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ABSTRACT
Although the diversity of platforms for network experimen-
tation is a boon to the development of protocols and dis-
tributed systems, it is challenging to exploit its benefits.
Implementing or adapting the systems under test for such
heterogeneous environments as network simulators, network
emulators, testbeds, and end systems is immensely time and
work intensive.

In this paper, we present VIPE, a unified virtual platform
for network experimentation, that slashes the porting effort.
It allows to smoothly evolve a single implementation of a
distributed system or protocol from its design up into its
deployment by leveraging any form of network experimen-
tation tool available.

Categories and Subject Descriptors
C.2.1 [Network Architecture and Design]: Network Com-
munications

General Terms
Design, Experimentation

Keywords
Resource Virtualization, Network Experimentation, Simula-
tion, Deployment

1. INTRODUCTION
Although the primary interest of researchers and devel-

opers of communication protocols lies in the functionality
and performance of their protocols, they are faced with a
tremendous engineering overhead when it comes to imple-
menting them. This problematic fact is quickly illustrated
by a simple example: the life cycle of any new protocol.

The realization of the new protocol typically begins with
implementing the design ideas in a network simulator to test
and evaluate system behavior and scalability. While working
towards an algorithmically complete system, it may be desir-
able to move to a different simulator platform, e.g. to exploit
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different models and richer visualization features. However,
the engineering effort required for such a move (different
APIs, abstraction levels, models, etc.) is likely to be pro-
hibitively expensive for such a goal despite the fundamental
similarities among network simulators.

With a promising protocol at hand, scientific publication
demands to evaluate it in more detail and more realistic set-
tings than a simulator. In the simplest case, a user-space
implementation is required to determine real-world client
performance. This transition results in an even larger de-
velopment effort since the existing algorithms now need to
be adapted to a completely different programming model
(synchronous instead of asynchronous event handling) and
yet again a different programming API. Even so, such an
effort results in support for a single platform because the
overhead of covering multiple operating systems is signifi-
cant. Consequently, pushing the new protocol into testbeds
or deployments of a different architecture, building a user
or developer community etc. often remains elusive. All this
applies even more so to low-level protocols typically imple-
mented in OS kernels where development is inherently more
complex and difficult.

Although this observation may seem trite, it reflects in
fact a counter-intuitive problem: On the one hand, proto-
cols cover a narrow problem domain and their implemen-
tations depend only on a small and clearly identifiable set
of functionality. On the other hand, a massive engineering
effort is necessary to run the same protocol algorithms and
functions on different platforms and environments. Thus,
today’s protocol development remains restricted to a small
set of evaluation tools in practice.

This paper introduces VIPE, a VIrtual Platform for net-
work Experimentation, which bridges heterogeneous evalua-
tion tools and platforms for communication protocols. In its
“write once, run almost everywhere” environment, protocols
can seamlessly move back and forth between the stages of
simulation, emulation, evaluation on testbeds, and deploy-
ment. In VIPE, this is a matter of installing the platform-
specific development tools and typing make windows-kernel
instead of make omnet so the development cycle is governed
by refinement instead of re-implementation. Overall, VIPE
aims to bring protocol development closer to its ideal of a
stage-wise refinement instead of re-implementation and it
allows for a tight feedback loop between the different devel-
opment stages.

The contribution of this paper is three-fold: 1) we iden-
tify the minimal core functionality required by communica-
tion protocols, 2) we show that this core functionality can
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Figure 1: During their evolution, protocols pass
through a heterogeneous set of evaluation tools, re-
quiring multiple re-implementations.

be provided uniformly on a wide range of platforms at a
negligible performance impact, and 3) we demonstrate that
this approach effectively eliminates cross-platform porting
efforts which benefits network experimentation in particular.
We have implemented widespread communication protocols
such as TCP, IP, and Chord in VIPE showing that protocols
require only a small, well-defined platform API. This leads
to very light-weight abstraction layers with a non-intrusive
execution model contained in about 1000 lines of code per
platform. With VIPE, network researchers can readily test
and deploy protocols in the kernel and user space of Linux,
Windows XP, and Windows CE / Mobile, on network sim-
ulators (ns-3, OMNeT++), testbeds (EmuLab, PlanetLab),
and sensor nodes (TinyOS). Since VIPE-protocols integrate
with the protocol collection of a target platform, VIPE lever-
ages the protocol stacks of operating systems and the exten-
sive model collections of today’s network simulators.

Section 2 generalizes and analyses the problems outlined
above with regard to network experimentation. Section 3
presents the design of VIPE. Its practicability, effectiveness,
and performance impact on many platforms is evaluated in
Section 4. Section 5 discusses related work and Section 6
presents future goals. We conclude in Section 7.

2. ANALYSIS
Ever since network simulation was established, the com-

munity has been holding a never ending discussion on its
credibility and degree of realism [1,13–15,24,33]. Hence, net-
work researchers and developers feel an increasing pressure
to deliver experimentation results for simulation, testbed,
and real-world settings for a reliable and realistic evaluation
of protocols and distributed systems (see Figure 1).

Tool Chain Explosion
To increase the credibility of protocol and system evalua-
tion, the community proposed new tools to bridge between
simulation and the real world. For example, network emu-
lation [7, 12, 21, 41], virtualization [3, 4, 18, 26], and testbeds
[2, 37,44] received new attention.

Large-scale research projects such as ns-3 [19] and GENI

[34] as well as the rapid growth of PlanetLab further under-
line the importance of new substrates for network experi-
mentation and evaluation.

The result is a large number of tools, each focusing on
a distinct aspect of the problem space. Each of them pro-
vides its own benefit for an individual point in the protocol
development process.

Platform Diversity
The variety of evaluation tools is further aggravated by the
increasing diversity and number of platforms that commu-
nication protocols and distributed systems aim to support.
Communication systems and particularly the Internet reaches
into new domains such as mobile, ad-hoc, mesh, and wireless
sensor networks. Each domain requires distinct tool chains
for evaluation and deployment.

Isolation of Evaluation Tools
The heterogeneity in the individual steps of the evaluation
process requires implementations to be duplicated for nearly
all platforms and tools in the evaluation process, resulting
in a painstaking and time-consuming process. For example,
moving a protocol from a network simulator to PlanetLab
or from OS user to kernel space without re-implementation
can be considered impractical, if not utopian. Consequently,
it is prohibitively complex to employ more than a small
number of the evaluation tools available and to achieve a
tight feedback loop with the design and evaluation phases.
This feedback is even more severely limited between different
networking domains such as infrastructure-based, sensor, or
mesh networks.

3. VIRTUAL PLATFORM ARCHITECTURE
The virtual platform aims to ease the development and

evaluation of new distributed systems and protocols. Typ-
ically, these are implemented from scratch and can thus be
easily tailored to the virtual platform. Platform abstraction
in VIPE is not bound to any specific protocol layer. How-
ever, protocols that undergo the final transition into the
kernel-domain benefit the most from VIPE, as kernel and
user space run-time environments differ the most.

It is not our intent to make VIPE a standard run-time for
protocols deployed in operating systems. Operating system
and application vendors typically rely on their own imple-
mentations of protocols, optimized for their target platforms
and use cases. Instead, VIPE aims to ease the work of re-
searchers to reach a version deployable in the wild for field
tests, to enable early adoption and to reduce dependencies
from operating system vendors. We believe that clean-slate
approaches to the Internet architecture can benefit from a
virtual platform in particular, as they are expected to pass
the development cycle a number of times before reaching the
required maturity. Additionally, for protocols that have left
or are leaving the research domains and are awaiting roll-out
in major operation systems such as SCTP [39], DCCP [22]
or HIP [32] an environment such as VIPE can speed up an
initial deployment on a wide range of platforms and reduce
dependencies from major operating system providers.

3.1 Architecture
To achieve cross-platform portability, one fundamentally

needs to find a stable common ground on which software can
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be built or run on independently of the underlying architec-
ture. Today, this problem may appear to be solved, since we
can rely on such techniques as interpreted languages or hard-
ware and system virtualization. However, their genericness
comes at the expense of a significant engineering effort per
platform for porting and maintenance. More importantly,
these techniques cannot be practically applied in such het-
erogeneous platforms relevant to network experimentation
as OS kernels or simulators.

In contrast, VIPE builds on two simple observations: a)
across platforms, protocols form a bounded application do-
main that depends on only a small number of core run-time
primitives and b) due to best practices in system design,
the APIs to these run-time primitives closely resemble each
other. It should thus be possible to create a uniform develop-
ment and runtime environment for cross-platform protocols.
On the one hand, the development environment comprises a
programming paradigm, a standard library of core function-
ality, and a run-time. On the other hand, the runtime envi-
ronment maps a virtual platform (i.e., its standard library
API) to the native platforms that protocols execute on. Al-
though this may appear as a seemingly trivial task, the chal-
lenge and the basic premise of our work is to devise a) a de-
velopment environment that is complete but lightweight for
a low engineering effort and b) a runtime environment that
is complete but lightweight for a low execution overhead.

The remainder of this section discusses how the virtual
platform addresses these challenges, detailing on language
aspects, the standard library, the packet and protocol mod-
els, and the runtime environment.

3.2 Programming Language and Paradigms
The virtual platform relies on event-based activation, i.e.

asynchronous event handling, as the unifying programming
paradigm because it maps naturally to the protocol domain
and integrates well with all target platforms. It is the native
execution model in most simulators and OS protocol code
in the kernel domain typically centers around event handler
functions. This asynchronous programming paradigm also
allows transparently exploiting multiple processor cores for
improved performance by parallelizing event handling.

VIPE intentionally does neither allow synchronous (i.e.
blocking) event handling nor threads. Although this devi-
ates from typical user-space paradigms such as socket pro-
gramming, we believe that developers experienced either in
network simulation, OS kernel development or asynchronous
socket programming adopt naturally to this model. More-
over, a narrow API and a fixed execution paradigm are fun-
damental requirements for achieving VIPE’s lightweight ar-
chitecture.

In terms of programming languages, VIPE does not bind
itself to a single programming language. The API of its
standard library and run-time is accessible by any modern
language. Hence, the choice of language to implement a
distributed systems or communication protocol on top of
VIPE’s API merely depends on the targeted evaluation plat-
forms. For example, Python or Java are acceptable only if
the implemented protocol is not targeted for OS kernels or
sensor nodes where these languages are not supported.

3.3 The Standard Library
With our protocol standard library, the virtual platform

provides the core functionality necessary to implement pro-
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Figure 2: The virtual platform provides unified in-
terfaces to the resources of target platforms.

tocols. It provides unified interfaces to resources in five ar-
eas: network packets, memory management, timing, syn-
chronization, and network devices (see Figure 2). For pro-
gramming convenience, it additionally contains a small num-
ber of frequently used data structures. Section 4.1 shows
how this narrow scope proves sufficient even for complex
protocols.

Our design exploits the observation that on all target plat-
forms the native APIs for these areas are very similar as they
stem from or resemble the C standard library. We interpret
this effect as a stable trend across platforms towards best
practices in API design, which also fosters VIPE’s adop-
tion of new platforms. Consequently, it provides a well-
established and familiar API to a wide range of users from
OS kernel to network simulation developers. Furthermore,
these similarities enable a lightweight implementation, main-
ly consisting of pre-processor aliases or slim wrappers, result-
ing in an efficient code base and low implementation effort.

3.3.1 Generic Network Data Handling
The virtual platform facilitates a generic, layer indepen-

dent representation of network packets and a corresponding
API for packet manipulation. This API provides unified
primitives for tasks like de-/allocating packets, adding and
removing headers, etc.

The generic packet representation resembles a simplified
version of the socket buffer data structure of the Linux ker-
nel. It easily maps to the native data structures of Linux and
Windows and reduces the implementation complexity. We
explicitly trade advanced features such as packet chaining,
i.e. the representation of packet payload through a list of
disjoint memory blocks, for small complexity. Based on this
generic packet representation, we furthermore integrated ac-
cess to network devices in the kernel domain, network sock-
ets in the user-land and for both corresponding counterparts
in network simulation.

Targeting a lightweight abstraction layer, VIPE aims to
leverage the native functionality of the underlying platforms
by mapping its generic primitives to the native counterparts.
Kernels and network simulators proof particularly valuable
in this regard since VIPE can utilize a rich infrastructure
for handling network I/O and packets. In contrast, the user
space typically does not provide such native functionality,
thus requiring its own yet simple implementations in VIPE.
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Figure 3: The virtual platform enables the execution
of protocols and distributed systems in different OS
protection domains.

3.3.2 Memory, Time, and Synchronization
VIPE’s standard library provides primitives for memory

allocation and manipulation such as malloc, free, and mem-
cpy. Additionally, it offers synchronization primitives in the
form of locks to protect shared data from concurrent ac-
cess by event handlers. All those primitives map closely to
functionality available on the target platforms.

The virtual platform integrates one-shot and recurring
timers with the event system, for example to let protocols
trigger packet retransmissions. System time (e.g., for time
stamps) and timers in VIPE are at the granularity of mil-
liseconds, which is natively available on all supported plat-
forms. While this resolution satisfies most protocols, VIPE
additionally provides high resolution timers in the order of
nano seconds on platforms where supported as its only fea-
ture which is not fully portable.

As a convenience feature, the standard library defines
an API for commonly used data structures, such as lists,
queues, and hash tables. Depending on the availability of
native counterparts, the protocol standard library falls back
on those or provides a default implementation itself.

Overall, we observed that best practices in system design
resulted in high similarities between the APIs of typical net-
work simulators and operating systems in kernel and user
space, limiting run-time overhead and reducing implemen-
tation complexity.

3.4 The Runtime
The virtual platform does not aim at replacing existing

protocol stacks. Instead it provides a container for new pro-
tocols to be tested in different environments.

VIPE encapsulates single protocols as modular building
blocks. These protocols constitute instantiable entities from
which virtualized protocol stacks can be composed. Fur-
thermore, the protocols may be placed in separate protec-
tion domains to achieve fault isolation which is desirable for
evaluating unstable or untrusted protocols.

In an operating system, the virtual platform facilitates

Platform Lines of Code
Linux Userspace 778
Linux Kernel 815
Windows XP Userspace 739
Windows XP Kernel 1546
Windows CE Userspace 1189
Windows CE Kernel (5864) 11611

TinyOS (1.x) 423
ns-2 474
OMNeT++ 818

Table 1: Lines of code per virtual platform imple-
mentation

the execution of protocols in three different environments:
(1) kernel space, (2) user space, and (3) inside applications,
depending on the developer’s demands, such as low latency,
isolated execution, or application integration (see Figure 3).
Generic interfaces for packet transition to and from the vir-
tual platform allow VIPE to integrate deeply with target
systems and connect its stack to existing protocols, network
devices, and sockets. This ensures that protocol develop-
ment can focus on the protocol or distributed system of in-
terest. At the same time, it can rely on existing protocols on
any network layers below, on, and above the new protocol.

Network simulators and the user space in general are much
more amendable to debugging and testing than OS kernels,
embedded systems, or the distributed nature of PlanetLab.
Hence, with debuggers, memory-leak analysis, or unit test-
ing these provide the required tool chain for a deep analysis
and testing of protocols. Additionally, VIPE naturally taps
into the deployment infrastructure available for PlanetLab,
Emulab and network simulators.

4. EVALUATION AND PRACTICAL EXPE-
RIENCE

In this section, we evaluate VIPE’s implementation com-
plexity and its performance. Furthermore, we discuss our
practical experiences and outline the limitations of the cho-
sen architecture.

4.1 Implementation Complexity
We implemented VIPE on a broad selection of target plat-

forms, ranging from network simulators (ns-2, OMNeT++),
user and kernel space of common operating systems (Linux,
Windows XP) to embedded systems (TinyOS, Windows CE).
Aiming for both a seamless integration into OS kernels and
a reuse of code across platforms, our implementations of
the virtual platform base on C. Additionally, VIPE incor-
porates higher level languages such as Java and Python by
providing access to its API and callback hooks via language
bindings where applicable. In this regard, VIPE benefits
from native language interfaces such as Java’s JNI or SWIG
for Python [5].

VIPE implements the virtual platform with about 1000
lines of code for each target platform (see Table 1). The
Windows kernel-based implementation is more complex be-
cause it needs to cover the broad NDIS API and main-
tains an additional management data structure per packet.

1Modified lines of code (total in parentheses) of the NDIS
base driver.
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Linux 2.6.22 Windows XP
Kernel User Kernel User

Memory Management 0.0% 0.0% 0.0% 0.0%
Synchronization 0.0% 0.0% 0.0% 0.0%
Timer Management 0.0% 0.0% 0.0% 0.0%
Device send() 0.1% 0.1% 14.5% 0.2%
Device receive() 0.1% 0.2% 11.5% 0.1%
Packet create() 0.1% 0.0% 34.2% 0.0%
Packet delete() 0.1% 0.0% 9.7% 0.0%
IPv4 Router 0.0% - 3.0% -

Table 2: CPU performance overhead of the virtual
platform.

TinyOS and ns-2 on the contrary have a very narrow native
API and thus their VIPE implementation is very lightweight.
The implementation for OMNeT++ in turn also utilizes
OMNeT++’s visualization capabilities, thus increasing the
code base slightly. On average, the virtual platform requires
about one order of magnitude less code than related ap-
proaches such as the Network Cradle [21] or OppBSD [7].

Hence, VIPE already covers a wide range of target plat-
forms with a small code base and low engineering effort.
Nevertheless, it is sufficient to implement an Internet proto-
col stack including Ethernet, ARP, IP{v4,v6,X}, TCP, and
Chord (see Section 4.3). This underlines that its narrow
waist design is sound and can be expected to apply to fur-
ther platforms and protocols.

Concluding, our evaluation shows that the concept of a
lightweight virtual platform can successfully be applied in
practice. However, we do not necessarily consider the pro-
posed interfaces final or complete for next generation proto-
cols. Instead, we expect them to evolve over time and hope
to spark a discussion on a possible design of a narrow waist
for protocol evaluation and the interfaces it provides.

4.2 Performance Evaluation
Our test setup consists of three off-the-shelf hyperthreaded

Pentium IVs at 3.0 GHz with 1 GB RAM running Linux De-
bian Etch and a 2.6.22 kernel. Performance measurements
are conducted using the time stamp counter of the CPU that
provides near cycle accuracy.

Due to the design decisions in favor of a narrow API,
VIPE imposes a remarkably small overhead on system per-
formance. For selected resources, Table 2 illustrates a sum-
mery of the overhead of the virtual platform compared to the
corresponding native platforms. The functions for memory
management, timing, and synchronization exhibit a negli-
gible performance overhead on both Linux and Windows.
VIPE typically implements them as very thin wrappers of
the native API and optimizing compilers can hence eliminate
the overhead of function calls via code inlining.

For packet oriented operations, the results are similar ex-
cept for the Windows kernel space. It suffers from an exe-
cution overhead of about 11%–34% due to VIPE’s generic
packet representation. For each packet, the virtual platform
allocates, maintains, and deallocates this managemanet data
structure. On Linux in contrast, all management functions
operate on the native packet representation via wrappers.

We determine the overall system performance by com-
paring an IPv4 router implemented on top of VIPE with
its native counterparts in the Linux and Windows kernels.

Resource Design Trade-off
Execution model no threads
Packet representation no packet chaining
Network devices no hw specific interfaces
Timer milli-second granularity (default)
Memory non-paged memory in kernel
Synchronization single lock type (no r/w)

Table 3: VIPE’s narrow API trade-offs platform spe-
cific functionality for lightweight abstraction.

Our benchmark saturates all routers with packets of varying
size and measures the number of dropped packets. Overall,
the Linux based implementation performs equally well as its
native counterpart whereas VIPE in the Windows kernel is
about 3% slower than its native counterpart.

Since VIPE is still work in progress, our implementations
of more complex protocols such as TCP and Chord are not
yet mature enough for conducting a sound performance anal-
ysis.

4.3 Practical Experiences
We argue that VIPE’s primary benefit is to significantly

reduce the development effort of protocol and network ex-
perimentation. However, this claim is not as easily quantifi-
able in numbers as performance results or lines of code. In
order to corroborate our claim, we implemented a complete
TCP/IP stack on top of VIPE. Besides relatively simple
protocols such as Ethernet, ARP, and IPv{4,6,X}, our stack
furthermore includes TCP and the DHTs Chord and Pastry.
The following summarizes our experiences.

Debugging is a tedious process in operating system ker-
nels, embedded devices, and distributed systems in general
due to a lack of insight and controllability. In contrast, user
space environments provide the required debugging tools
and network simulators enable a global view on a distributed
communication system, supporting the functional evaluation
of protocols. VIPE’s seamless transition between different
platforms enables an evaluation of communication protocols
not only in terms of performance, but also in terms of func-
tionality before being transferred to the operating system
kernel or an embedded system. Thus, the virtual platform
ensures that the code is already extensively tested before be-
ing used in an OS kernel. It proved particularly helpful for
dynamic memory issues such as memory leaks which tend to
be challenging to track down in operating system kernels.

Overall, after debugging protocols in a network simula-
tor, no functionality-related bugs were discovered on other
platforms later in the development process.

4.4 Limitations
Our design decisions in favor of a lightweight abstraction

and narrow interfaces result in a set of limitations in VIPE’s
architecture. Table 3 shows an overview of the most impor-
tant design trade-offs in this regard. While some of these
features may be desirable, VIPE’s architectural premise is
to design its API as narrow as possible to increase main-
tainability and to simplify the integration of new platforms.
Thus, we believe that it is essential for VIPE’s architec-
ture to rely on a lightweight packet representation and asyn-
chronous event handling.
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5. RELATED WORK
Although platform abstraction has been widely used to

ensure portability, we argue that previous work focuses only
on a fraction of the protocol development process. This
section discusses related work beyond the research addressed
in our problem analysis (see Section 2).

For performance reasons, network and transport layer pro-
tocols are typically implemented in the operating system
kernel. This limits experimentation because kernels are not
very amenable to debugging and testing. This is one of the
motivating factors for research projects to move kernel net-
work stacks to user space. For example, Daytona [35] and
Arsenic [36] port Linux stacks while Alpine [11] is based
on the FreeBSD network stack. The Network Simulation
Cradle [21] and OppBSD [7] port OS network stacks into
network simulators such as ns-2 [31] and OMNeT++ [42].
Due to the tight integration of network stacks into the op-
erating system kernel, such ports are challenging and main-
tenance is non-trivial. Additionally, their monolithic design
stifles extensions and modifications. However, the fact that
these demanding ports are actively maintained nevertheless
shows the demand for fully featured protocol stacks for ex-
perimentation and evaluation. Furthermore, these stacks
merely bridge two domains, such as network simulator and
operating system kernel.

Similarly, Click [23] allows to compose and execute mod-
ular software routers in the Linux kernel and user space, the
FreeBSD kernel, and the ns-2 network simulator. While pro-
viding resource abstraction for these specific systems, Click
does not aim to achieve a lightweight abstraction layer across
all stages of development and evaluation. In contrast, bas-
ing on the identification of similarities between the targeted
systems, VIPE provides a shim layer of abstraction of the
resources required by communication systems that has on
average 1000 lines of code per platform – about one order
of magnitude less than the Network Simulation Cradle or
OppBSD.

The need for protocol experimentation sparked research
on virtualization in network experimentation, allowing the
execution of multiple network stacks on a single machine [6,
16,20,43,45]. To provide further insight others provide user-
space implementations of wide-spread protocols [8–10,17,29,
40]. Our virtual platform architecture enables the seamless
integration of these approaches into the development cycle.

Restricted to their own and very specific environment,
some domains provide simulation and emulation tools which
facilitate a limited transition of network protocols. For ex-
ample, in the domain of wireless sensor networks TOSSIM
[27] allows the seamless transition of TinyOS [28] protocols
between network emulation and deployment.

6. FUTURE WORK
Based on the fact that the network stacks for simulation

and deployment facilitate the same implementation, VIPE
naturally lays the ground for simulation calibration. As fu-
ture work, we envision the automatic collection of fine-grain-
ed timing traces from any physical platform or a correspond-
ing system model and feeding this data back into network
simulation models to increase their accuracy in terms of tim-
ing and energy usage [25,30,38].

For the same reason, VIPE’s architecture inherently sup-
ports co-simulation: the integration of network simulators

into a live network. The shared implementation guarantees
seamless interoperability among simulators and operating
systems and avoids artefacts due to abstraction in simula-
tion models. Hence, VIPE enables large scale evaluation in
heterogeneous environments composed of network simula-
tors and different types of operating systems.

7. CONCLUSION
Observing the isolation in the individual approaches for

network experimentation and evaluation, we present VIPE
as a virtual platform to cross the barriers between network
simulators, testbeds, and deployment platforms.

Based on the virtual platform, protocols can be readily de-
ployed and evaluated on a large set of platforms: by integrat-
ing network simulators, testbeds, and production systems,
the virtual platform enables a tight feedback loop in the
protocol development cycle and eases protocol experimenta-
tion. Overall, the transition between the individual stages
in the development and evaluation process of protocols in
VIPE is a stepwise refinement of a implementation instead
of a repeated re-implementation. Furthermore, it makes a
protocol implementation available for deployment on a large
number of platforms allowing to catalyze a large user com-
munity without going through the lengthy standardization
process and waiting for its integration into major operating
systems.

VIPE forms an integral part of our daily protocol experi-
mentation process. The resulting large base of practical ex-
periences greatly substantiates the viability of our approach.
Overall, we believe that the virtual platform improves the
quality of protocol evaluation and experimentation at a sig-
nificantly lower engineering effort than achievable so far.
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