:abs-o; abs- @

Notice that in our grammar we adrmit termns like abs - o and abs - (a : ¢; p), but we do not admit

terms like abs-(a : abs o ; abs-p). Notice also that, assertion lists are different from rows. Assertion

lists are built with the :: constructor and rows with the a : _; _ constructor. In particular, the flag
~ distributivity axiom works only on rows and never on assertion lists.

4 Solving the matching problem

We extend the theory F above to compare structure and assertion lists of 7 having incompatible
abs and pre flags (under). The relation > of enrichment is defined as the smallest transitive and

E-reflexive relation (i.e., containing I=) satisfying the rules below. We write C for any constructor

of the module terms except —. Notice that this relation does not consider functors and that it is

co-variant. The D relation is a structural subtyping relation simpler than the subtyping problems
studied in [2] where contravariance is considered}.

gy bT...0n DTy

pre > abs Cloy,...,o0) B C(T1,...,Tn)

In {1] we prove that > is stable under substitutions so we can perform unification modulo it. We
write mnequation of enrichment for the unification problem given by the expressions ¢ 2 7 between
the module terms o and 7, and we say that p is a solution to this problem if po > u7 holds. If ¢
is the encoding of a structure and ¥ is the encoding of a signature, the matching problem between
o and T is given by the inequation ¢ 2 T and solved by unification?. When it has a minimal
solulion g, the structure vesulting from the constraint of o by ¥ is given by the term po.

Consider the example in figure 11. The structures S and the signature & of figure 1 are now
represented without using variable flags. Absent components are drawn in grey boxes, while present
ones are drawn in white boxes. To solve the matching problem S§ B2 T, the variable p must be
extended by the A component of S. Since p is grey, the extension in the resulting term S’ is also
grey. The term obtained is a restricted vision of S where A4 is absent.

The inequation above has a principal solution under E. This is not always the case. Consider
the inequation Str(m, A : pre-o;p) > Str(m, x). It has two minimal E-solutions: p = {x — A:
pre-o;p} and p' = {x — A : abs-o;p}. We choose the second one, which is minimal under the
order I>. This choice corresponds to an interpretation of [> as a constraining relation: in the right
hand of an inequation, we choose the solution revealing the least of information.

Lemma 1 Any matching problem having a solution has also a principal solution under b.

This lemma is proved by showing the existence of an algorithm which finds D-principal solutions
for inequations. In appendix A, we present an algorithm Si simplifying an inequation into a system
of elementary equations and inequations. An inequation is elementary, if it contains a variable on
one side and either a variable, or a constant on the other side. An equation is elementary if it has
the form a £ o. A simplified system is equivalent to the initial inequation when they both have
the same principal solutions.

Lemma 2 The algorithm Si simplifies an inequation into a system of elementary equations and
inequations, when it admits e solution and fails otherwise. The simplified system is equivalent to
the initral inequation.

In the output of Si there are not two equations or inequations on the same variable, and
moreover, the inequations are only of the forms: a B abs. pre b «, and o & 3, which admit several
solutions. The complete algorithm of inequation resolution involves three steps. First. decomposing
an incquation into a simplified system: second, checking for the existence of cycles (occur check);
third. choosing a >-minimal solution for the simplified inequations having several solutions. Occur
check is well known and >-minimal solutions for the above inequations are trivial. The proof of
the D-principality the algorithm solutions can be found in [1].

"In [1] we studied a contravariaut version of b.
“Actually, unification 1s a more general technique than what we need to solve this problem, but this is just a more

general framework.

10

y
(: Y : /)’ @ %) P %]

Figure 12: Solving shariug constraints

5 Solving sharing constraints

Putting absent flags hides some ficlds without destroying their type information. Consider the
restricted view S’ of S in figure 11. Both structures have exactly the same stamps and type
information, the only difference being in the flags carried (box color) by the components. This has
an important cffect on the consistency verification for modules. The unification process of sharing
resolution becomes purely local: it does not need to examine structures other than those in the
sharing constraints to verify that consistency is preserved.

In this section we develop a second extension of Rémy’s equations, this time solving the sharing
problem. It states the equivalence of terms modulo some differences in the flags of components.

We call the new theory F’. It adds the axiom abs E pre to the previous theory F.

. . E' .
A sharing equation has the form ¢ = 7 for the module terms ¢ and 7. Now, if ¢ and 7 are
two structures appearing in a sharing constraint, solving this constraint is equivalent to solving the
!

sharing equation o £ . Butthe E theory identifies abs and pre flags in order to comnpare different
views of structures. To identify the solutions in the same way would be incorrect, so we must
consider them modulo the equations F. As for incquations, sharing equations can havc scveral E-
minimal solutions, but when they have one, they also have a >-minimal solution. Again, this is the
solution we are interested in, as it expresses exactly the amount. of visible type information necessary
to satisfy sharing constraints within a module semantics allowing different views of structures. The
unification algorithm for sharing resolution is an easy extension of Rémy's algorithm that can be
found in [9]. The proof of the lemma below can be found in [1].

Lemma 3 Any sharing equation having a solution has also a principal solution under b>. There
crists an algorithm that finds this solution when it exists and fails otherwise.
. . L. . - . E . . .

Now, given a B-principal solution . for the equation ¢ = 7, the structures satisfying a sharing
constraint between o and 7 are given by the terms o and pur.

As we saw above, the advantage of this encoding is that the inconsistency we considered in
scction 1.4 canunot arise any more when solving sharing constraiuts by local unification. that is,
when unifying only the structures specified in the sharing constraint. Fig 12 shows our encoding
and solution to the sharing problem in figure 4 of scction 1.4, Now. § has all the stamps and
components of S, so when unifying " and M - the only structures in the constraint - S’ has all
the necessary information to guarantee that consistency is preserved in the result M*. If we call

. . . L' . . .
ji the D-principal solution of $° = M, the structure M* resulting from M is given by pM. The
structure S’ remains unchanged as it has ouly fixed stamps (in solid circles).

11

6 Typing ModL

In appendix B. we present a type system for checking modules using our module terms, and the
sharing and matching results described above. We extend module types to module type schemes
in order to capturc polymorphism of stamps in signatures, and to allow row extensions during
unification. A module type scheme is a module type with some variables universally quantified. We
write VW - o. the module type o when the variables in the set W are universally quantified.

A module context T' is a triple ([5. Ty, I'y) of partial functions of finite domain, mapping re-
spectively structure, signature, and functor identifiers into structure types, structure schemes, and
functor schemes. We define V(o) as the set of variables appearing in 0. We extend V to module
contexts I' and note it V(I'). Substitutions are defined in the classical way: on free variables of
terms. We extend them to module contexts in such a way that the assertion z : ¢ in I' becomes
x:po in pl.

6.1 Functor schemes and generativity

We have seen that structure stamps are fized while signature stamps are bound variables. What
happens with functor stamps? A functor scheme is constructed with —. By the SML module
semantics. each new structure obtained by functor application has new stamps associated; that is,
structure creation is generative under functor application. The new stamps arc those appearing
only on the right hand side of the arrow, i.e., those that are not instantiated by the actual functor
arguinent. We call them generative variables. They will be transformed into new fixed stamps by
the functor application, that is, they will never take the value of a stamp appearing already in
V(T).

Suppose now we have instantiation substitutions on functor schemes, that is, for a type VW - 7,
a substitution g : W — V. We must forbid them from substituting stamnps appearing in the typing
context for generative variables. In the rules (see appendix B) we use a predicate Gen(y, ', VW - ¢)
over instantiation substitutions, type contexts, and functor schemes. It holds exactly when the
image of the substitution u applied to the generative variables of the functor scheme is disjoint
from free stamps in the typing context. The exact definition of this predicate in given in the
appendix B.

6.2 Principal Signatures

Building functors and constraining structures in SMLrequires the specification of signatures. In
both cases, one must ensure that the inferred signature corresponds exactly — in components and
sharing — to the user’s specification. This property is known as principality of signatures. Checking
for principality is crucial in order to give a correct semantics to module typing: building functors
or constraining structures with non principal signatures would lead to objects different from those
cxplicitly specified by the programier.

We adapt. the principality definition of Harper, Milner and Tofte [7] to our formalism. Let o be
a signature type such that I' I sigexp = 0. We say that o i1s principal for sigexp in the contezt I', if
for any other signature type o’ such that T' - sigexp = o', therc cxists an instantiation substitution
p: V(@) \ V(I') = T such that ¢’ > po. That is, if any other signature type inferred for sigexp is
richer under D than an instance of o.

12

Our type rules for signature declaration and functor abstraction have side conditions on princi-
pality of signatures. This situation is to contrast with the ML core typing: since no type constraints
can be possibly stated by the user. no special side conditions are necessary to ensure that the user’s
specifications are not violated. This is one of the major points where the analogy between the core
language and the module typing breaks.

Nevertheless, by our method to type signatures we still obtain a nice analogy between principal
types in the core and in the module languages. We type a signature sigexp by solving a unification
problemn: the principal solution to this problein give us the principal signature (in the sense intro-
duced above) for the signature expression sigexp. Thus, we express signature principality typing
as the principal solution of an equational unification problem; much as principal typing in ML is
expressed using principal solutions for a classical unification problem.

We now introduce the unification problem we nse to type signatures, noted I' F sigexp = @,
between a context I, a signature specification sigexp. and a variable o. We say that this problem
has a solution s if T - sigexp = pa holds®. This problem is solved essentially using unification
for sharing resolution. Then, from our previous result (lemma 3) on the existence of >-minimal
solutions for sharing equations, we can easily show the following lemma. The algorithm W is
actually the signature typing algorithm for our type discipline. We present it in appendix C.

Lemma 4 If the unification problem I & sigexp > a has a solution, then it has a b -principal
solution p such that T + sigexp = jx holds. There exists an algorithm W finding this solution
when it exists and failing otherwise.

With this result, it is casy to show the following theorem. Tt states that principal signatures
are preciscly the principal solutions for the unification problem of typing signatures. That solution
is found by the signatwre typing algorithm W given in appendix C.

Theorem 1 If I’ F sigexp = o' holds. then the typing signuturc alyorithm W finds « signature o
which ts principal for sigexp in I or fous otherunse.

Proof: If I' F sigexp = o' holds, then. there exists a solution v for the unification problem
[' sigexp Y a, such that ¢’ = vo and there exists also a D-principal solution g, for the same
problern, such that pa = 0. But g is >-principal, and then there exists a substitution 7 such that
o' > no. We conclude that ¢ is principal for sigexp. ®

An immediate corollary of this theorem is the existence of principal signatures in our type
system.

6.3 Consistency preservation

We saw that two structures are consistent if, when they share a stamp, their common components

also share their stamps. This condition can be formalized in our type discipline as follows. Two
L

structure terms o et 7 sharing the same stamp are consistent if the sharing equation ¢ = 7 holds.
This notion is naturally extended to sets of module terms and to the set of modile terms in a context

3This unification problem can be set this way becanse the type mles have been proved stable under substitutions
in (1].

N
)

Z

-~

>
N
I

Y, '; E= @® = L

2z 23

Figure 13: Unification failing on an iil-formed signature

I'. By abuse of notation, we will talk about the consistency of the set of terms in ' together with
the term o, as the consistency of the set {T',o}.

We say that consistency s preserved by a module type judgment I' + e = o, if whenever I is
consistent, the set {I', o} is also consistent.

Inconsistency can arise when introducing sharing between a set of tertns which are not E'-equal.
The only rule that introduces sharing is (Nsig) which creates ncw signatures. In this rule, there
is no restriction on the stamp chiosen to be on top of the new signature. In particular, it can be a
stamp already appearing in the type context on top of a term E’-different from the new signature.
It is easy to show that consistency is preserved under all the module type judgments except for
those in the Sigexp and Spec syntactic classes of signatures. Indeed, these rules either introduce
new stamps (they are generative), or they inherit whole terms (without introducing any sharing)
appearing in the type context. The proof of the following lemma can be found in [1].

Lemma 5 For any ModL ezpression e not in Sigexp, nor in Spec, the judgment T F e = ¢
preserves consistency.

On the other hand, our unification notions have a good behaviour with respect to consistency.
The proof of the following lemma is trivial.

E'

Lemma 6 Let {T',0} be a consistent sct. If o E oo 7 hold, then the set {T',o,7} is also

consistent.

The signature type algorithm in appendix C uses unification which is well behaved by this
lemma. The algorithm takes several precautions with respect to stamp variables. First, it forbids
unification on fixed stamps (appearing in real structures) of the type context. Second, it always
chooses new stamp variables to build types for new signature spocifications. Also, already existing
signatures are instantiated by completely new stamp variables. In both cases, sharing is finally
achieved by E'-unification. The following theorem states the existence of a signature type algorithm
preserving consistency. The proof can be found in [1].

Theorem 2 Let T be a consistent module context and p the solution found by the algorithm W for

the I = sigexp = o typing problem: then the set {T, pa} s also consistent.

14

Q- =< 4 m

[l
3
Q

= c,

Cul B om
N

=

C’z‘—:@@

tEL P

Figure 14: Unification failing on an uncovered signature

6.4 Rejection of defective signatures

In this section we consider the examples of defective signatures inferred under the Harper, Milner
and Tofte type system that we presented in section 1.5. Our type rules fail in assigning a type to
these two examples thanks to our encoding of terms, and to our definitions of matching and sharing
resolution. A

Figure 13 prescuts our solution for the ill-formedness exawnpie of figure 6. In contrast with
the unification definition of Harper, Milner and Tofte {7, 6], with our encoding and definition of
unitication, it is impossible to unify the structure E with the terin attached to R. To unify them.
one would need to extend E by an A component, which is impossible by the encoding of E.

Let us now consider the covering examnple of figures 7 and 8. In our type system, the typing of
Q) fails becanse it is impossible to unify the type of the structure Cy - - empty and non extensible
------- with tiie type of the sub-structure A containing a B component. Figure 14 shows our type
discipline failing on the typing of Q because of this sharing resolution failure.

Under our type rules, the two signature specifications above are rejected. Unfortunately. it
is actually possible to build badly formed and uncovered signatures using our types rules. More
precisciy, we cannot state a general result on preservation of well-formedness and covering for our
type rules. As for consistency, the rule creating problems is (Nsig): using it we can build arbitrary
pathological signatures, either inconsistent, baddly-formed, or uncovered.

But actually, things are not too bad. In the real world of typing, one does not try to guess
arbitrary types but just to build very gcueral types (directed by the syntax), which are finally
specialized by unification. We saw above that unification behaves correctly: there will not be any
inconsistency, bad formation, or uncovering introduced via unification on a set of consistent. well-
formed, and covered objects. The following lemra, which is ecasy to show, formalizes this good
beliviour. It extends lemma 6 of the previous section. Covering and well-formedness are extended
to module type contexts.

Lemma 7 Let the set {T,0} be consistent, well-formed, and covered. If o Eros Ky hold,
then the sct {T, 0,7} is consistent. well-formed, and covered.

Our notion of unification and particular encoding of terms intervene iu the type rules. This is
why the two defective examples above are rejected. On the other hand, we actually find types for
signatures by solving a unification probiem. We just have to put together the consistency results
of the previous section with the lemma below to extend the good behaviour of unification to the

process of signature typing. In other words, if we know how to obtain consistent signatures, we can
be sure they will be covered and well-formed.

Lemma 8 If the judgementT & e = o preserves consistency, then it also preserves well-formedness
and covering.

Proof: We sketch the proof. Let us suppose that I' is consistent, well-formed and covered. Let us
suposse also that I' - e = o preserves consistency but that ¢ is badly-formed and uncovered. Then,
there exist a structure 7" in T, having on top a fixed stamp m, which is shared with a sub-structure

7 of 0. As I is well-formed and covered, it must be that 7 }@ 7', but this contradicts the hypothesis
ou the consistency of {I'.o}. =

From the previous sections there exists a signature typing algorithm finding principal signatures
and preserving consistency. By the lemma above, this algorithm also preserves well-formedness and
covering. Moreover, we achieve this result for free: without the introduction of any special condition
checking for defective signatures. The following theorem arises trivially. It synthesizes the typing
results presented in this paper.

Theorem 3 There exists a signature typing algorithm finding principal signatures and preserving
consistency. well-formedness, and covering.

7 Related work

In his Ph.D. thesis [11], Tofte studied a different semantics for consistency, matching, and sharing
for SML modules. According to this semantics, consistency (which he called coherence) is stronger:
two structures sharing the same stamp must be completely equal. Sharing constraints become
equality constraints and matching is not coercive: components in a structure cannot be hidden as
this would destroy consistency of multiple occurrences of the same structure. As in the language
studied in this paper, sharing constraints can be specified within differently shaped structures.
In the same way, matching is allowed between structures richer than signatures. The matching
definition and the unification algorithm in [11] are reminiscent of Rémy’s algorithm in that both
methods extend sequences of components by new components.

More recently, Milner and Tofte studied [6] the semantics we consider in this paper, and which
happens to be the current semantics of SML modules. According to them, sharing is solved by
a process called "admissification” that identifies stamps while checking consistency, cycle-freeness,
and well-formedness on the whole context of current structures.

Our work uses several ideas already present in Tofte’s thesis and in Milner and Tofte semantics:
fixed stamps in the types of structures, bound stamps in the signature types, and structure extension
during unification, but our presentation is strongly based on the Rémy’s unification framework. To
this approach we incorporate the encoding and the equational theories of unification necessary
to deal with the current semantics of SML. All of that result in several important advantages:
nice notions and proofs on principality, local consistency checking, consistency preservation and
well-formedness and covering preservation coming directly from our signature typing techniques.

16

8 Conclusions

We have shown a simple and elegant formalization of the static semantics of SML modules. We
obtain a type system relying only on well-known unification techniques and which does not need new
concepts nor external constraints to guarantee that only legal types are inferred. The unification
necessary to ensure consistency remains local to specified structures in sharing constraints, and this
is naturally efficient. Last but not least. the proof on principality. relying on the principality result
of sharing unification, is extremely simple.

Our type system is an interesting application of record type disciplines. Its extension to higher-
order functors (sec [12]) is still under study. There are two main problems with this extension.

The first one concerns the extension of the B relation to be contravariant in order to compare
functor types in structures during matching. The principal problem with contravariance is ensuring
the existence of principal solutions.

The second problem concerns the semantics of functor sharing. In the type discipline of Tofte
[12]. two functor signatures can be shared if they are identical. In our framework, two functors can
be shared if they differ only in some flags of components in the argument or in the result. It is not
clear yet for us whicli one of these two solutions corresponds to the more “natural” functor sharing
semantics.

9 Acknowledgements

Many thanks to Xavier Leroy, Mads Tofte, Didier Rémy, Michel Mauny, Benjamin Pierce and Ian
Jacobs for thieir comments.

References

[1] Maria Virginia Aponte. Typage d'un systéme de modules paramétriques avec partage: une
application de l'unification dans les théories équationnelles. These de doctorat, Université de
Paris 7, 1992.

(2] You-Chin Fuh and Prateek Mishra. Polymorphic subtype inference: Closing the theory-
practice gap. In TAPSOFT'89. 1989.

(3] Robert Harper, Robin Milner. and Mads Tofte. A type discipline for program modules. In
Theory and Practice of Programmmang Languages, volume 250 of Lecture Notes in Computer
Science. Springer Verlag, 1987.

[4] Robert Harper and John C. Mitchell. The essence of ML. In Fifteenth ACM Symposium on
Principles of Programming Languages, 1988.

[5] David MacQueen. Modules for standard ML. Polymorphism Newsletter, 11, 1985.
[6] Robin Milner and Mads Tofte. Commentary on Standard ML. The MIT Press, 1991.

[7] Robin Milner, Mads Tofte, and Robert Harper. The Definition of Standard ML. The MIT
Press, 1990. :

17

[8] Didier Rémy. Records and variants as a natural extension of ML. In Sizteenth Annual Sym-
posium. on Principles of Programmming Languages, 1989.

(9] Didier Rémy. Algébres Touffucs. Application au Typuge Polymorphe des Objects Enreg-
istrements dans les Langoges Fonctionnels. These de doctorat, Université de Paris 7, 1990.

(10] Didier Rémy. Type infercnce for records in a natural extension of ML. Technical Report 1431,
Inria, Rocquencourt, May 1991. Also in [Rem90], chapter 4.

[11] Mads Tofte. Operational Semantics and Polymorphic 1ype Inference. PhD thesis, University
of Edinburgh, 1987.

[12] Mads Tofte. Principal signatures for higher-order program modules. In 19th ACM Symposium
on Principles of Programming Languages, 1992.

[13] Mitchell Wand. Complete type inference for simple objects. In Second Symposium on Logic
In Computer Science, 1987.

A Appendix: The inequation decomposition algorithm

The inequation decomposition algorithm Si in figure 15 outputs a set of elementary equations
and inequations. The Remy’s equation decomposition algorithm Se, simplifies an equation into a
set of elementary equations. This algorithm can be found in [9]. Inequations in the output of the
Si algorithm are only of the forms: a > abs, pre > o and a > /3, and there are not two equations or
inequations on the same variable. The algorithm elem. given an elementary inequation where the
variable o appears, checks for the occurrence of an inequation or an equation on ¢ in the already
simplified system M. This algorithm tries to simplify all the inequations and equations on « or
to find a contradiction between them. For more details on this kind of simplification and on the
whole inequation resolution process, the reader can consult [1].

In order to find the solutions of an inequation after the obtention of a simplified system, two
more steps must be performed. First, one must check that there are no cycles in the system.
Second, one must choose a solution for the elementary inequations having several solutions. In our
type system we always choose B>-minimal solutions. Thus, the >-minimal solution of o > abs and

. E
of pre > ais @ = abs.

B Appendix: Inference rules

The typing relation is of the form (I' e = 7), where I is a module context, e is a ModL expression,
and 7 is either a module type or a module context. It is defined as the smallest relation satisfying
the rules below.

When A is a context component. we write Az : ¢] for the function that is equal to A everywhere
except on 2. and assigns ¢ to x. When the syntactic class of « is clear. we write I'{z : t] instead
of recomposing the whole context (... Afz : ¢]...) from the components of I'. Let A and B be
two context components of the same kind. We write A + B the context component defined by
A(a) if Bla) is not defined and B{a) otherwise. Two module contexts can be added by adding

18

let rec Si(M,e) =
match e
with abs D pre — 1
| pre b abs — M
| a b o - M
| Cloy) > C(ry) —
Si(M,0y > 74)
| o > Cloy) —
let oy = newvars() in
let M' = Se(M,o E C(xy)) in
Si(./\/f/,a'i > O'i)
(* symmetric *)
| ¢y b cg —
if ¢y # co then fail else M
| i — elem(M,i)

where rec elem(M,i) =

match i

witha b f —- M U {a b g}
| o b c —

5!

if «
and c

¢ e M

A/ ¢ then fail
else M U {a E c}

| abs b a —

~

if -E-pree.'\/t

or a b pre € M then fail
else

(M\ {a b abs,pre b a})U {a £ abs}
| o b pre —

ifagabseM

or abs > a € M then fail
else

(M\ {c b abs,pre b a})U {a £ pre}
| « b abs —

ifagabSEM

or « E pre € M then M
else M U {a b abs}
| pre b a —

if « E abs € M

or « E pre € M then M
else M U {pre b a}

Figure 15: The inequation decomposition algorithm

19

their components. We assume for any type VW - 7 and any context T, that W is disjoint from the
variables in I'. We also assume that W is contained in V{1).

Let ¢ be 0 — o and call R the set W \ V(o). The predicate Gen(u, ', VW - ¢) holds if and
only if I(p] RYN V(') = & where I(r) is the image of the substitution » and | the restriction of
substitutions.

Given an assertion list ¢ equal to [a) : 01;...;a, : 0,], and a row term p, the notation ¢; p refers
to the term ay : pre - oy;....a, : pre- oy,;p.

I(strid) = o
(Vstr) —————
I'kstid=> o

I'(sigid) = VW - ¢
(Vsig) 13 W ->T

T'F sigid = po

['(funid) = VW - ¢
(Vfun) M W —-oT Gen(g,T,9)

't funid = p¢

I'tstrexp=>o0 TIhksigid=>¢ obo

(Res) —
T+ strexp : sigid = o’
I\ strexp = Sti(m,sm’d : pre-o;p)
(Extr)
I' & strexp.strid = o
FFdec=>¢ zg V()
(Nstr)
Ik str dec end = Str(z,s;abs - @)
I'tspec=>o
(Nsig)

I+ sig spec end = Str(z,s;abs - a)

Tt strexp=>ao obo
. ',
(App) 't funid = o T

[+ funid(strexp) = 7

[+ sigid = ¢ o is principal for sigid in T’

(Abs) Dlstrid : o] F strexp=> 7 WnY{I)=0

I' + func (strid : sigid)strexp = VW .0 — 7

Tk spec = ¢ D]+ sigexp = o strid € dom(s)

(Spec) el .
I' I spec; structure strid : sigexp => (strid: 0) 1 ¢

20

(Edec, Espec) —————
R A

I'tspec=>¢ T[¢]+ longid, = 1

(Sharing) T|c] F longid, = 7' 7 E o

I' - spec:sharing longid, = longid, = ¢

I

're=o o
(Equal)

I'rFe>r

I'tdec=¢ Tt strexp=>0 strid € dom(c)

(Dec)

[F dec:structure strid = strexp = (strid : 0) = ¢

['Fstrexp=a

{DecStr)
T F structure strid = strexp = ([strid : o], [],{])

I'ksigexp=>0 WNVYI)=0
o is principal for sigexp in T

{DecSig)
I' - signature sigid = sigexp
= ([}. [sigid : VW - o],])

I' - funexp = ¢

{DecFun)
[+ functor funid = funexp = ({].[].[funid : ¢))

I'+ program; = Iy T'+T;F program, = I'y

{SeqProg)
[+ program, in program, = I'y +T;

C Appendix: The signature typing algorithm

The following algorithm uses a set M of fixed stamps which cannot be modified (i.e., they cannot be

in the domain of any substitution). It also uses Rémy’s unification algorithm modulo the equations
E. We call G(M,o £ 7) the algorithm finding the principal solution of the unification problem
¢ £ 1 without changing the stamps in M. The algorithm G*(M,o £ 7) finds the principal

solution modulo B of the sharing equation o £ r without changing the stamps in M.

21

let WM, T F sigexp 3 a*) =
match sigexp
with sig spec end —
let x = newvarstamp()
and «,3 = newvars()
and g = W(MT F spec > o)

in G(M,a* E Str(x,pt arabs - 3))

flem

I {3} - GMe 1)
b osigid —
let VW-7 = T[{sigid) in
let p:W — 7T such that
I() N V(I)=9

in G(M,a" E T

| spec: structure a: sigexp —
let a,f = newvars{) in

let ¢ = W(b+ spec > a)
and v = .

WM, Tl o] + sigexp = 3)
in let n = v o u

in G(M,a* E (a: v 3) = n o)

| spec; sharing longidy = longidy —

let a,3,v = newvars() in

let p = WM F spec R ~)

and v = .
W(M.p Tlp 3] & longidy = a)

and v = ,
WM, i T(ie 7] + longidy = 8)

and ¢ = GEMv a E 3)

in gM.a* E (1 o q) ~)

Figure 16: The signature typing algorithm

Unité de Recherche INRIA Rocquencourt
Domaine de Voluccau - Rocquencourt - B.P, 105 - 78153 LE CHESNAY Cedex (France)

Unité de Recherche INRIA Lorraine Technopéle de Nancy-Brabois - Campus Scientifique
615. rue du Jardin Botanique - B.P. 101 - 34602 VILLERS LES NANCY Cedex (France)
Unité de Recherche INRIA Rennes IRISA. Campus Universitaire de Beaulieu 35042 RENNES Cedex (France)
Unité de Recherche INRIA Rhone-Alpes 46, avenue Félix Vialler - 38031 GRENOBLE Cedex (France)
Unité de Recherche INRIA Sophia Antipolis 2004 route des Lucioles - B.P.93 - 06902 SOPHIA ANTIPOL.IS Cedex (France)

EDITEUR
INRIA - Domaine de Voluccau - Rocquencourt - B.P. 105 - 78153 LE CHESNAY Cedex (France)

ISSN 0249 - 6399

Y

