
Dallas, August 18-22 Volume 20, Number 4, 1986

C o n s t r u c t i v e S o l i d G e o m e t r y f o r P o l y h e d r a l O b j e c t s

D a v i d H . L a i d l a w
W . B e n j a m i n T r u m b o r e

D e p a r t m e n t o f C o m p u t e r Sc ience

John F. Hughes
D e p a r t m e n t of M a t h e m a t i c s

B r o w n U n i v e r s i t y
P r o v i d e n c e , RI 02912

Abstr act

Const ruc t ive Solid Geomet ry (CSG) is a powerful way of
describing solid objects for computer graphics and modeling. The
surfaces of any primit ive object (such as a cube, sphere or cylinder)
can be approx imated by polygons. Being abile to find the union,
intersect ion or difference of these objects allows more interest ing
and complicated polygonal objects to be created. The a lgor i thm
presented here performs these set opera t ions on objects const ructed
from convex polygons. These objects mus t bound a finite volume,
but need not be convex. An object t h a t results from one of these
operat ions also conta ins only convex polygons, and bounds a finite
volume; thus , it can be used in la ter combinat ions, allowing the
generat ion of quite complicated objects. Our a lgor i thm is robus t
and is presented in enough detail to be implemented.

1. I n t r o d u c t i o n

The a lgor i thm presented finds the polygonal boundar ies of
the union, intersection, or difference of two polyhedral solids. Our
p resen ta t ion differs from others in the l i te ra ture [REQ85, TUR84]
in several ways. We differ f rom [REQ85] by present ing an exhaus-
tive analys is of all types of intersections, ra ther t h a n discussing
only generic cases, and by efficiently address ing the difficulties
which arise when dealing wi th coplanar polygons. We differ from
[TUR84] by res t r ic t ing object boundar ies to be convex polygons, by
subdividing polygons wi thou t in t roducing non-essent ial vertices,
and by allowing objects t h a t are not manifolds. We also sketch an
a r g u m e n t showing t h a t the a lgor i thm te rmina tes .

"Cons t ruc t ive Solid Geomet ry" [REQ80a] operat ions are
defined on surfaces t h a t bound a volume of finite extent . These
surfaces m a y be cons t ruc ted from several pieces, wi th very weak
cons t ra in t s on how these pieces touch one another . As a result
these objects can be more general t h a n the s t a n d a r d polyhedral
surfaces found in ma t hema t i c s . For example, a single object can
consist of two cubes joined along an edge artd a th i rd cube t h a t is
not connected to the first two (Figure 2.1a). The shared edge
touches four faces and canno t be an edge of a polyhedral surface,
hu t the object is still valid. M a n y other CSG sys tems will no t
allow this type of object. The union, intersect ion, and difference
operat ions on the solids bounded by each object give rise to
corresponding opera t ions on the boundaries . We identify these
boundar ies with the same n a m e s as the objects. The union of two
objects is defined as the boundary of the volume contained in

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Comput ing Machinery. To copy
otherwise, or to republish, requires a fee and / o r specific permission.

© 1986 A C M 0-89791-196-2/86/008/0161 $ 0 0 . 7 5

either or bo th of the objects , while the intersection is defined as the
boundary of the volume t h a t they have in common. The difference
of two objects is defined as the boundary of the volume contained
in the first object bu t outside of the second. Using primit ive
objects like cubes, spheres, and cylinders, this a lgor i thm can con-
s t ruc t more complicated objects t h a t in tu rn can be used to con-
s t ruc t even more complex objects.

Our a lgor i thm is par t of a set of rendering and solid modeling
p rograms developed a t Brown. SCEFO, a language developed a t
Brown to describe an ima t ions and s ta t ic scenes, describes CSG
combina t ions of objects using a b inary tree, wi th a primit ive object
at each leaf and a set opera t ion a t each in ternal node [STR84].
From th is descript ion renderers create images of the objects. Figure
1.1 (af ter section 10) shows the CSG construct ion of a spoon using
primit ive objects . The images are rendered polygonally, using th is
a lgor i thm.

A ray- t race r and a polygonal renderer can render an object
described as a b inary tree of CSC combinat ions of primitives.
Ray- t r ace r s intersect a r ay wi th each pr imit ive object and perform
the CSC operat ion along the ray [ROT82], while polygonal render-
er~ use our a lgor i thm to produce polygonal versions of CSG combi-
na t ions and then render t h e m as polygons. Using renderers t h a t
unde r s t and SCEFO, we can quickly render polygonal versions of
objects to preview an image and later ray- t race them to produce a
more polished image (see Figure 10.1).

The basic ideas of the a lgor i thm have been suggested in o ther
sources [REQg0a, REQg0b], bu t were not described in enough
detai l to be implemented. We will present the a lgor i thm so t h a t it
may not only be implemented bu t also verified. .As long as the
polygons of an object bound a volume of finite extent and each
polygon is convex, the a lgor i thm will work and will produce a new
object t h a t satisfies the same restrict ions.

The paper is organized as follows: first, we present an over-
view of the a lgor i thm. Then the d a t a s t ruc ture used by the algo-
r i t hm is described, followed by a detai led description of the algo-
r i thm. A discussion of results, problems and extensions concludes
the paper .

2. Overview

Our a lgor i thm opera tes on two objects a t a t ime. The rou-
t ines can be called successively using the results of earlier opera-
t ions to create more complicated objects. Each object is
represented as a collection of polygons and vertices; each spat ia l ly
dist inct ver tex is represented exact ly once, and each polygon con-
ta ins a list of references to vertices. Each polygon also conta ins a
normal t h a t points ou twards f rom the object. Each ver tex con-
ta ins a list of references to o ther vert ices connected to it by an
edge.

This research was sponsored in par t by the Digi tal Equ ipment Cor-
porat ion and the Office of Nava l Research under con t rac t
N 0 0 0 1 4 - 7 8 - C - 0 3 9 6 , A_adries v a n Dam, principal invest igator .

161

http://crossmark.crossref.org/dialog/?doi=10.1145%2F15922.15904&domain=pdf&date_stamp=1986-08-31

~. S I G G R A P H '86

The algorithm first subdivides all polygons in each of the
objects so tha t no two polygons intersect. Two non-coplanar
polygons in tersec t if a vertex of one lies in the interior of a face or
edge of the other, or if an edge of one crosses an edge or face of the
other. Polygons tha t share a vertex or an edge, or tha t are
coplanar, do not intersect. The logic for not intersecting coplanar
polygons is described in the last paragraph of section 4.

Once the polygons of both objects have been subdivided, the
polygons of each object are classified with respect to the surface of
the other object. A polygon in one object may lie inside, outside,
or on the boundary of the other object. Vertex adjacency informa-
tion is used here so tha t the same ¢lassifieatlon can be assigned to
polygons tha t are adjacent and do not cross the surface of the
other object. This avoids comparing all polygons in one object
with all polygons in the other object. The boundary of the combi-
nation of the objects will be a subset of all the polygons in both
objects. Each polygon's classification is determined by casting a ray
from the polygon through the other object and testing the intersec-
tion point and surface normal of the nearest intersecting polygon in
the other object. The algori thm uses the classification of each
polygon to retain or delete it according to the set operation being
performed.

As the algori thm proceeds it modifies the objects until,
finally, the set of all polygons in both modified objects forms the
resulting object.

3. O b j e c t D a t a S t r u c t u r e

While these CSG routines are flexible enough to operate on
many different types of objects, the objects must satisfy certain
restrictions. Because we are performing operations on the boun-
daries of volumes, each object must be constructed of polygons tha t
form the topological boundary of the closure of an open set of finite
extent in R 3 [REQ80]. More simply, an object must be the surface
of a volume and must not have dangling faces or edges. This res-
triction enables us to efficiently distinguish the interior of the
object from the exterior. Planes and other surfaces tha t do not
enclose a volume are not valid objects, but can often be modified to
bound some volume. Figure 3.1 shows examples of two valid and
two invalid objects.

Each polygon in an object must satisfy five restrictions. (1) It
must be planar and convex. (2) No three vertices in the polygon
may be collinear. (3) It may not contain the same vertex twice.
(4) The vertices must be ordered clockwise when viewed from out-
side the object, so t ha t cross-products using the directed edges of
the polygon may be used to determine the interior of the object.
(5) No polygon may intersect any other polygon in the object. A
simple verification program can check tha t the order of the vertices
in each polygon agrees with the direction of the normal, and verify
tha t all polygons are convex and planar. Combining two valid
objects always produces a n e w valid object which therefore does
not need to be verified.

The vertex data s tructure contains the spatial location of the
vertex as well as a list of pointers to adjacent vertices and a
" s t a tu s " field. Initially, the s ta tus field is set to UNKNOWN, but
as the algorithm proceeds, this field changes to indicate whether
the vertex is INSIDE, OUTSIDE, or on the BOUNDARY of the
other object. The list of adjacencies is used for traversing the edges
of the object to find connected regions of vertices with identical
status. This adjacency informations calculated after the objects
have been intersected with each other.

The polygon structure includes a list of pointers to the ver-
tices of the polygon, the plane equation, and the extent of the
polygon. The plane equation is used as the polygon normal, and is
also used when intersecting polygons. The extent is used to
determine quickly if two polygons do not intersect.

The object s t ructure consists of the extent of the object, an
array of vertices, and an ar ray of polygons. Again, the extent is
used to determine quickly when a polygon does not intersect the
object. The da ta s t ructures for objects, vertices, and polygons are
shown in Figure 3.2.

(bl (a)

(c) (d)

Fig. 3.1: O b j e c t s (a) a n d (b) a r e val id;
objec t s (c) a n d (d) a r e n o t

Objec t S t r u c t u r e
ar ray of vertices
ar ray of polygons
object extent (minimum a n d m a x i m u m x , y , z)

V e r t e x S t r u c t u r e
spatial location (x, y, z)
a r ray of pointers to adjacent vertices
s ta tus (inside, outside, boundary, or unknown)

P o l y g o n S t r u c t u r e
array of pointers to vertices
polygon extent (minimum and maximum x,y,z)
polygon plane equation (x,y,z,d)

Fig 3.2: D a t a s t r u c t u r e s

4. I n t e r s e c t i n g t h e O b j e c t s

The first step in the algorithm is splitting both objects so
tha t the polygons in each do not intersect . . In this discussion, we
will refer to the object which is to be split as objectA and to a
polygon in tha t object as polygonA. Similarly, polygonB is a
polygon in objectB, the other object.

The first pa r t of Figure 4.1 explains how pairs of objects are
subdivided. When polygonA is split, new edges will be introduced
into objectA, and a face tha t is split will become two or more new
faces. The new edges in objectA may intersect the interiors of
faces of objectB, possibly requiring further subdivision of polygons
in objectB.

When the splitting routine is initially called, the first object is
objectA and the second is objectB. After this initial splitting, no
face of the second object intersects the interior of any face of the
first object. So on the second pass, the new faces tha t are gen-
erated by splitting faces of the second object create no further
intersections with interiors of faces in the first object; only new
edge intersections are created.

Consequently on the third pass (the first object is once again
objectA), polygons in objectA will only be changed by splitting
edges at points where these edges intersect new edges of the second
object. This will, as before, introduce no new edges tha t intersect
faces in objectB. It also will not introduce any new edge-edge inter-
sections, since the only new edges tha t are added come in the inte-
riors of polygon.As, and these never intersect the faces or edges of
polygonBs. Thus there is no need to make a fourth pass; the algo-
r i thm is finished.

162

Dallas, August 18-22 Volume 20, Number 4, 1986

Subdiv id ing Objec t s
split the first object so tha t it doesn't intersect the second object
split the second object so tha t it doesn't intersect the first object
split the first object again, resolving newly introduced intersections

Spl i t t ing O b j e c t A by O b j e c t B
if extent of objectA overlaps extent of objeetB

for each polygovtA in ob~eetA
if the extent of polygonAL overlaps the extent of objectB

for each polygonB in objectB
if the extents of polygonA_ and polygonB overlap

analyze them as in "5. Do Two Polygons Intersect?"
if they are not COPLANAR and do INTERSECT

subdivide polygonA as in
"6. Subdividing Non-Coplanar Polygons"

else if they do N O T - I N T E R S E C T
or if they are COPLA.NAR
(do nothing)

Fig. 4.1: Sp l i t t i ng objec t s

The second par t of Figure 4.1 explains how all the polygons
in one object are split so tha t they do not intersect a second
object. For each pair of polygons with overlapping extents, the
routine described in the section "Do Two Polygons Intersect?"
determines whether the polygons are COPLANAR, INTERSECT in
a line (or possibly a point), or do NOT_INTERSECT. Pairs of
polygons tha t INTERSECT are subdivided as described in the sec-
tion "Subdividing Polygons." New polygons are added to the end of
the the list of polygons in objectA, and are checked against
objectB after all original polygons in objectA have been checked.
Those tha t are COPLANAR or do N O T - I N T E R S E C T are not sub-
divided.

Although COPLANAR pairs of polygons are not subdivided,
after the first two subdivisions all groups of adjacent coplanar
polygons in one object will have corresponding groups of eoplanar
polygons in the other object. While the polygons in these groups
may not be identical, the regions they cover will be the same.
Each edge of a polygon is shared by at least one other polygon. If
an edge of polygonB crosses polygonA, then there must be another
polygonB which also has tha t edge. If this polygonB is not
coplanar with polygonA, then polygoaA will be subdivided when
compared to this second polygonB. If the adjacent polygonB is
coplanar with polygonA, it either extends beyond polygonA (and
will eventually be subdivided by some polygonA), or is contained
within polygonA and, again, will not be used to subdivide
polygorLA.

5. Do T w o P o l y g o n s I n t e r s e c t ?

This section describes how to determine whether two polygons
are coplanar, intersect in a line (or possibly a point), or do not
intersect. The first step in determining whether the two polygons
intersect is finding the signed distance from each of the vertices in
polygonh to the plane of polygonB. The distance is positive if the
normal vector points from the plane of the polygon towards the
point. If these distances are all zero, then the polygons are
coplanar. If they are all positive or all negative, then polygonA
lies entirely to one side of the plane of polygonB, and thus the two
polygons do not intersect; otherwise they may intersect, and the
signed distance from each vertex in polygonB to the plane of
polygoltA is computed. Again, if the distances are all positive or
all negative, then polygonB lies entirely to one side of polygonAj
and the two polygons do not intersect. Coplanar polygons would
have been discovered by the first test, so the distances cannot, all
be 2ero.

If the preceding tests are inconclusive~ then we calculate the
llne off it~terseetion of the two planes. The line of intersection L is
determined by a point P and a direction D. Some segment of this
line is interior to or on the perimeter of polygonA, and some seg-
ment is interior to or on the perimeter of polygonB. If these two

segments overlap, then the polygons intersect. If the segments do
not overlap, then the polygons do not intersect.

Da ta s t ruc tures for each of the two segments store informa-
tion tha t is used to subdivide polygonA and polygonB, if they inter-
sect. This information includes the distance from P to the s tar t ing
and ending points of the segment, as well as descriptors that record
whether each point of the segment corresponds to a vertex of the
polygon it spans, a point on its edge, or a point on its face.
Because all polygons are convex and contain no collinear vertices,
it follows tha t the intersection is a single line segment and tha t
three descriptors are sufficient to describe the entire segment: one
for the s tar t ing point, a second for the interior of the segment, and
a third for the ending point. A segment tha t s ta r t s at a vertex,
crosses a face, and ends at an edge can be represented by the
mnemonic vertex-face-edge. Similarly, any type of segment can be
represented by a three-word mnemonic.

Only the distances from P to the s ta r t and end of the seg-
ment are necessary to determine if the polygons intersect. If the
segments overlap, then the additional information is used later to
subdivide the polygons.

The intersection of L with either polygon must both s ta r t
and end at a vertex or an edge. In addition to the beginning and
ending points on L and the three type descriptors for the segment,
the segment s t ructure stores the indices of the vertices preceding
the endpoints of the segment (for example, B and E in Figure
6.3a-q). The segment da ta s t ructure is shown in Figure 5.1.

distance of s ta r t of segment from P
distance of end of segment from P
descriptors for start ing, middle, and ending points
index of polygon vertex near s ta r t point
index of polygon vertex near end point

Fig . ~.1: S e g m e n t d a t a s t r u c t u r e

The remainder of this section and the following sections dis-
cuss operations on polygonA; these same operations are also per-
formed on polygonB.

The segment s t ructure is filled in as follows, There are six
different ways in which L can iutersect polygonA. They are
characterized by the types of the start ing, middle, and ending
points of the intersection segment. Because the polygons are con-
vex, the segment s ta r t s at a vertex or edge, continues through a
vertex, an edge, or the face, and ends at a vertex or edge. Of the
twelve combinations, six are not possible. Vertex-edge-edge, edge-
edge-vertex, and edge-edge-edge are impossible because any seg-
ment tha t contains edge points in the middle must begin and end
at a vertex; if a segment contains some points on an edge, it must
contain all points on the edge, including both endpoints. Similarly,
edge-vertex-edge, vertex-vertex-edge and edge-vertex-vertex are
impossible. Figure 5.2 gives examples of the six possibilities.

vertex vertex vertex vertex edge edge
vertex edge face face face face
vertex vertex vertex edge vertex edge

Fig. 5.2: I n t e r s e c t i o n poss ib i l i t ies of

a p o l y g o n and a l lne in a p lane

163

~. S I G G R A P H '86

The distances of all the vertices of polygonA from the plane
of polygon]3 were calculated for an earlier test; they are now used
to find where L crosses polygonA, since the distance from each ver-
tex to the plane of polygonB is proportional to the distance from
the vertex to L. Vertices with distance zero lie on L, while adja-
cent vertices with distances tha t differ in sign lie on opposite sides
of L and thus arc endpoints of an edge tha t crosses L. For a ver-
tex intersection the index of the vertex is saved in the segment
structure and the endpoint type is set to VERTEX (B and E in
Figure 6.3b). For an edge intersection, the ratio of the calculated
vertex distances is used to find the intersection point, and the
intersection point is used to find the distance between the intersec-
tion point and P along L. The index of the first vertex of the edge
is saved and the endpoint type is set to EDGE (B and E in Figure
6.3k).

The midpoint descriptor is determined from the endpoints of
the segment. It is set to EDGE if the endpoints of the segment are
adjacent vertices in polygon.A, and to VERTEX if the endpoints
are the same vertex. Otherwise, the middle points must lie in the
FACE of the polygon.

6. Subdiv id ing Non-cop lanar P o l y g o n s

Given two polygons, po lygon i and polygonB, tha t intersect
and are not coplanar, we must subdivide them so that, the resulting
smaller polygons do not intersect and are still legal polygons. We
are also given t~vo segment structures, one representing the inter-
section of polygonA with L, the other representing the intersection
of polygonB with L.

To split polygonh so tha t none of the resulting smaller
polygons intersect polygonB, we need to find the intersection of seg-
mentA and segmentB and determine the type of tha t intersection
segment with respect to polygonA. If either end of segmentA is
changed, then the type of tha t end becomes the same type "as the
middle points (Figure 8.1).

F E

V E

F F E

E E

i

E
SegraentA

SegmentB

SegmentA in SegmentB

SegmentB in SegmentA

Fig. 8.1: Intersec t ing t w o s e g m e n t s

To subdivide polygonA so tha t the new polygons do not inter-
sect polygonB, the intersection segment must become an edge in
the decomposition. The splitting of polygonA is dependent on how
the intersection segment cuts across it. Since the start ing point
can be a vertex~ an edge, or a face, as can the midpoints and the
endpoint, there are at most 3X3×3 = 27 different kinds of intersec-
tion segments. Thirteen of these segment types are impossible,
because they have middle point types tha t are of lower dimension
than one of the end types, and in convex polygons tha t is not possi-
ble. Of the remaining fourteen types, four are symmetric to other
types with their endpoints swapped. We then need discuss only ten.

In the list of 27 segment types in Figure 8.2, the thirteen
impossible types are marked with an "X," and the four symmetric
cases are marked with an "S." The remaining ten are numbered to
correspond with the discussion tha t follows. A description of the
geometry of the intersection for each of these ten types t'ollows, as
does a discussion of the method of splitting polygonA into smaller
polygons for each type.

1) vertex-vertex-vertex
(X) vertex-vertex-edge
(X) vertex-vertex-face
(2) vertex-edge-vertex
(3) vertex-edge-edge
(X) vertex-edge-face
(4) vertex-face-vertex
(5) vertex-face-edge
(6) vertex-face-face
(X) edge-vertex-vertex
(X) edge-vertex-edge
(X) edge-vertex-face
(S) edge-edge-vertex
(7) edge-edge-edge

Fig. 8.2: Ident i f icat ion

(X) edge-edge-face
(S) edge-face-vertex
(8) edge-face-edge
(9) edge-face-face
(X) face-vertex-vertex
(5~) face-vertex-edge
(X) face-vertex-face
(X) face-edge-vertex
(X) face-edge-edge
(X) face-edge-face
(S) face-face-vertex
(S) face-face-edge
(10) face-face-face

o f va l id s e g m e n t types

The diagrams for each type of segment (Figure 8.3) illustrate
the intersection segment and how a polygon with tha t type of
intersection is subdivided. The vertex in the segment structure
associated with the beginning of the intersection segment is marked
with a "B" and the vertex of the end is marked with an "E." Ver-
tices tha t are added so tha t the polygon can be split are marked
"M" and "N." The vertices are ordered clockwise in the diagrams.

Note tha t all subdivisions produce only legal new polygons;
no collinear vertices or non-convex polygons are introduced. All
vertices tha t are added must lle on the boundary of objectB, and
are thus marked as boundary vertices. These boundary vertices
play an impor tant role in selecting polygons for the resultant
object (section 8).

(1) Vertex-vertex-vertex - The polygon is intersected at a
single vertex and does not need to be subdivided. The vertex is
marked as a boundary vertex (Figure 6.3a).

(2) Vertex-edge-vertex - The polygon is intersected along an
entire edge and does not need to be subdivided. Both vertices are
marked as boundary vertices (Figure 6.3b).

(3) Vertex-edge-edge - The segment intersects the polygon
along par t of an edge, s tar t ing at a vertex and ending in the inte-
rior of the edge. The vertex is marked as a boundary vertex. A
new vertex is added in the interior of the edge and the polygon is
subdivided so tha t it forms two new polygons (Figures 6.3c and
6.3d).

(4) Vertex-face-vertex -- The segment cuts across the polygon
star t ing at a vertex and ending at a vertex. The polygon is eut
into two polygons along the line between the two vertices and both
vertices are marked as boundary vertices (Figure 6.3e).

(5) Vertex-face-edge - The segment cuts the polygon star t ing
at a vertex, crossing a face, and ending at an edge. The vertex is
marked as a boundary vertex. A new vertex is added along the
edge and the polygon is divided into two polygons (Figure 6.3f).

(6) Vertex-face-face - The segment crosses par t of the
polygon, s tar t ing at a vertex and ending in the interior of the face.
The vertex is marked as a boundary vertex. A new vertex is added
in the face. If the segment continued, it would either pass through
one of the vertices on the other side of the polygon or miss all of
them. If the extended segment passes through a vertex, the
polygon is divided into four new polygons to avoid introducing col-
linear edges or non-convex polygons in the decomposition (Figure
6.3g). If the segment misses the vertiees, then the polygon is
divided into three new polygons (Figure 6.3h).

(7) Edge-edge-edge - The intersection s tar ts at a point in the
interior of an edge and ends at a point in the interior of the same
edge, possibly the same point. If the points are not the same, then
two new vertices are added along the edge and the polygon is
divided into three new polygons (Figure 6.3i). Otherwise, if the
intersection is a single point on the edge, then a single new vertex
is added along the edge and the polygon is divided into two
polygons (Figure 6.3j).

164

Dallas, August 18-22 Volume 20, Number 4, 1986

(a) vvv (b) vev (c) vee (d) vee

B,E B E B N E

(e) vfv (0 vfe

(ii-
(i) eee (j) eee

(g)N vff 1~ ~ (h) vff (. _ ~ (k) efe

- B k ~ l B ,E

(1) eft (m) eff (n) fff (o) fff (p) fff

-

F ig . 6.3: P o l y g o n subdivis ions for different s egment types

(q) fff

(8) Edge-face-edge -- The polygon is cu t across its face s t a r t -
ing and ending a t two different edges. Two new vert ices are added
along the edges and the polygon is divided into two polygons along
the intersect ion line (Figure 6.3k).

(9) Edge-face-face -- The segment cuts across pa r t of the
polygon s t a r t i ng a t an edge and ending in the inter ior of the face.
Two new vert ices are added, one in the face and one along the
edge. If the extension of the intersect ion segment would pass
t h rough a ver tex, t hen the polygon is divided into four new
polygons, j u s t as wi th (6) ver tex-face-face (Figure 6.31). Otherwise,
the polygon becomes three new polygons (Figure 6.3m).

(10) Face-face-face - In this final case the intersect ion seg-
men t both s t a r t s and ends in the interior of the polygon, possibly
a t the same point. If the intersect ion is a single point , then one
new ver tex is added, otherwise two new vert ices are added. As
wi th (9) edge-face-face and (6) ver tex-face-face, the con t inua t ion of
the segment will hi t e i ther a ver tex or an edge of the polygon, this
t ime in both directions. Figures 6.3n-q i l lus t ra te how the polygon
is divided into four, five, or six new polygons depending on where
the segment crosses the per imeter of the polygon.

These descr ipt ions ment ion several opera t ions t h a t have not
yet been explained. Some add a ver tex in the inter ior of an edge,
some add a ver tex in the interior of a face, and most replace a
polygon with several new polygons.

W h e n a ver tex mus t be added in the interior of an edge, the
intersect ion segmen t s t ruc tu re conta ins the dis tance of the new
vertex from P on L. By using t h a t d is tance and the equat ion for
the line of intersect ion, we can find the coordinates of the point.
The intersect ion s egmen t s t ruc tu re also conta ins the index of the
first ver tex of the edge t h a t is intersected. The ca lcula ted point,
which may have suffered from some f loat ing-point error, is pro-
jected onto this edge. If the ver tex has coordinates different from
all exist ing vertices, t hen a new ver tex is added to the object; oth-
erwise, no th ing is added.

Adding a ver tex t h a t lies in the interior of a face is more
complicated. Again, the app rox ima te coordinates are found by
subs t i t u t i ng the d is tance of the new point along L into the equa-
t ion of L . The new point is then projected onto the plane of the
polygon and the ver tex is added jus t as a new ver tex along an edge
is added.

In addi t ion to u p d a t i n g edges and adding new vertices,
polygons mus t be replaced wi th smal ler polygons. Figure 6.3 shows
how a polygon is subdivided in each case, bu t if the original
polygon has few vertices, the decomposi t ion may produce degen-
era te polygons con ta in ing only two vert ices. These polygons should
not be added to the object , and are ignored. Figure 6.4 (af ter sec-
t ion 10) shows wiref rame render ings of a pair of over lapping cubes
and their s t a t e a f te r hav ing been in tersected wi th each other.

7. Class i fy ing P o l y g o n s

A rout ine t h a t de te rmines the posit ion of polygonA relat ive
to objectB is used several t imes by the a lgor i thm. It is given
objectB and a polygonA and r e tu rns the posit ion of polygonA wi th
respect to objectB: INSIDE, OUTSIDE, on the boundary of objectB
with the no rma l vector facing in the SAME direction as the normal
vector to objectB a t t h a t point , or on the bounda ry of objectB
with the no rma l vector facing in the O P P O S I T E direction.

The average of the vert ices of a polygon is called the
barycenter . A ray is cas t from the barycen te r of polygonA in the
direction of t he no rma l vector to polygortA, and is in tersected wi th
every polygonB in objectB. The polygonB th~.t in tersects the r ay
closest to the ba rycen te r is found. If the ba rycen te r does not lie in
the plane of the nea res t polygonB, then the direction of the normal
vector to polygonB de te rmines whe the r polygonA is inside or out-
side objeetB. If the normal to polygonB points toward polygonA,
then polygonA is OUTSIDE objectB; otherwise, polygortA is
iNSIDE objectB. If no polygons were intersected, t hen polygonA is
OUTSIDE objeetB. If the origin of the r ay lies in the plane of the
neares t polygonB, t hen polygortA lies in the bounda ry of objectl3.
In th is case, if the norfnal vectors of polygonA and polygonB point
in the same direct ion polygonA is classified as SAME; otherwise, it
is classified as O P P O S I T E . These two classifications are used in
the next section.

The ray can in te rsec t each polygonB iu objeetB in several
different ways. To de termine an intersect ion type, we need to
know the dot p roduc t of the ray being cast wi th the normal vector
of the polygonB being checked, and the signed dis tance from the
ba rycen te r to the plane of polygonB in the direction of the no rma l
vector. Figure 7.1 shows the five possible intersect ion types.

First , if the signed d is tance is negat ive , t hen polygonB is
bekind the ba rycen te r a n d can be ignored.

1 6 5

S I G G R A P H '86
I

Dot Product:

Distance:

/ /

= 0 = 0 <> 0

< 0 = 0 > 0 = 0

ray misses ray lies in ray parallel ray starts

plane plane to plane in plane

Fig. 7.1: I n t e r s e c t i o n s of a r a y a n d p o l y g o n B

<> 0

> 0

ray intersects

plane

Second, if the dot product and the distance are both zero,
then the ray lies ia the plane of polygonB. Without complicated
analysis of all the polygons tha t the ray intersects, it is impossible
to determine the s ta tus of polygortA in this case, so the direction of
the ray must be perturbed by some small random value and the
classification retried for the new direction. Although it is theoreti-
cally possible t ha t an infinite number of random perturbat ions will
all lead to invalid directions, in our implementation we have never
needed to per turb the direction more than once to find a valid
direction.

Third, if the dot product is zero and the distance is positive,
the ray is parallel to the plane but never intersects it and therefore
does not intersect polygonB.

Fourth, when the dot product is non-zero and the distance is
zero, the barycenter lies in the plane of polygol~B. If the
barycenter lies outside polygonB in tha t plane, then the ray does
not intersect polygonB; otherwise, polygonA lies on the boundary of
objectB and this must be the closest intersection.

The fifth ease occurs when the dot product is non-zero and
the distance is positive. The point of intersection of the ray and
the plane of polygonB must be inside polygoaB, outside polygonB,
or on an edge of polygonB. If an edge is hit, the ray must be per-
turbed and recast for all polygonB8 in objectB. If the ray misses
the interior of polygonB, then there is no intersection. Otherwise,
the ray intersects polygonB, and this intersection is saved if it is
closer than any intersection yet found. Figure 7.2 shows pseu-
decode for the polygon classification routine.

8. M a r k i n g V e r t i c e s

Once each object has been split so tha t none of the polygons
in either object intersects any of the polygons in the other object,
all the vertices in each object tha t lie on the boundary of the other
object will have been marked as BOUNDARY vertices by the rou-
tines tha t subdivided each polygon. This section describes how the
remaining vertices, still marked as UNKNOWN, arc classified as
lying INSIDE or OUTSIDE the other object so tha t the set of
polygons tha t make up the resulting object may be found. This
resulting set of polygons is a subset of all the polygons in both of
the objects. Whether or not each polygon is in this subset depends
on whether it lies INSIDE, OUTSIDE, or on the BOUNDARY of
the other object. The polygon classification routine could be called
to classify each polygon in both objects, but this would be time-
consuming. Instead, all the vertices of the object are classified by
classifying just a few of the polygons. Once all the vertices have
been classified, all of the polygons tha t have at least one vertex not
in the boundary of the other object can be classified, and only the
polygons tha t have exclusively boundary vertices need to make
extensive use of the ray-casting routine. This procedure must be
executed for both objects.

create a RAY star t ing at the barycenter of polygonA
in the direction of the normal of polygonA

while no successful cast has been made
for each polygonB in objectB

find the DOT PRODUCT of RAY direction
with the normal of polygonB

find the DISTANCE from barycenter to the plane of polygonB
if (DOT PRODUCT = 0) and (DISTANCE = 0)

cast is unsuccessful -- leave loop and per turb
else if (DOT PRODUCT = 0) and (DISTANCE > 0)

no intersection
else if (DOT PRODUCT < > 0) and (DISTANCE = 0)

if RAY passes through interior or edge of polygonB
save polygonB -- this is closest possible intersection

else
no intersection

else if (DOT PRODUCT < > 0) and (DISTANCE > 0)
find intersection point of ray with plane of polygonB

if intersection is closest yet
if RAY passes through interior of polygonB

(first check if point is within extent of polygonB)
save polygonB

else if RAY hits an edge of polygonB
cast is unsuccessful - leave loop and per turb

else
no intersection

if cast is unsuccessful
per turb RAY by a small random value

end while
if there were no intersections

re turn OUTSIDE
find the polygonB closest to POINT
find the DOT PRODUCT of closest poiygonl3 normal and RAY
find the DISTANCE to closest polygonB
if (DISTANCE = = 0)

if (DOT PRODUCT > 0)
return SAME

else if (DOT PRODUCT < 0)
return OPPOSITE

else if (DOT PRODUCT > 0)
return INSIDE

else if (DOT PRODUCT < 0)
return OUTSIDE

Fig. 7.2: P o l y g o n Class i f i ca t ion R o u t i n e

166

Dallas, August 18-22 Volume 20, Number 4, 1986

We first use the edges of the subdivided polygons to calculate
the adjacency information for each object. Then begin at the first
polygon in the object s t ructure tha t contains a vertex marked
UNKNOWN. The polygon cannot lie in the boundary of the other
object, since it contains at least one vertex tha t does not lie on the
b o u n d a r y ; t h e polygon classification routine determines if the
polygon is INSIDE or OUTSIDE the other object. The vertex is
marked appropriately, and all UNKNOWN vertices connected by
edges to this vertex are marked identically. Since all BOUNDARY
vertices were detected when the polygons were split, the vertices of
each object have been divided into connected regions: each con-
nected region is separated from other regions by boundary vertices,
and all the vertices in a connected region of one object lie on the
same side of the other object. Once the entire region has been
marked, another polygon with vertices marked U N K N O W N is
found. The operat ion is repeated until all polygons have been
checked and all vertices classified. Figure 8.1 shows pseudocode for
the region-marking routine.

Reglon-Marklng Routine:
calculate adjacency information for all vertices of objeetA
for each polygonA in objectA

if any vertices are marked UNKNOWN
call Polygon Classification Routine

to determine if polygonA INSIDE/OUTSIDE objectB
for each U N K N O W N vertex in polygonA

call Vertex Marking Routine

V e r t e x - M a r k l n g Routine:
mark the specified U N K N O W N vertex as INSIDE/OUTSIDE
for each vertex.A" adjacent to vertexA

if vertexA" is marked U N K N O W N
call this routine recursivdy for vertex_A

Fig. 8.1: Region- and ver tex -marklng routines

9. Selecting Po lygons for Output

Once the two objects have been intersected and all vertices
have been classified as INSIDE, OUTSIDE, or BOUNDARY, the
polygons tha t comprise the resulting object must be selected. Fig-
ure 9.1 shows which polygons are in the set of polygons tha t
comprise the CSG combination of the two objects.

polygons in A

inside outside same opposite

A U B no yes yes no

A r"l B yes no yes no

A - B no yes no yes

polygons in B

inside outside same opposite

A U B no yes no no

A n B yes no no no.,,

A -- B yes no no no

Fig. 9,1: Se lec t ing p o l y g o n s fo r o u t p u t

When a difference is performed, each polygonI3 inside objectA
must have the order of its vertices reversed, and its normal vector
must be inverted, since the interior of objectB becomes the exterior
of the resulting object. Faces classified as SAME or OPPOSITE in
one object exactly match faces in the other object. In the combi-
nation, at most one face needs to be added. We have chosen to
always take tha t face from objectA, so polygons in objectB
classified as SAME or OPPOSITE are never retained. Once the

appropriate polygons have been deleted from both objects, the
objects are combined to form the resulting object.

Most polygons are classified by examining the classifications
of their vertices. Polygons tha t have only boundary vertices are
classified by the ray-casting routine described earlier. Vertices
classified as INSIDE or OUTSIDE are deleted or kept according to
the table in Figure 9.1, al though BOUNDARY vertices are never
deleted. Once the polygons have been deleted, the normals and
vertices reversed if necessary, and the object par ts linked together,
the CSG operation is complete.

The pseudocode in Figure 9.2 for the polygon selection routine
makes use of the polygon classification routine described previously.
Figure 9.3 (after section 10) shows wireframe and raster renderings
of two cubes which have been unioned, intersected, and differenced.

(called by the union, intersection, and difference control routines)
(deletes polygons in objectA tha t are STATUS relative to objectB)

for each polygonA in objectA
for each vertexA in polygoRA

if the s ta tus of vertex_A_ is not BOUNDARY
the s t a tus of the polygonA is the s ta tus of vertexA

if no s ta tus for polygonA, was found
determine s ta tus of polygomA_
using the polygon classification routine

if polygons of this s ta tus should be deleted for this operation
delete polygonA from objectA

for each vertexA in objectA
if vertices with this s ta tus should be deleted for this operation

delete vertexA

Fi$ 9.2: S e | e c t i n g p o l y g o n s fo r o u t p u t

10. Conclusions

We have presented a straightforward yet robust algorithm
for performing CSG operations on polygonal objects. The algo-
rithm runs in O(V2+P 2) where V is the total number of vertices
and P the total number of polygons in both objects after subdivid-
ing. The time can probably bc reduced to O(VlogV+PlogP) with
suitable sorting of polygons and vertices.

Floating-point granularity must be considered when imple-
menting t, his Mgorithm. A CSG combination tha t strains many
commercial solid modellers combines two unit cubes, one rotated N
degrees first around the z-axis, then around the y-axis, and finally
around the z-axis [JOH86] Most commercial solid modelers fail
when 0.5degree < N < ldegree. Our implementation is successful
for N > O.ldegree. Rather than failing catastrophically on the
test case for smaller values of N, the algorithm detects a potential
error and prints an error message. The error is detected when the
signed distances from the vertices of one polygon to the plane of
another are calculated. A consistency check signals tha t the calcu-
lated distances are impossible.

There are several places where we a t tempt to correct, possible
floating point problems. All floating point comparisons are made
so tha t numbers tha t differ less than a small predefined value are
considered equal. For example, when a vertex is added to an
object, the list of existing vertices is checked for an equivalent ver-
tex using the approximate comparison above. If a match is found,
then the coordinates of the new vertex are set to be identical to
the coordinates of the vertex tha t was found. In addition, when
the coordinates of a new vertex tha t lles on the edge or face of a
polygon are calculated, the calculated value is projected onto the
edge or face to ensure that small errors will not propogate.

We are currently continuing work on this algorithm in several
directions. This algorithm divides polygons up more than is strictly
necessary..After several operations, what might have been a single
polygon in the resulting object may have instead become 10 or 20.
We would like to combine these coplanar faces to reduce the

167

S I G G R A P H '86

number of polygons in a resulting object. Also, when several CSG
operations must be performed to generate an object, the intermedi-
ate results are often not of interest. A modification of this algo-
rithm might subdivide all of the sub-objects at once, classifying
each polygon with respect to all of the other objects. If the entire
operation were performed at one time, a tremendous amount of
overhead from individual operations might be saved.

Figure 10.1 shows a spoon described in SCEFO using CSG.
The ray-traced image was rendered in 1300 CPU seconds on a VAX
11/780 running 4.2hsd UNIX. The polygonal image was rendered
using a Z-buffer algorithm and this CSG algorithm, taking 76
seconds on the same machine. Both images were rendered at a
resolution of 640 X 512 pixels, and the ray-traced image is
antialiased. In addition to making quiek polygonal renderings pos-
sible, this algorithm is used to generate wireframe representations
of objects for interactive modeling and animation previewing.

11. A c k n o w l e d g e m e n t s

We would like to thank Trina Avery, Matthew Kaplan, Bar-
bara Meier, Joseph Pato, and Andries van Dam for reading early
versions of the paper. Thanks also goes to A_ndries van Dam and
the Brown University Computer Graphics Group for their assis-
tance and support.

12 . R e f e r e n c e s

FOL82 Foley, J. D. and A. van Dam, Fundamentals of Interactive
Computer Graphics, Addison-Wesley, 1982.

REQg0a
Requicha, A. A. G. and H. B. Voelcker, "Constructive Solid
Geometry," Production Automation Project Technical
Memorandum TM-25, April 1950.

REQg0b
Requicha, A. A. G. and H. B. Voelcker, "Mathematical
Foundations of Constructive Solid Geometry: General
Topology of Closed Regular Sets", Production Automation
Project Technical Memorandum TM-27a, November 1980.

REQ83 Requicha, A. A. G. and H. B. Voelcker, "Solid Modeling:
Current Status and Research Directions," IEEE Computer
Graphics and Applieatione, 3 (7), October 1983.

REQ85 Requicha, A. A. G. and H. B. Voelcker, "Boolean Opera-
tions in Solid Modeling: Boundary Evaluation and Merging
Algorithms," Proceedings of the 1EEE January 1985, pp.
30-44.

ROT82 Roth, Scott, "Ray Casting for Modeling Solids," Computer
Graphics and Image Proeegslng 18 (1982), pp. 109-144.

STR84 Strauss, P., M. Shantzis and D. Laidlaw, "SCEFO: A Stan-
dard Scene Format for Image Creation and Animation,"
Brown University Graphics Group Memo, Providence, R.I.,
1984, 32 pp.

TU-R84 Turner, James A., "A Set-Operation Algorithm for Two-
and Three-Dimensional Geometric Objects," Architecture
and Planning Research Laboratory, College of Architec-
ture, University of Michigan, Ann Arbor, MI, August, 1984.

JOH86 Johnson, Robert H., Solid Modeling: A State of the Art
Report (Second Edition), CAD/CIM Alert, Management
Roundtable, Inc., 1986.

168

Dallas, August 18-22 Volume 20, Number 4, 1986

C

o,.¢~

u

C

169

m ,~. S I G G R A P H '86

(.) (b)

F i g u r e 8.4: (a) Two cubes pos i t ioned so t h a t t hey over l ap
(b) T h e r e s u l t of sp l i t t i ng t h e two ob jec t s ag a i n s t each o t h e r

(a) (b)

F i g u r e 9.3: W i r e f r a m e an d r a s t e r r e n d e r i n g s of t w o cubes:
(a) union , (b) in t e r sec t ion , (c) difference

(a)
F i g u r e 10.1: (a) ~vas r a y - t r a c e d a n d (b) was r e n d e r e d po lygona l ly

(b o t h images were g e n e r a t e d f r o m t h e s ame desc r ip t ion)

(b)

170

