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ABSTRACT

Network virtualization provides the ability to run multiple
concurrent virtual networks over a shared substrate. How-
ever, it is challenging to design such a platform to host mul-
tiple heterogenous and often highly customized virtual net-
works. Not only minimal interference among different vir-
tual networks is desired, high speed packet processing is also
required. This paper presents PdP, a flexible virtual network
platform which can achieve high speed packet processing. A
PdP node has a cluster of machines that can perform packet
processing in parallel. Each virtual network can be allocated
with one or multiple forwarding machines so as to satisfy the
packet processing requirement of the virtual network. Fur-
thermore, a virtual network hosted in PdP has the freedom
to be fully customized. Both the control plane and the data
plane of a virtual network run in virtual machines so as to be
isolated from other virtual networks. We have built a proof-
of-concept prototype of the PdP platform using off-the-shelf
commodity hardware and open source software. The perfor-
mance measurement shows promising results.
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1. INTRODUCTION
Network virtualization provides a powerful way to facili-

tate testing and deploying network innovations over a shared
substrate. Currently the network research community is fo-
cusing on building a shared, wide-area experimental plat-
form to support a broad range of research in networking and
distributed systems. To that end, and more importantly, to-
ward the long term goal of providing a global infrastructure
in which multiple virtual networks, each customized to a spe-
cific purpose, could run concurrently, the virtual network
substrate must have four key properties: (1) isolation be-
tween virtual networks to minimize the interference among
them; (2) flexibility to customize the virtual networks to
accommodate the various requirements of different virtual
networks; (3) high-speed data plane packet processing per-
formance to facilitate realistic experiments and attract long
term applications; and (4) low cost in building that platform
to lower the barrier of wide-area deployment.

The challenge of building such a virtual network substrate
is that the four properties, i.e., isolation, flexibility, high per-
formance, and low cost, are often tightly coupled issues in
system design so that usually we have to compromise one in
order to improve another one. For example, special purpose
hardware can achieve better packet processing performance
but it can cost significantly more than commodity hardware.
Another dilemma is that in order to achieve better perfor-
mance, the data plane functions of a virtual network should
have direct access to the hardware or run in the privileged
domain of the hardware. However, opening low-level and
close-to hardware programming interfaces usually results in
poor isolation among virtual networks. A buggy function
implemented in one virtual network can crash the whole
system, e.g., shut down a machine hosting multiple virtual
networks. Or a malicious user of the virtual network plat-
form can easily affect other virtual networks residing at the
same substrate. In order to prevent such a situation from
happening but still offering the desired performance benefits,
prior work proposes to design a set of well-tested building
blocks which have direct access to the hardware or run in
the privileged domain of the hardware [18,22]. Virtual net-
works can assemble those building blocks to implement their
desired functions. However, that compromises the flexibil-
ity because the virtual networks are limited to the set of
provided building blocks.

This paper presents a virtual network platform called PdP.
In designing PdP, we put flexibility as the first priority goal
and try to provide each virtual network the freedom of fully
customizing the control plane and the data plane (e.g., run-
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ning something other than IP). The basic ideas behind the
design of PdP are two-fold. First, both the control plane
and data plane of a virtual network run in virtual machines
to provide the isolation among virtual networks and the flex-
ibility to customize each virtual network. Second, there are
multiple physical machines serving as the “forwarding en-
gines” in a PdP node. To achieve high speed packet process-
ing, a virtual network can have multiple virtual machines
(hosted in multiple forwarding engines) running in parallel
to serve as its data plane.

Note that we can combine PdP with virtual network plat-
forms based on special purpose hardware, in which case PdP
supports highly customized virtual network service; while
the special hardware based data forwarding elements such
as network processors support virtual network services that
can be composed with the set of building blocks provided
by the network processors. Therefore, PdP can complement
the special purpose hardware based solutions.

Although the basic idea behind PdP is promising, imple-
menting this platform is challenging. First, for a PdP node,
it is important to ensure that the packet processing perfor-
mance scales with the number of forwarding engines. The
machine which coordinates the forwarding engines should
not become the bottleneck, especially when the coordina-
tion machine is implemented using commodity hardware.
Second, parallel packet forwarding by multiple forwarding
engines can lead to out-of-order packets and thereby result-
ing in degraded performance for the up-layer applications
such as those applications using TCP. Therefore, it is im-
portant to reduce the amount of out-of-order packets.

In summary, we make three main contributions in this
paper. (I) To the best of our knowledge, PdP is the first
virtual network platform which provides both high degree of
customization and viable data processing performance. (II)
PdP is the first platform demonstrating the scalability of
parallelizing packet processing in one virtual network. (III)
We have built a proof-of-concept PdP node prototype using
off-the-shelf commodity hardware and open source software.
Our experiments show promising results.

The rest of this paper is organized as follows. Section 2
presents related work on virtual network platforms. Sec-
tion 3 details the design of PdP. Section 4 presents the ex-
periment evaluation results. Section 5 concludes this paper
and projects our future work.

2. RELATEDWORK
VINI [5,10] is a flexible virtual network platform which

has deployed in several locations cross the Internet. VINI
adopts operation system level virtualization to virtualize a
physical node. The virtual routers (virtual machines hosted
in one or more physical nodes) are connected by tunnels to
form an overlay virtual network. A virtual network hosted in
VINI can customize its control plane and data plane without
interfering other virtual networks. However, a virtual net-
work in VINI has limited data forwarding speed because the
data forwarding function essentially runs in OS user mode
and one physical machine may host many virtual routers.

Trellis [11,12] also adopts operation system level virtual-
ization and virtual routers are connected by tunnels. A vir-
tual router in Trellis can achieve the forwarding speed com-
parable to the native OS kernel forwarding speed. However,
the forwarding performance improvement of Trellis cannot
benefit a virtual network that needs to customize its data

plane, in which scenario its packet processing function has
to run in OS user mode and essentially that virtual network
loses the performance benefit provided by Trellis.

The Virtual Router project [6] adopts the paravirtual-
ization scheme provided by Xen [8] to virtualize a physical
router box. A virtual router in VRouter can run in either
privileged or unprivileged domains. Running a virtual router
in unprivileged domain has unacceptable forwarding perfor-
mance [16] but running it in privileged domain yields viable
data plane performance [15]. However, letting a virtual net-
work run directly in the privileged domain of the underlying
hardware leads to less flexibility in customizing the virtual
network, because a virtual network will be limited to use a
set of “trustful” elements to avoid jeopardizing the shared
substrate. The study in [14] explores another design op-
tion in which a virtual router can achieve close to native
speed and can be highly customizable as well. The idea is
to run virtual router in unprivileged domain for high degree
of isolation and let each virtual interface exclusively use a
physical NIC (this is called direct mapping) for better IO
performance. But the number of virtual routers hosted in a
machine would be limited by the available physical NICs.

The Supercharging PlanetLab Platform (SPP) [22] sepa-
rates the control plane and data plane of a virtual network
and uses network processor (NP) in virtual network data
plane for high speed packet processing. But SPP opens only
the programming interface to control the TCAM hardware
in NP and opening close to hardware programming interface
might be a security hole exposed to malicious or reckless
users.

The source code merging scheme [18] provides a set of
function elements which can run in the privileged domain of
underlying hardware. As a result, a virtual network is lim-
ited to assemble its data plane using the provided elements.

The performance potential of software router running in
commodity hardware is explored in [9]. It has been shown
that commodity PCs, using multi-core CPUs and NICs with
multiple virtual queue rings, are capable of achieving high
speed packet processing. It is also proposed in [9] that a
PC cluster can be used to build routers with high aggregate
speed.

Compared with other existing platforms, PdP provides
good isolation and flexibility properties with little packet
processing performance compromise. The existing practice
and experience in building and deploying virtual network
platforms give us many inspirations in designing PdP. PdP
resembles the SPP platform in separating virtual network
control plane and data plane. The deployment experience
of VINI and Trellis motives us to open only the unprivileged
domain to virtual networks in PdP. The PC-cluster router
proposed in [9] inspires us to take advantage of parallization
for better performance.

3. THE DESIGN OF PDP
In this section, we first describe the basic ideas behind

PdP. Then we present the design of PdP in details. We
also point out possible alternative design options in building
certain components of PdP and briefly discuss their pros and
cons.

3.1 Basic Ideas
The design goal of PdP is to provide maximum flexibility

and isolation to virtual networks with minimal compromise
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in packet processing. For a virtual network, both the con-
trol plane and the data plane run in guest machines and the
virtualization mechanism (which slices a host machine into
one or more guest machines) provides the necessary isola-
tion among different virtual networks. Running the control
plane and the data plane in guest machines has certain over-
head. Although this overhead may not be an issue for the
control plane functions, it can significantly degrade the data
plane performance, because essentially the packet processing
functions run in the unprivileged domain of the underlying
hardware. To compensate the performance degradation of
running the data plane in guest machine, we assign one vir-
tual network multiple guest machines to perform the packet
processing task1. With the parallel processing in multiple
guest machines, a virtual network in PdP can achieve better
data plane performance than the virtual networks in other
platforms with similar degree of isolation and flexibility. In
other words, PdP trades cost (having multiple physical ma-
chines to perform the data plane tasks of virtual networks)
for better flexibility, isolation, and performance. Since PdP
is built from cost-efficient commodity hardware and open
source software, the cost increasing should not be substan-
tial.

3.2 PdP Node Architecture
A PdP node actually consists of a cluster of machines.

One of the machines is the management host (denoted by
MH) and there are multiple machines acting as the forward-
ing engines (denoted by FEs). A multiplexer/demultiplexer
machine (denoted by MD), under the control of the MH,
distributes incoming packets to FEs and merges the outgo-
ing packets from FEs. Both the MH and the FEs are sliced
into guest machines using operating system level virtualiza-
tion mechanism [21]. A guest machine hosted in the MH
is called a MH guest machine and a guest machine hosted
in some FE is called a FE guest machine. We choose OS
level virtualization because it is efficient and provides good
isolation among guest machines. For one virtual network in
PdP, its control plane runs in a MH guest machine. Depend-
ing on how much packet processing power a virtual network
claims, one or more FE guest machines can be allocated to
the virtual network to perform its data plane tasks. Slicing
the FEs into how many FE guest machines and assigning
which FE guest machines to each virtual network are im-
portant issues we need to consider. We will discuss this in
detail when we present the design of the FE in Section 3.4.

The MD in the PdP node coordinates multiple FE guest
machines of the virtual networks hosted in the FEs. Once re-
ceiving a packet, the MD first decides which virtual network
that packet belongs to and then sends it to corresponding
FE guest machines for processing, such as address lookup
and traffic shaping. After a packet is processed, it is re-
turned to the MD. At that time, the packet is tagged with
necessary information (e.g., the outgoing interface) for the
MD to decide how to dispatch it.

We show an example of the PdP node in Figure 1. It hosts
three virtual networks, i.e., red, blue, and green. There are
three MH guest machines, each of which runs the control
plane of a virtual network. Packets belonging to virtual
networks are classified and distributed from the MD to the

1How many guest machines should be assigned to one virtual
network and how much packet processing power one guest
machine depend on the requirement the virtual network.
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Figure 1: Example of a PdP node. The dashed ar-
rows represent incoming, unprocessed packets. The
solid arrows represent outgoing, processed packets.

FE guest machines. The red and blue virtual networks re-
quire little packets processing power so that one FE is sliced
into two FE guest machines, with one guest machine serv-
ing for the data plane of the red and blue virtual network,
respectively. The green network requires much more pro-
cessing power so two FE guest machines, each has all the
processing power of one FE, are assigned to the green net-
work. After packets being processed, they are returned to
the MD with necessary tags and the MD dispatches those
packets according to those tags.

3.3 The Management Host and The Multipl-
exer/Demultiplexer

Figure 2 depicts the basic structure of a management
host. The control plane of each virtual network runs in
the guest machines hosted in the MH. For simplicity, we im-
plement the multiplexer/demultiplexer inside the MH2. The
multiplexer/demultiplexer functions are implemented by the
packet classifier and packet dispatcher running in the OS
kernel of the MH. The packet classifier and dispatcher per-
form simple tasks and should process packets at high speed.
For each incoming packet, the packet classifier first checks
whether the packet belongs to a virtual network (e.g., the
packet is encapsulated in UDP). If it does, the packet clas-
sifier further finds out which virtual network that packet
belongs to and sends it to corresponding FE guest machine.
The mapping between the virtual networks and their FE
guest machines should be established when creating the vir-
tual networks.

After a packet is processed by the FE guest machine and
sent back to the MH, it should be properly tagged. The
packet dispatcher checks the tags of the packet to see whether
this packet should be sent out or it should be delivered to
a local MH guest machine. If it should be sent out, the
packet dispatcher simply sends the packet to the outgoing
interface (the packet has already been properly encapsulated
by some FE guest machine and it has a tag to indicate the
outgoing interface). If the FE guest machine labels a packet
as local delivery (e.g., it is a routing update message), the

2Note that the multiplexer/demultiplexer can be imple-
mented using another dedicate machine or special purpose
hardware.
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Figure 2: The internal structure of a Management
Host (MH).

packet dispatcher delivers it to the corresponding MH guest
machine.

Note that we use software to implement the MD function
in commodity hardware for prototyping purpose. The MD
function can be implemented by special purpose hardware
such as Network Processor or NetFPGA for better perfor-
mance. Since the MD function is not open to each virtual
network for customization and programming, using special
purpose hardware will not jeopardize the flexibility of PdP.

3.4 The Forwarding Engine
The other important component in a PdP node is the

FE. Here we first present the structure of the FE and then
discuss the problem of how to allocate the processing power
of the FEs to virtual networks.

3.4.1 Structure of FE

The structure of an FE is shown in Figure 3. Each FE is
sliced into one or more guest machines using OS level vir-
tualization as well. A packet belonging to a virtual network
is delivered to the packet processing function running inside
the a FE guest machine. The packet processing function
processes each packet according to the control plane of that
virtual network and marks the processed packet with a set
of simple tags. The tags can be some fields in the header of a
lightweight encapsulation mechanism used between the MH
and the FEs. The tags include information such as whether
the packet should be locally delivered, or how the packet

user 
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Kernel space

user 

mode 

Click

physical 
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mapping virtual interfaces physical interface

routing 

table, etc

routing 

table, etc

virtual 

interface

virtual 
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Figure 3: The internal structure of a Forwarding
Engine (FE).

should be forwarded out by the dispatcher running in the
MH.

The packet processing functions of a virtual network run
inside the guest machines so that the virtualization mecha-
nism provides the isolation among different virtual networks.
An alternative design option is if a virtual network exclu-
sively uses one or more FEs, we can let its packet processing
functions run in the privileged mode of the FEs for better
performance (assuming the MD can match the aggregate
speed of the FEs). However, opening the privileged mode of
FEs necessitates human interactions in some situations, such
as a buggy packet processing function hangs the FEs serving
for a virtual network so a hard reboot is needed, which is
not desirable in managing large scale shared substrates.

3.4.2 Allocating the Processing Power of FEs

How to allocate the processing power of the FEs is of
importance, because packet out-of-order resulting from par-
allelizing packet processing can impact the performance of
the up-layer protocols such as TCP.

vnet2 vnet3vnet1

FE1 FE2 FE3

(a)

vnet1 vnet2 vnet3

FE1 FE2 FE3

(b)

Figure 4: vnet1 ∼ vnet3 get equal processing power
in (a) and (b). In (a) vnet2 and vnet3 has two FE
guest machines. In (b) vnet2 (and vnet3) has one FE
guest machine only.

Informally, the basic principle should be not slicing the
FEs too finely to avoid such a situation that there are a lot
of “fragmented” FE guest machines. For example, suppose
there are three FEs (FE1 ∼ FE3) and they are allocated to
three virtual networks (vnet1 ∼ vnet3). Slicing and allocat-
ing the FEs according to either Figure 4(a) or Figure 4(b)
satisfies the processing power requirement of each virtual
network. However, the slicing of FEs as in Figure 4(a) may
cause vnet2 and vnet3 to have lots of out-of-order packets.
Slicing the FEs as in Figure 4(b) is a better choice because all
three virtual networks have their required processing power
and none of them has the packet out-of-order problem3.

In order to minimize the impact of packet out-of-order to
a virtual network, we should assign minimal number of FE
guest machines to serve for its data plane. Suppose there
are n virtual networks (vnet1 ∼ vnetn) and vneti requires
Ri processing power. Also suppose we have enough FEs in
the PdP node and each FE has C processing power. Slicing
the FEs and allocating their processing power can be for-

3Note that if no single FE guest machine can satisfy the
requirement of a virtual network, we have to assign multiple
FE guest machines to that virtual network.

12



mulated as a “bin packing problem”, which is NP-hard [13].
That is, if Ri = kC + ri, (ri < C), we should first allo-
cate k FE guest machines to vneti and each of them has all
the processing power of one FE. Then finding the minimum
number of FEs to “pack” the n remainders (r1 ∼ rn) is the
classic bin packing problem. Considering that new virtual
networks are created in PdP and old ones are removed from
PdP, we develop an heuristic algorithm to decide the slicing
and allocation of FEs in an online manner. Our algorithm
adopts a heuristic similar to the “best fit” heuristic used in
solving the bin packing problem. Algorithm 1 depicts the
pseudocode of the algorithm.

Algorithm 1: SliceAlloc(R)

Input: R, the processing power requirement of a
virtual network vnet.

Output: The “best fit” slicing and assignment of FEs
which satisfies the requirement of vnet.

r=R%C;1

k=(R − r)/C;2

for i = 0; i < k; i + + do3

find an idle FE, create one guest machine with C4

processing power in it, assign that guest machine to
vnet;

FE∗ = null;5

min = BIG NUM ;6

for FEi ∈ all FEs AND availablePower(FEi) > r do7

if (availablePower(FEi) − r) < min then8

min = availablePower(FEi) − r;9

FE∗ = FEi;10

create a guest machine in FE∗ with processing power r11

and assign it to vnet;

3.5 A PdP Node Prototype
We have built a proof-of-concept PdP node prototype as

shown in Figure 5. All machines are Linux PCs and we use
OpenVZ [2] to slice the MH and the FEs. The packet classi-
fier and dispatcher running inside the MH are implemented
by kernel mode Click [4]. The packet processing function of
each virtual network running in the FE guest machines is
implemented by user mode Click.

Management 

host

A B

forwarding 

engine

forwarding 

engine

forwarding 

engine

Gbit Ethernet switch

…...

C

Figure 5: A PdP node prototype.

The PdP node prototype has two external physical inter-
faces, A and B. We assign two virtual interfaces to each
virtual router hosted in this PdP node, one mapped to each

physical interface4, and a virtual router forwards packet be-
tween those two interfaces. The classifier in the MH clas-
sifies packets belonging to different virtual networks based
on the UDP port numbers (assuming the virtual links in
a virtual network are UDP tunnels). If a virtual network
has multiple FE guest machines, the classifier sends packets
to them in a round-robin manner. The packet processing
function, which runs in the FE guest machines, processes
each packet, encapsulates the packet with proper UDP/IP
header, labels the packet a tag to indicate the outgoing in-
terface, and sends it back to the MH. According to the tag
labeled to the packet, the dispatcher in the MH sends that
packet out via either interface A or interface B. In this PdP
node prototype, the proto type field in the Ethernet header
is reused as the tag to indicate the outgoing interface.

4. EXPERIMENT EVALUATION
This section evaluates the packet processing performance

of PdP. We focus on IP forwarding but the basic conclusions
of our experiments also apply to virtual networks using pro-
tocols other than TCP/IP. Our experiments show that the
raw packet forwarding speed of PdP scales with the number
of FEs and it can match the best known forwarding speed
of software router running in commodity hardware.

4.1 Experiment Setting
Figure 6 shows the testbed in our experiments. Two Linux

PCs are connected by the router machine through Gbit Eth-
ernet links, where the router machine is a PdP node. We
test three settings in which the number of FEs varies from
one to three. For comparison purpose, we also test the sce-
narios where the router machine is one Linux PC running
user mode Click in its guest machine and running Click soft-
ware router in kernel mode. All PCs have 2.4 ∼ 3.0 GHz
single-core Pentium 4 CPU, 1G RAM, and Gbit Ethernet
NICs.

Source Router Destination
A B

Figure 6: The experiment testbed.

Note that the experiment results presented here is to show
that the performance trend of PdP scales with the number of
FEs. It can be expected that better results will be achieved
if more powerful hardware are used in our experiment, such
as PCs equipped with multi-core CPUs which are able to
poll NICs with multiple virtual ring queues.

4.2 Packet Forwarding Speed
We first use UDP traffic to test the raw packet forwarding

speed of PdP. We configure the routing table to have only
two routes, which point to the source host and the destina-
tion host respectively. The source host runs the udpgen tool
shipped with Click to send UDP packets to the destination
host. The udpgen tool runs in kernel mode and can send out
packets at very high speed. The destination host runs the

4Note that this is for purpose of testing and prototyping. In
reality, each virtual router hosted by the PdP node can have
any number of virtual interfaces.
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udpcount tool in Click to count the number of received UDP
packets.

We had the experiments in which we create multiple con-
current virtual networks. The aggregate forwarding speed of
the PdP node, when the number of virtual networks varies
from one to three, does not show noticeable difference. To
save space, throughout this section we present only the re-
sults where there is only one virtual network. If it is not
stated explicitly, each FE hosts only one guest machine and
the FE guest machine has all the processing power of the
FE.

We configure the source host to send out 64-byte UDP
packets at a fixed speed ranging from 10K packets per sec-
ond (pps) to 1100K pps. The forwarding speed of the router
machine, when it is a PdP node, user mode Click router, or
kernel mode Click router, is plotted in Figure 7. We also
plot the packet loss rate at the router machine in Figure 8.
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Figure 7: Packet forwarding speed results in UDP
traffic experiment.
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Figure 8: Packet loss rate results in UDP traffic
experiment.

As shown in Figure 7 and Figure 8, when the input speed
is lower than certain threshold, the forwarding speed always
increases proportionally as input speed increases and the loss
rate remains to be zero. The peak forwarding speed of PdP
is proportional to the number of FEs and the peak speed
of PdP with three FEs matches the peak speed of kernel
mode Click. After the input speed exceeds the threshold, the

packet loss rate becomes larger; the forwarding speed of user
mode Click and PdP drops down but the kernel mode Click
router maintains a constant forwarding speed. The reason is
that the kernel mode Click sets the Ethernet interface into
polling mode [20] so as to prevent the receive livelock [19].
On the contrary, the packets receiving and sending in user
mode Click and PdP (in FE guest machines) are driven by
the OS interrupt procedures. With increasing numbers of
input packets, the interrupt processing can eventually starve
all other system tasks, resulting in low forwarding speed [20].
If we make use of the polling mode support in native Linux
driver, the forwarding of PdP (and the user mode Click)
would maintain the peak speed even the input speed is much
higher than its peak forwarding speed.

We also test the forwarding performance of PdP in case of
other two packet sizes, 512 bytes and 1500 bytes, in which
we set the packet input speed to saturate the 1 Gbps link.
For 512-byte packet, the maximum packet input speed is
about 230K pps and the maximum packet input speed for
1500-byte packet experiment is about 80K pps. We plot the
results in Figure 9 and Figure 10. Our tests show that the
forwarding speed gets lower for larger packets but having
more FEs still achieves faster forwarding speed. PdP node
with three FEs can match the speed of kernel mode Click
in both the 512-byte packets experiment and the 1500-byte
packets experiment. Equipping the PdP node with two FEs
instead of one can double its speed. However, increasing the
number of FEs from two to three does not show proportional
forwarding speed enhancement because of the bandwidth
limit of Gbit Ethernet link.
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Figure 9: Forwarding speed experiment results
when the packet size is 512 bytes. The input speed
for each experiment is set to saturate the 1 Gbps
link.

4.3 Forwarding with Large Routing Table
Note that in the above experiments, because the routing

table has only two routes, the IP address lookup time is
ignorable due to the “warm cache” effect [1]. To study the
forwarding performance of PdP in case of large routing table,
we download a BGP routing table from RouteViews [3] and
extract about 170K IP prefixes. We repeat the above ex-
periments with this large routing table. To avoid the warm
cache effect, the source host sends out UDP packets with
randomly selected unicast destination IP addresses. In the
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Figure 10: Forwarding speed experiment results
when the packet size is 1500 bytes. The input speed
for each experiment is set to saturate the 1 Gbps
link.

router machine, the nexthop of all routes (including the de-
fault route) is set to the destination host. The experiment
results are plotted in Figure 11.

We can see that PdP still performs better than the user
mode Click software router and matches the speed of kernel
mode Click. However, the forwarding speed gets lower when
using large routing table, especially for 64-byte packets ex-
periment. For large packets, the forwarding speed does not
show much degradation because the input speed is slow (due
to the link bandwidth limit) and the IP address lookup time
is not the significant part in packet processing.

4.4 TCP Throughput
So far the experiments using UDP traffic test only the

raw packet forwarding speed of PdP. Most popular network
applications use TCP protocol and the actual throughput
achieved by TCP depends on more factors such as packet
reordering, round trip time etc. In this experiment, we eval-
uate the performance of PdP in terms of TCP throughput.
The router machine is configured with two routes in its rout-
ing table. An iperf server runs in the destination host and
an iperf client running in the source host sends TCP traf-
fic to the iperf server. We do not change any TCP-related
parameters of iperf but use the default values. The TCP
throughput is plotted in Figure 12.

Our experiments show that PdP with one FE guest ma-
chine achieves similar TCP throughput as user mode Click
IP router. Even the MH distributes packets to FE guest
machines in a round-robin manner and there are a lot of
out-of-order packets (as will be shown in Section 4.5), PdP
with two or three FE guest machines demonstrates signifi-
cant improvement of TCP throughput compared with user
mode Click and PdP with one FE guest machine.

4.5 Packet Out-of-Order in TCP
Packet out-of-order is a challenging problem for parallel

processing based systems. The following experiment is to
quantify how PdP affects packet out-of-order in TCP. We
use iperf to generate a TCP session and capture all the
packets at the destination host. Then we use the Expert

Info tool in wireshark [7] to analyze the out-of-order packets.
The percentages of out-of-order packets, in case of the PdP
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Figure 12: The TCP throughput experiment results.

node having one, two, and three FEs, are shown in Table 1.
When counting the number of packets, we ignore those ACK
messages sent by the destination host to the source.

one FE two FEs three FEs

% of out-of-
0.31% 10.19% 13.02%

order pkts

Table 1: Percentages of out-of-order packets when
the PdP node has one, two, and three FE guest ma-
chines. The classifier in the MH distributes packets
to FE guest machines in a round robin manner.

When there are more than one FE guest machines, about
10% ∼ 13% packets are out-of-order packets and there is no
significant difference between the experiments using two and
three FE guest machines. Note that although considerable
number of packets are out-of-order, as shown in Section 4.4,
we still have decent TCP throughput.

Next we evaluate how the strategy of the packet classifier
running in the MH affects the packet out-or-order. We use
two identical FEs in the PdP node and each FE hosts one
guest machine. We tune the setting of OpenVZ so that one
FE guest machines has 75% of the CPU cycles of an FE and
the other FE guest machines has 50% of the CPU cycles of
an FE. The packet classifiers uses two packet distributing
strategies. One is sending packets in round-robin manner;
the other is sending different number of packets based the
allocated CPU cycles of the guest machines, i.e., for every 5
packets, sending packets 1, 3, 5 to the FE guest machine with
75% CPU cycles and sending packets 2, 4 to the FE guest
machine with 50% CPU cycles. The results are presented in
Table 2

round-robin proportional

% of out-of-
12.27% 10.02%

order pkts

Table 2: Packet out-of-order when the classifier uses
different strategies to distribute packets to FE guest
machines.

The results in Table 2 show that less out-of-order pack-
ets will occur if the packet classifier takes into account the
packet processing power (CPU cycle is just one aspect of the
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(a) 64-byte packet
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(b) 512-byte packet
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(c) 1500-byte packet

Figure 11: Packet forwarding speed in case of large routing table. (a) plots the peak packet forwarding speed.
For (b) and (c), the packet input speed is set to saturate the 1 Gbit Ethernet link.

packet processing power) of FE guest machines. Note that
packet out-of-order is a rather complicated problem and it
is not clear whether distributing packets based on the CPU
cycles of a FE guest machine is the best strategy. We are
actively investigating how other strategies affect the packet
out-of-order and to what extent the up-layer protocol per-
formance is impacted.

4.6 Transmission Delay
As every packet needs to traverse two PCs in a PdP node,

it introduces the overhead in terms of transmission delay.
We use the following experiment to evaluate the transmis-
sion delay overhead of PdP. Here the source host in Figure 6
uses ping to send ICMP packets to the destination host. We
record average round-trip-time (RTT) reported by ping and
show the results in Table 3.

user Click PdP kernel Click

RTT (ms) 0.208 0.296 0.132

Table 3: The round trip time experiment results.

From the results in Table 3 we can see that one PdP node
adds about 0.17ms additional delay to the RTT, compared
with the RTT of the kernel mode Click router. The addi-
tion delay is 0.09ms compared with the RTT of user mode
Click router. According to the measurement study in [17],
most hosts in Internet are about 14 hops away from a uni-
versity probing site and the average RTT from those hosts to
the probing site is about 80ms. Therefore, if PdP is widely
deployed in Internet and each PdP node adds 0.17ms addi-
tional RTT delay, the total additional RTT delay would be
about 2.4ms, which is ignorable considering an 80ms aver-
age RTT.

5. CONCLUSION AND FUTUREWORK
In this paper we present PdP, a full programmable and

high speed virtual network platform. PdP is built from cost-
efficient commodity hardware and open source software. A
virtual network hosted in PdP can have complete control
over its control plane and data plane without interfering
other virtual networks. The key ideas behind PdP are two-
fold: running virtual network control plane and data plane
in guest machines for better isolation and flexibility; hav-

ing multiple guest machines working in parallel to achieve
high speed packet processing. We have built a prototype of
the PdP node. The performance measurement shows very
promising results for both UDP and TCP traffic.

PdP is still under extensive developing and there are many
interesting and challenging research problems we are going
to investigate. First, one of our ongoing work is to distribute
packets to FE guest machines based on flow information (as-
suming that the virtual network uses TCP/IP), so as to mit-
igate the packet out-of-order problem. It is a challenge to
design a classifier scalable to many virtual networks, each
having lots of flows. We are investigating the possibility of
having multiple dedicated machines to do the packet classi-
fication. Second, note that a virtual network may use data
plane other than TCP/IP. In this case, we must open certain
interfaces of the MD so that a virtual network can control
the behavior of the packet classifier in MD, such as letting
each virtual network define which bits identifying a flow.
Third, although the MD in our current PdP prototype can
process packets at high speed, it can still limit the through-
put of a PdP node when the number of FEs increasing. It
is an interesting problem to study how to organize multi-
ple PdP nodes into a cluster and each PdP node works like
an interface in the PdP “cluster router”, so that the overall
throughput of the PdP cluster can scale.
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