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ABSTRACT. We present an integral equation which generallzes a variety 
of known rendering algorithms. In the course of discussing a monte carlo 

solution we also present a new form of variance reduction, called Hierarchical 
sampling and give a number of elaborations shows that it may be an efficient 
new technique for a wide variety of monte carlo procedures. The resulting 
renderlng algorithm extends the range of optical phenomena which can be 
effectively simulated. 
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1. T h e  r e n d e r i n g  e q u a t i o n  

The technique we present subsumes a wide variety of rendering algo- 
r i thms and provides a unified context for viewing them as more or less 
accurate approximations to the solution of a single equation. That 
this should be so is not surprising once it is realized that all rendering 
methods a t tempt  to model the same physical phenomenon, that of 
light scattering off various types of surfaces. 

We mention that  the idea behind the rendering equation is hardly 
new. A description of the phenomenon simulated by this equation 
has been well studied in the radiative heat transfer literature for years 
[Siegel and Howell 1981]. However, the form in which we present this 
equation is well suited for computer graphics, and we believe that this 
form has not appeared before. 

The rendering equation is 

I(z,z') = g(x,x'} [e(z,x') + fsp(=,a: ' ,x")[(z',x"}dz" ] . (1) 

where: 
x(=, ~') 

~( x, =9 ,(=, =') 

p(z, z'=") 

is the related to the intensity of light 
passing from point z '  to point x 
is a ~geometry ~ term 
is related to the intensity of emitted light 
from x' to x 
is related to the intensity of light scattered 
from x" fox by a patch of surface at z' 
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The equation is very much in the spirit of the radiosity equation, sim- 
ply balancing the energy flows from one point of a surface to another. 
The equation states that  the transport  intensity of light from one sur- 
face point to another is simply the sum of the emitted light and the 
total light intensity which is scattered toward z from all other surface 
points. Equatlon (1) differs from the radiosi~y equation of course be- 
cause, unlike the latter, no assumptions are made about reflectance 
characteristics of the surfaces involved. 

Each of the quantities in the equation are new quantities which we call 
unoecluded multipoint transport quantities. In section 2 we define each 
of these quantities and relate them to the more conventional quantities 
encountered in radiometry. 

The integral is taken over S = U s i ,  the union of all surfaces. Thus 
the points x, x'~ and x" range over all the surfaces of all the objects in 
the scene. We also include a global background surface So, which is 
a hemisphere large enough to act as an enclosure for the entire scene. 
Note that  the inclusion of a enclosure surface ensures that the total 
positive hemisphere for reflection and total negative hemisphere for 
transmission are accounted for. 

As an approximation to Maxwell's equation for electromagneticseq. (1) 
does not at tempt to model all interesting optical phenomena. It is es- 
sentially a geometrical optics approximation. We only model time 
averaged transport  intensity, thus no account is taken of phase in this 
equation--rul ing out any treatment of diffraction. We have also as- 
sumed that the media between surfaces is of homogeneous refractive 
index and does not itself participate in the scattering light. The latter 
two eases can be handled by a pair of generalizations of eq. (1). In 
the first case, simply by letting g{x, z') take into account the eikonal 
handles media with nonhomogenous refractive index. For participating 
propagation media, a integro-differentiM equation is necessary. Exten- 
sions are again well known, see [Chandrasekar 195% and for use in a 
computer  graphics application [Kajiya and yon Herren 1984]. Elegant 
ways of viewing the eikoual equation have been available for at least 
a century with Hamilton-Jacobi theory [Goldstein 1950]. Treatments 
of participatory media and of phase and diffraction can be handled 
with path integral techniques. For a treatment of such generalizations 
concerned with various physical phenomena see [Feynman and Hibbs 
1965]. Finally, no wavelength or polarization dependence is mentioned 
in eq. (1). Inclusion of wavelength and polarization is straightforward 
and to be understood. 

2. D i s c u s s i o n  o f  t r a n s p o r t  q u a n t i t i e s  

We discuss each of the quantities and terms of equation (1}. This 
equation describes the intensity of photon transport  for a simplified 
model. I(x, zl) measures the energy of radiation passing from point z I 
to point x. We shah name [(z~ x ~) the unoccluded two point transport 
intensity from x' to x, or more compactly the transport intensity. The 
t ransport  intensity I(x, x') is the energy of radiation per unit time per 
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unit area of source dz '  per unit area dx of target. 

d E  = I ( x ,  x'} d t d x  dx'. (2) 

The units of 1 are joule/m4sec, 

The term g(x, x') is a geometry term. This term encodes the occlusion 
of surface points by other surface points. If in the scene~ x' and x axe 
not in fa~ct mutually visible then the geometry term is 0. On the 
other hand if they are visible from each other then the term m 1 / r  2 
where r is the distance from x' to x. Note that an occluding perfectly 
transparent surface can make 9(x, z') to be equal 0. For, in fact, the 
transparent surface, intercepts the radiation and reradiates it on the 
other side. 

The emittance term, e(x, x I) measures the energy emitted by a surface 
at point x' reaching a point z. We shall call it the unoccluded two 
point transport emittanee from x ~ to x. It gives the energy per unit 
time per unit area of source and per unit area of target. That  is, 

1 
d E  = ~ , ( x ,  x )dr d~ dx r. (3) 

The units of ~(x, x 1) are joule/m~sec, 

Finally the scattering term p(x, z', x') is the intensity of energy scat- 
tered by a surface element at x' orginating from a surface element at 
x" and terminating at a surface element at ~. We shall call it the 
unocciuded t/tree lvoictt lra~ts~ort reflectance from z" to = through xl.~ 
The term p is a dimensionless quantity. So the energy reaching = is 
given by 

dE = .~-~(=, =1, =,,)~( ,, , , }  d~ d~ d~' d~" (4) 

We now relate the transport quantities to more conventional radio- 
metric quantites. We shall do this by equating the energy transported 
by each quantity for the given geometric configuration. 

Ordinary radiometric intensity is defined as energy per unit time per 
unit of projected area of source per unit of solid angle 

d E  = i(0', ¢')dw dx~ dr. (5) 

To relate these quantities we look at the imaging geometry in figure I. 

Figure I. Two point imaging geometry. A frame iv attached to each Burface element 
giving a normal, tangent, and binormal vector. 

From the figure we obSain 

= II=- =111 
d x ~  = d z  I cos 0 

= ~(n,x- x')  cos~ 
(6) 

cos O' = -l(n', ~ - 1) 
r 

cos¢' = ~ ( t ' , =  - =') 

where: 

This term also covers the transmittance of light through surfaces as 
well. To simplify the ensuing discussion we will ignore transmission 
scattering altogether. 

n is the normal to surface element dx 
n ~ is the normal to surface element dx ~ 
t' m the tangent vector to the element dx' 
r is the distance from x' to 

The solid angle subtended by a surface element dx is the fractional 
area of a sphere of radius r taken up by the projected area dxp of dx. 

dxp = ~ cos e dz. (7) So., = - ~ -  

Thus substituting eq. (7) in eq. (5) we get 

= i C 81, ¢') 1 cos 9 cos 0'dt d z  dE dx I . 
r -  

(s) 

Equating eq. (2) and eq. 15) gives the relationship between transport 
intensity and ordinary intensity 

1 
*(x, =9 = ice, ¢)  ~ cos 0 cos 0'. (9)  

The relation between t ranspor t  emittance and ordinaryemittance is 
derived likewise. Assuming that there are no occluding surfaces, the 
energy transmitted by emission from surface element dx r to dx is given 
by eq. (3). Using the definition of ordinary emittance we can follow 
exactly the same procedure as above to obtain 

~C~, =') = eC0', ¢ )  cos e cos 0' (i0} 

Finally~ we relate the t ranspor t  reflectance to the ordinary radiometric 
total bidirectional reflectance functionp(O', ¢ ' ,  ~ ' ,  a ' )  from the defini- 
tion 

K0', ¢)  = p(0', ¢', V,  ~ ' ) i ( ¢ ' , , ¢ ) ~ 1 ' c o s ¢ '  (1~). 

Where the imaging geometry appears in figure 2. 
rd 

M 
Figure 2. Three point imaging geometry. 

From the diagram we obtain in addition to equations {6) and (7), the 
following 

r" = I1='-- ="11 
d ~  = dz"  cos'¢," 

cos ¢ '  = ~7(n , 1  ' x' - x") 

cos.,,b" = ~7~nl"., ~t _ x ' )  

1 , xl xl/) cos~l= ~7{t ,  - 

d.o/' = dx~ 1 ,, . 
--=r~c°s¢ d= r#/2 

where: 

n" is the normal to surface element dx" 
r" is the distance from x" to x ~ 

dw tl is the solid angle subtended by surface element dx" 

(12} 

Combining eqs.(2),(8),(9),(11), and (12) we obtain the relationship 
between the unoccluded three point t ransport  reflectance and the or- 
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dinary total bidirectional reflectance 

p(~, =', =") = e(o', ¢', 9', ,~') cos  0 cos o' (1~) 

Whitted [1980], proposed a different approximation: 

I = ge + gMogeo -F gMogMogeo + . . .  

8. Methods fo r  approximate s o l u t i o n  

In this section we shall review approximations to the solution of the 
rendering equation. It appears that  a wide variety of rendering algo- 
r i thms can be viewed in a unified context provided by this equation. 
During the course of this discussion, many other untried approxlmw 
tions may occur to the reader. We welcome additional work on this 
area. This territory remains l~gely unexplored~ since the bulk of the 
present effort has concentrated solely on the solution methods to be 
presented below. 

Ne s . m ~ u  serses 

One method of solving integral equations like eq.(1} comes from a 
well known formal manipulation, see [Courant and Hilbert 1953]. We 
rewrite it as: 

I = g~ + g M l  

where M is the linear operator given by the integral in eq.(l). Now if 
we rewrite this equation as 

( 1  - -  g M ) I  -~ ge 

where 1 is the identity operator, then we can formally invert the equa- 
tion by 

jr = (1 -- g M ) - l g e  

= ge + gMge + gMgMge + g(Mg}Se . . .  {2) 

A condition for the convergence of the infinite series is that  the spectral 
radius of the operator  M be less than one. {Which is met in the case 
of interest to us). A physical interpretation of the Neumann expansion 
is appealing. It gives the final intensity of radiation transfer between 
points x and x ~ as the sum of a direct term, a once scattered term, a 
twice scattered term, etc. 

The Utah approzlmation 

For lack of a bet ter  name, we shall call the classical method for render- 
ing shaded surfaces the Utah approximation. In this approximation 
we approximate I with the two term sum: 

I = ge + gMe o 

Thus the Utah approximation ignores all scattering except for the 
first. The geometry term is by far the most difficult to compute. The 
Utah approximation computes the g term only for the final scattering 
into the eye. This is, of course, the classical hidden surface problem 
studied by many early researchers at the University of Utah. Note 
that  in the second term, the operator M does not operate on ge but  
rather  directly on e0- Thus this approximation ignores vlslbilty from 
emitting surfaces: it ignores shadows. The e0 term is mesas to signify 
that  only point radiators ~re allowed. No extended lighting surfaces 
were allowed. This simplification reduces the operator M to a small 
sum over light sources rather  than an integration over ~". 

Since that time many extensions have appeared, most notably shadow 
algorithms and extended light sources. 

The Ray Tracing approximation 

In this famous approximation, Me is a scattering model which is the 
sum of two delta functions a cosine term. The two delta functions of 
course represent the reflection and refraction of his lighting model. The 
cosine term represents the diffuse component. Note that  he gives gee: 
shadows but with point radiators. Whitted's  ambient term translates 
directly to the • term. Again the operator M can be approximated by 
a small sum. 

The distributed ray tracing approximation 

In 1984, Cook [Cook et al 1984], introduced distributed ray tracing. 
This approximation uses an extension of the three component Whitted 
model resulting in a more accurate scattering model. This extension 
necessitated the evaluation of an integral in computing the operator 
M. In this model M is approximated by a distribution around the 
reflection a~td refraction delta functions. The innovation that made 
this possible was the use of monte carlo like techniques for the eval- 
uation. As is well known, the ability to evaluate integrals has widely 
extended the range of optical phenomena captured by this technique. 
A proper treatment of the ambient term, however, remained elusive 
to distributed ray tracing. 

The radioMty approximation 

In 1984, Goral, Torrance, and Greenburg [Goral et. aL 1984, Cohen 
md Greenburg 1985, Nishita and Nakamas 1985] introduced radiosity 
to the computer graphics world. This is a major new rendering tech- 
nique which handles the energy balance equations for perfectly diffuse 
surfaces. That is, surfaces which have no angular dependence on the 
bidirectional reflectance function 

p{O', ¢', ¢ ' ,  ~,') = Po. (14) 

The radiosit 9 B(x') of a surface element dx' is the energy flux over 
the total visible hemisphere. It is the energy per unit time per unit 
(unprojected) area, measured in watts per meter squaxed. It is defined 
by 

dB{=') = an' ] q o ' , ¢ )  cos e ' ~  
..1 hctrti 

= an' f : C = , = ' ) r ' ~  (i~) 
J heml C~ 

= dz' [ /C=, =')d= JS 

Thus to calculate hemispherical quantities we may simply integrate 
over all the surfaces in the scene. So from eq.(1) and (15) we obtain 

= / { g{., . , ) , { . ,  dB(x')  
(16) 

+g(~, =') : [ p(=, =', ="} r(~', =")de'}  d~ 

If there is an occlusion between ~ and x* then the contribution of the 
emmitance term is zero. Otherwise the contribution is 

dx' [ ~ - - - d x  q=' =') dB,(x ' )  

d='f , , ,¢osea= dO,¢  ) cose ~ (17) 
J 

= dz'  J eCe',¢' } cos e'd~ 

~_ dxt ~ o  
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W h e r e  ~o is the  h e m i s p h e r i c a l  e m i t t a n c e  of the  surface e lement  dx'. 

Simi la r ly  for the re f lec tance  t e rm,  the c o n t r i b u t i o n  to  r ad io s i t y  is aga in  
zero for an occ luded  surface.  O the rwi se  we get  

dB,(x') = dx' f ~ f p(x,z',x")z(z',z")dz"dz 
= ax, f ~p(O',¢',¢',a')cosOcosO'd~ 

× / I(x', x")dx" (is) 

= dxlpo~rH(x ') 

W h e r e  H is the  h e m i s p h e r i c a l  inc iden t  ene rgy  p e r  u n i t  t i m e  and  u n i t  
area.  In  th i s  d e r i v a t i o n  we s w i t c h e d  the  o rde r  of i n t eg ra t i on  and  used  
iden t i t i e s  (13),(12),  and  (14). Now us ing  equa t i ons  (17) and  (18) in  
(16) we see t h a t  the  r e n d e r i n g  e q u a t i o n  becomes  

dB(x') = ~r[e0 + poH(x')]dx' (19) 

W h i c h  is e q u a t i o n  (4) in  O c t a l  et .  al.  [1984]. 

C a l c u l a t i n g  the  t o t a l  i n t e g r a t e d  i n t e n s t y  H is essen t ia l  to  ca l cu la t e  
the  f inal  F~ d m a t r i x  in rad ios i ty .  T h i s  r equ i res  a v i s ib i l i t y  ca l cu l a t i on  
which  m a y  be Quite expens ive .  Since t he  m a t r i x  e q u a t i o n  is solved by  
a number of relaxation steps, it is essentially equivalent to s u m m i n g  
the  first  few t e r m s  of the  N e u m a n n  series:  p r o p a g a t i n g  the  e m i t t e r s  
across  four  or  so s ca t t e r e r s .  To use r e l a x a t i o n  requi res  t h a t  the  ful l  
m a t r i x  be  ca l cu la t ed .  R e l a x a t i o n  also gives a l l  the  in t ens i t i e s  a t  a l l  t he  
sur faces  in  the  scene.  W h i l e  in  c e r t a i n  cases th i s  may  be  an  advantage~ 
i t  is s u g g e s t e d  t h a t  the  m o n t e  car lo  m e t h o d  ou t l ined  be low may  be  
quite superior. 

4.  M a r k e r  c h a i n s  f o r  s o l v i n g  i n t e g r a l  equations 

The use of Markov chains is perhaps the most popular numerical 
method for for solving integral equations. It is used in fields as di- 
verse as queuing theory and neutron transport. In facts the use of 
monte carlo Markov chain methods in radiative heat transfer has been 
in use for quite some time, [Siegel and Howell 19811. In the heat trans- 
fer approach, a packet of radiation of specified wavelength is emitted, 
reflected, and absorbed from a configuration of surfaces in some enclo- 
sure. Counting the number of packets absorbed by each surface after 
a run gives an estimate of the geometric factors whose exact calcula- 
tion would pose an intractible problem. This is similar to ray tracing 
a scene from the light sources to the eye. Rather than follow these 
methods, we will choose to solve eq.(1) more directly going back to an 
early monte carlo method first put forth by yon Neumann and Ulam 
[Rubens t e in  1981]. 

Finite dimensional version 

By way of i n t r o d u c t i o n  we first p resen t  the  m e t h o d  in a f ini te  d imen-  
s iona l  con tex t .  Th is  s impl i f ies  the  n o t a t i o n  and  makes  obvious  the  
essen t ia l  ideas  involved.  A g a i n  we no te  t h a t  t h i s  example  m e t h o d  
m a y  poss ib ly  hold  m a n y  a d v a n t a g e s  over the  cu r r en t l y  used  re lax-  
a t ion  schemes  p o p u l a r  in r ad ios i ty :  i n t ens i t i e s  a t  on ly  vis ib le  po in t s  
need  be c o m p u t e d ,  and  ca l cu l a t i on  of the  full  r ad io s i t y  m a t r i x  may  be 
e x c h a n g e d  for a ve ry  m u c h  sma l l e r  set  of se lec ted  m a t r i x  e lements .  

Suppose  we wish  to  solve the vec tor  equa t ion :  

x = a W M x  

where  x and  a are n - d i m e n s i o n a l  vectors~ x an  unknown ,  and  M = 
(miy) is an n X n m a t r i x .  

Now from a N e u m a n n  e x p a n s i o n  we see t h a t  for M a m a t r i x  w i t h  

eigenvalues lying within the unit circle, the solution x is given by 
co 

x = a + Z M k a  
k= l  

The  m e t h o d  eva lua t e s  th i s  s u m  by  ave rag ing  over  p a t h s  t h r o u g h  the  
m a t r i x  mul t ip l i e s .  T h a t  is, i t  follows a p a t h  t h r o u g h  rows and  co lumns  
t h a t  compr i ses  an  i t e r a t e d  m a t r i x  p roduc t .  For each po in t  in the  p a t h  
we get  a row or  c o l u m n  which  can  be  i ndexed  by  an  in t ege r  f rom 1 to  

C o n s t r u c t  a p r o b a b i l i t y  space  g / w h e r e  each po in t  w is a p a t h  v i s i t i ng  
one of n p o i n t s  a t  each  d i sc re te  t ime ,  "vis, w = ( n 0 , n t , . . . , n ~ )  where  
each n~ is an  in t ege r  f rom 1 to  n. The  l eng th  k = l{w) of the  p a t h  w is 
f ini te  b u t  o the rwise  a r b i t r a r y  and  co r re sponds  to an  en t ry  in  the  k t h  
m a t r i x  power .  Each  p a t h  is a ss igned  a p r o b a b i l i t y  p(w). 

If we wish  to c a l c u l a t e  the  va lue  of one coo rd ina t e  of x~ say  xjL, t h e n  
we calculate the quantity 

l(~) 

~ '  = ( 1 ~  m . . . . . .  )~-,,-i 1 p(~) 
i=O 

ave raged  over  a l l  p a t h s  w E t~. S imp ly  t a k i n g  e x p e c t e d  va lues  verif ies 
t h a t  t h i s  q u a n t i t y  gives the  des i red  quan t i ty .  

The  p r o b a b i l i t y  space  of p a t h s  is m o s t  eas i ly  c o n s t r u c t e d  us ing  Maxkov 
chains .  A ( s t a t i o n a r y )  d i sc re te  Markov  cha in  cons i s t s  of a set  of s t a t e s  
X ,  and  an  a s s i g n m e n t  of a transition probability p(x, x') f rom one s t a t e  
x '  ~ X to  a n o t h e r  x E X~ and  an  i n i t i a l  p r o b a b i l i t y  dens i ty  of s t a t e s  
p(x). Some s u b s e t  of s t a t e s  m a y  be  d e s i g n a t e d  as absorbing in t h a t  no  
t r a n s i t i o n s  ou t  of an  a b s o r b i n g  s t a t e  axe p e r m i t t e d .  

T h e  p r o b a b i l i t y  of a p a t h  g e n e r a t e d  by  a Maxkov cha in  is s i m p l y  the  
the  p r o d u c t  of the  i n i t i a l  s t a t e  and  al l  the  t r a n s i t i o n  p r o b a b i l i t i e s  u~ t l l  
an  a b s o r b i n g  s t a t e  is reached.  So for a p a t h  

we have  the  p r o b a b i l i t y  is 

In the finite dimensional ease we let the state set of the Markov chin 
be the set of indices into the vector or matrix, X = {1, ..., n}. Note 
that although we axe allowed wide lattltude in choosing the transition 
probabilities, they must be positive for the corresponding nonzero en- 
tries in the matrix. In the limit our estimate of the solution is quite 
independent of the probability distribution of the paths. But the rate 
of convergence to the limit is highly dependent on the manner of choos- 
ing the transition probabilities. Section 5 gives a set of new techniques 
for choosing the transition probabilities. 

Infifiaitc dimaasional solution 

E x t e n d i n g  the  mon te  car lo  M a r k e r  cha in  m e t h o d  to  inf ini te  d imen-  
s iona l  e q u a t i o n s  is s t r a i gh t fo rwa rd .  For the  e q u a t i o n  a t  h a n d ,  we Rote 
t h a t  i t  is a v a r i a n t  of a F r e d h o l m  e q u a t i o n  of the  second  k ind .  The  
p a s s i v i t y  of sur faces  in ref lec t ing  and  t r a n s m i t t i n g  r a d i a t i o n  assures  
the  convergence  of t he  N e u m a n n  series.  We s i m p l y  rep lace  the  s t a t e  
se t  by  the  set  of po in t s  x on a surface.  The  p rocedure  for c a l c u l a t i n g  
the points is thus: 

1. Choose a point z' in the scene visible through the imaging aperture to a 
selected pixel z on the virtual screen. 

2. Add in the radiated intensity. 
3. For the length of a Marker path do 

3.1 Select the point z s~ and calculate the geometrical factor g(z, zt). 
3.2 Calculate the reflectance function @(z, x', z") and multiply by ((z', x"). 
3.3 Add this contribution to the pixel intensity. 

Note  t h a t  c a l c u l a t i n g  the  e m i t t a n c e  and  s c a t t e r i n g  fac tors  is s i m p l y  a 
matter of consulting texture maps and lighting models. Calculating 
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the geometr ical  factor is, in fact, the ray-object intersection calculation 
of ray tracing. Note als% tha t  by choosing the next point  x" on the 
Markov pa th  by shoot ing a ray at an chosen angle and finding the 
closest intersection point,  we in effect perform a powerful importance 
sampl ing opt imizat ion.  T h a t  is, we do not bother  to calculate the 
integral for points x ~ , ~ which are occluded by another surface because 
we know the integral will be zero. This is in contrast to the relaxation 
procedure in radiosity which always takes energy contributions from 
all surfaces. 

5. H i e r a r c h i c a l  s a m p l i n g  

We now present a number  of new variance reduction techniques in- 
vented for solving the rendering equation. We hasten to point out, 
however, tha t  the variance reduct ion techniques exposed here are of 
much wider scope. Generally they will have ut i l i ty  in all manner  of 
monte carlo integrat ion problems in which the integrand is par t icular ly  
difficult. In this situations the increased overhead beyond previously 
known methods becomes negligible. We present five methods which 
take increasing advantage of precious samples of the integrand. All 
the techniques outlines below were inspired by stratified sampling. 

Sequential uniform sampling 

The first sampl ing  technique stems from a common sequential  sam- 
pling strategy. Often samples  of the integrand are repeatedly  collected 
unt i l  the sample  variance of the integral  es t imate  falls below a fixed 
threshold. This s t ra tegy  has been shown to be of advantage in [Lee, 
Redner  and Uselton 1985], where many samples were collected at in- 
terest ing par ts  of the image while few were collected at uninterest ing 
parts. 

Unfortunately, this sequential strategy is incompatiblewith stratified 
sampling. In the stratified sampling technique, the domain of interest 
is divided into snbcells. Lee, et. al. used a fixed subdivision of 8 cells 
per pixel and randomly collected samples within each cell. Ideally, 
better convergence is obtained when one sample per cell is collected~ 
where the cells uniformly divic~e the domain--thls is the so called jit- 
ter sampling method, where ordinarily we think of the centers of the 
cells a~ forming a lattice. The incompatibility between sequential and 
jitter sampling arises because a uniform subdivision of the domain 
is impossible until it is known precisely how many samples will be 
collected. 

Sequential uniform sampling achieves this by keeping a tree of cells of 
varying sizes. Each time a sample is to be cast, a cell is first chosen 
and then divided into cells. The old sample of the original cell must 
lle in one of the new subcells. The new sample is chosen to lie in the 
opposite cell. A simple example will illustrate this technique. 

Suppose we are sampling a unit interval and have already cast 5 sam- 
ples. The cells chosen with sample points appear thus: 

Sz 5~ ,Sj ss ~ 

To cast  a new sample point we traverse the tree unt i l  a leaf cell is 
encountered. We then split  the leaf cell in half and cast the sample 
into the empty  half cell. 

REFINE A NODE 
I. If the node is an internal node 

1.I~ Chooze ~ subnode 
1.2 Refine the chosen subnode 
1.3 Return 

2. Else, split the leaf node 
3. Propagate the old sample into the eubleaf containing it. 
4. Cast a new sample in the remaining empty subleaf 

How can we assure tha t  the most  uniform possible subdivision is com- 
puted? One way would be to traverse the sampling tree in breadth 
first order. Splitting each leaf node at every level before splitting 
deeper nodes. This strategy produces highly nonrandom sample dis- 
tributions, essentially scanning across the interval. A better method 
is to split nodes breadth first in random order. The following criteria 
effect this strategy 

CHOOSE A SUBNODE 
1. If either is a leaf choose i t .  
2. Choose left node if 

level(left)<level(right) and left is balanced 
3. Choose right node if 

level(right)<leveI(left) and right is balanced 
4. Choose raaad0mly otherwise. 

Note tha t  this s t ra tegy will in effect perform a random search through- 
out the interval,  wi thout  concentra t ing on any par t icular  area. 

The multidimensional case 

The above a lgor i thm is easily extended to higher dimensions s imply 
by xtslng a data structure known as a k-d tree due to Bentley IBent- 
ley 1979]. In this data structure, the domain is succesively divided 
into two halves by a hyperplane perpendicular to successive coordi- 
nate axes. Thus for say a unit square, the k-d tree subdivides first 
along a vertical line, then on the next level down along the horizontal. 
The uniform subnode choice rules above ensure a uniform subdivision 
without any modification. Generalization to path spaces is straight- 
forward. 

Hierar¢hical ini¢gration 

The th i rd  version of the above technique takes advantage of the fact 
tha t  the cells for each sample are recorded with each sample. In this  
way we may compute a Riemann sum using the volume of the cell 
and the vahte of the cast  sample as integrand.  Yakowitz [Yakowit~ 
et al 1978] has proposed a var iant  of this  method (using the samples 
themselves as boundary  points  with no strat if ication).  He has reported 
a variance of O(n  -4) in the one dimensional  ease, and a variance of 
O(n -2) in the two dimensional  case. This is in vast ly  superior  to the 
O(n  -1)  of simple monte carlo. The analysis of our technique is st i l l  
under  investigation,  and will  appear  in a companion paper.  But  due 
to the s t ra t i f icat ion of our samples,  early evidence suggests t ha t  this 
is a superior technique for integration.  

Each t ime a leaf cell is spli t ,  i ts contr ibut ion to the t o t a l  in tegral  is 
divided in half. The new integrand sample is mult ipl ied by the volume 
of empty  cell. After sp l i t t ing  and sampling has occurred, the pa th  from 
the leaf to the root  is traversed, upda t ing  the integral  stored at each 
node to be the sum of the integrals  of its subnofles. By keeping the 
integral  of nonroot in ternal  nodes we are able to au tomat ica l ly  scale 
the by the densi ty  of the samples to main ta in  a constant  measure. 

Figure 3 shows the convergence of  a two dimensional  integral  as com- 
pared to the conventional  monte carlo technique. The value of the 
in tegral  es t imate  is p lot ted  versus number  of samples cast. The con- 
ventional  es t imator  is shown above and the hierarchical  integrator  is 
shown below. We are in tegra t ing  a simple step function on a connected 
region of the plane. 

147 



S I G G R A P H '86 
I I I I  

Adaptive hierarchical integration 

The fourth elaboration of thls technlque concerns other criteria besides 
uniformity of samples in the domain. In this variation~ we seek to 
concentrate samples in interesting parts of the domain and to sparsely 
sample those areas in which the integrand is nearly constant. 

We seek criteria for selecting interesting parts of the tree to undergo 
further refinement. How can these criteria be included in the algo- 
r i thm? It is easy to think of the subnode selection rules of the uni- 
form sequential sampler as a way of setting probability thresholds. 
Choose a uniform random number in the unit interval. The uniform 
rule calculates a threshold ~ which is either 1 or 0 if the rule says to 
choose left or right subnode. If the rule says to choose randomly, the 
threshold is set to 0.5. 

Now let us calculate a number  of thresholds ¢ 1 , . . . , ¢ k .  To take all 
these threshold functions into account a effe~ tire scheme is to form the 
convex combination of them as the global tl 'eshold, that  is the global 
threshold ¢ is given by 

qb ~ Ci~ i "--~'- C2¢ 2 "}- " 
k 

• c i ~  l 
i : l  

ck~k 

where cl > 0 for every i. Each ci provides a weight for its correspond- 
ing threshold function so that  the total strategy can undergo tuning. 

What  are the useful threshold functions? We have found a few~ but  
it is clear that  the number of useful criteria left to be discovered is 
many. Among the threshold functions we have found useful axe 1) the 
uniform sampling threshold; 2} The totally random threshold (~b = .5); 
3) The difference of integrals of the two subnodes; 4) A history of the 
activity of change in this subnode (which may be the varianc% or some 

weighted time history of the integral); and 5) A priori functions that 
can predict where large illumination components will be. 

So far our experiments in finding adaptive criteria have not been ter- 
ribly successful. We have not ~sed adaptation in computing the final 
images. 

Again we note as in the last section, that  recording the volumes of 
the cells in each node automatically provides the normal~ation that 
is needed when the sampling distribution is skewed. This is often 
problematical in adaptive sampling schemes. 

Figure 4 shows the unit square subdivided according to criterion 1) 
and 3) in equal proportion. This is a snapshot of the subdivision when 
165 samples have been ca~st. 

Nonuniform sampling: Importance sampling analogs 

Finally, the fifth technique takes into account importance sampling. 
Instead of dividing a leaf cell exactly in half, it is possible to divide 
it along a hyperplane that  represents the median of some probability 
density function. The hyperplane chosen is given by the level of the 
k-d tree in the second technique. Representing the probability density 
as an integrated distribution function makes it easy to choose the 
median hyperplane by a quick binary search: to find the median of 
a probability density jr(x) we simply search for the point at which 
r(x) = , 5 .  

Importance sampling is a very important  variance reduction technique 
which can be used to great advantage in solving the rendering equa- 
tion. 

6. Application to the r e n d e r i n g  equation 

The monte carlo algorithms presented above can all be applied to 
a solution of the rendering algorithm. For example, sequential uni- 
form sampling is used to sample the aperture for depth of field blur. 
Adaptive hierarchical integration is used to subsample the pixel. Im- 
portance sampling by splitting along the medians is used in choosing 
a direction to shoot the next ray. We store the lighting model as 
a summed area table [Crow 1985], giving a probability distribution 
function which can undergo binary search to find the median in a re- 
flectance cell. Since we search for a median hyperplane of the lighting 
model, nonlinear transformations of the domain are not particularly 
important.  We simply project the pair of input and output  hemi- 
spheres onto the tangent plane. 

It is interesting to compare the path solution to the conventional ray 
tracing algorithm. It is in fact quite easy to convert a conventional 
ray tracer to this algorithm. We essentially perform a conventional 
ray tracing algorithm, but instead of branching a tree of rays at each 
surface, we follow only one of the branches to give a path in the tree. 
We always shoot toward known light sources, which, of course, may 
be extended areas. Thus a schematic of ray tracing versus the integral 
equation method appears thus: 

I d J  

\\ \ 
Now an important  phenomenon is pointed out by this diagram. Due to 
the passivity of surfaces, it is widely known that  the first generation 
rays as well as the light source rays are the most important  to in 
terms of variance that  they contribute to the pixel integral. Second 
and higher generation rays contribute much less to the variance. But  
conventional ray tracing expends the vast bulk of the work on precisely 
those rays which contribute least to the variance of the image, it shoots 
too many rays of higher generations. The integral equation method is 
not prone to this criticism. Because a path is a tree with branching 
ratio lj there are as many different first generation rays as there are 
higher generation rays. This is very important  for variance reduction 
for motion blur, depth of field, and other effects in distributed ray 
tracing. 

This diagram also points out an alternative algorithm for conventional 
distributed ray tracing. Rather than shooting a branching tree, just  
shoot a pa th  with the rays chosen probabillstically. For scenes with 
much reflection and refraction, this cuts down vastly on the number of 
ray object intersections to be computed for a given plxel and performs 
a remarkable speed up of ray tracing for very little programming work. 
However, for this new fast form of ray tracing----called path tracing--we 
have found that  it is very important  to maintain the correct proportion 
of reflection, refraction, and shadow ray types contributing to each 
pixel. Rather  than choosing the ray type randomly, there are two 
alternatives. First, keep track of of the number of each type shot. 
Make sure the sample distribution of ray types closely matches the 
desired distribution by varying the the probability of each type so 
that  it is more certain that  the sample distribution matches. This is 
the approach we have actually implemented. A second approach is 
to let the ray types be chosen randomly but to scale the contribution 
of each ray type by the ratio of desired distribution to the resulting 
weighted sample distribution. 
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7. P,.esult s 

Figures 5 and 6 show resulting images from the integral equation tech- 
nique. At each surface element hit, a random variable was calculated 
from o. distribution determined by the specular, diffuse, and trans- 
mission coefficients. This random variable was used to choose the 
shooting of one ray from the surface element. A random point was 
chosen on each light source to serve as a target for. an illumination 
ray. The variance reduction methods actually used were multidimen- 
sional sequential sampling for choosing the diffuse direction, specular 
direction, and refracted direction of a new ray. Multidimensional se- 
quential sampling was also used to choose points on the light sources 
and imaging aperture. Hierarchical integration was used for antialias- 
ing the pixel values. No adaptive or nonuniform sampling was used 
for either of these images. It is clear that importance sampling would 
improve the variance of the image considerably. Although implemen- 
tation of importance sampling is simple and straightforward it has not 
yet been done. Also, keeping track of the variance of each pixel and 
collecting sequential has shown to be a significant speed up. However, 
our program did not do this for these images, we shot a constant 40 
paths per plxel. 

Figure 5 shows a model rendered via two techniques. On the left side 
is the model rendered via the standard ray tracing technique (albeit 
with ambient coefficient set to 0 ~nd the single branching ratio speedup 
mentioned above). The right image shows the result of rendering via 
the integral equation. Both images are 256 by 256 pixele with a fixed 
40 paths per pixel. The images were computed on an IBM-4341. The 
first image took 401 minutes of CPU time, the second image took 533 
minutes. Note that the area of the sphere in shadow is picking up 
ambient illumination missing in the ray tracing picture. Also light is 
bouncing off the bottom of the sphere and lighting up the base plane. 

In figure 6 we show an image illustrating the power of the integral 
equation technique. All objects in the scene are a neutral grey ex- 
cept for the green glass bails and the base polygon (which is slightly 
reddish). Any color on the grey objects would be missing from a ray 
tracing image. Note that the green glass balls cast caustics on objects" 
in the scene. There is color bleeding from the lightly colored base poly- 
gon onto the bottom of the oblate spheroid in the upper right. For 
simplicity and comparison purposes, the opaque surfaces in this scene 
are lambertian, but there is no restriction on the lighting models that 
can be used. Figure 6 is a 512 by 512 pixel image with 40 paths per 
pixel. It was computed on an IBM 3081 and consumed 1221 minutes 
of CPU time. Al Burr provided the model for this image. 
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Figure 3. Convergence of naleve monte carlo vs. hieraxchical integration. 
Shown are integral estlmat~ az a function of number of samples ¢~t.  Naleve 
monte carlo is the top curve. 

Figure 4. Subdivision of domain by adaptive hierarchical integration. 
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Figure 5. A comparison of ray tracing vs. integral equation technlque. Note 
the presence of light on the base polygon scattered by the sphere from the 
light source. 

Figure 6. A sample image. All objects are neutral grey. Color on the objects 
is due to caustics from the green glass balls and color bleeding from the base 
polygon. 
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