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ABSTRACT
As forwarding tables and link speeds continue to grow, fast
packet forwarding becomes increasingly challenging for en-
terprise edge routers. Simply building routers with ever
larger amounts of ever faster memory is not appealing, since
high-speed memory is both expensive and power hungry. In-
stead, we believe future enterprise routers should leverage a
hierarchical memory architecture consisting of a small, fast
memory and a large, slow memory. However, the conven-
tional approach of caching popular forwarding-table entries
in the fast memory does not perform well in practice, es-
pecially under worst-case workloads with a wide range of
destination IP addresses. Instead, the small memory could
be used to store one Bloom filter of the address blocks associ-
ated with each outgoing link. In this paper, we present tech-
niques to make the use of Bloom filters practical for enter-
prise edge routers, including optimizing the sizes of Bloom
filters with limited fast memory, handling routing changes
and dynamically tuning Bloom filter sizes using counting
Bloom filters in slow memory, and handling the small num-
ber of false positives. Our evaluation shows that our scheme
works well with less than 1 MB of fast memory.

Categories and Subject Descriptors
C.2.6 [Internetworking]: Routers

General Terms
Algorithms, Design, Performance

Keywords
Packet forwarding, Enterprise edge routers, Bloom filter

1. INTRODUCTION
Fast packet forwarding is a challenge today due to the sig-

nificant growth of the forwarding table and the increasing
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link speeds. To keep up with link speed, the large forward-
ing table must be stored in larger and faster memory. En-
terprises (especially small or mid-size enterprises) are more
cost conscious than Internet service providers, making them
reluctant to use expensive, power-hungry fast memory such
as TCAM (Ternary Content Addressable Memory). There-
fore, our design goal is to reduce memory cost and power
consumption of packet forwarding by leveraging a small fast
memory.

Enterprise edge routers introduce unique opportunities
to optimize packet forwarding compared with core routers.
First, enterprise edge routers usually have only a few outgo-
ing links. We leverage this fact and propose a solution that
maintains a small data structure for each next hop. Second,
multi-homed enterprises can reach most destination prefixes
through multiple upstream providers, allowing them to oc-
casionally direct packets to a less-preferred outgoing link.

To provide fast packet forwarding using low-cost mem-
ory, we assume a hierarchical memory structure consisting
of a small, fast memory and a large, slow memory. The fast
memory could be embedded SRAM in the line card of hard-
ware routers, or the processor cache in a software router.
For multi-core platforms, the fast memory could be a group
of caches associated with different cores, or the shared cache
among cores. Fast memory is expensive, so we keep its size
small, usually less than 1 MB. Slow memory is cheap and
can be large enough (e.g., 10-100 MB) to store a conven-
tional forwarding-table data structure (such as a trie) in its
entirety. This can be a DRAM placed in line card or near
the control plane processor in hardware routers, or the main
memory in a software router.

Using the small, fast memory as a cache is a seemingly nat-
ural way to leverage the hierarchical memory architecture.
The basic idea is to store the most frequently used entries
of the forwarding table in the fast memory. In fact, route
caching was once commonly used in routers [8]. However,
during cache misses, the router experiences low throughput
and high packet loss. In addition, when routing changes or
link failures happen, many of the cached routes are simul-
taneously invalidated. Malicious traffic with a wide range
of destination addresses may significantly increase the cache
miss rate, making route caching highly inefficient. Due to its
bad performance under worst-case workloads, route caching
cannot keep up with the increasing link speeds and thus is
not used in most routers today.

Instead, a Bloom filter, a hash-based compact data struc-
ture to store a set of elements, is a more suitable way to
capitalize on the small, fast memory. In fact, several pre-
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vious studies [9, 13] have proposed ways to leverage Bloom
filters in packet forwarding. Their basic idea is to use small
fast memory to assist packet address lookup by reducing the
number of accesses to the slow memory. For example, in [9],
the authors use Bloom filters to determine the length of the
longest matching prefix for an address, and then they refer
to the entire forwarding table stored in the slow large mem-
ory to determine the outgoing link. In these works, every
address lookup still must access the slow memory at least
once. Instead, we advocate performing the entire lookup in
the fast memory. Similar to the work in resource routing [4,
12]1, one Bloom filter is constructed for each next hop (i.e.,
outgoing link), and is used to store all the addresses that
are forwarded to that next hop. T Bloom filters are con-
structed in the router where T is the number of next hops.
This scheme works well under a wide range of workloads at
the expense of a few false positives.

In this paper, we provide practical techniques to apply the
basic Bloom filter idea to fast packet forwarding in enterprise
edge routers:

• To make efficient use of limited fast memory, we op-
timize the sizes and number of hash functions of the
Bloom filters. Surprisingly, we show that to reach the
optimal overall false-positive rate, Bloom filters with
fewer elements must have fewer false positives than
those with more elements. We also prove that a small
T in the enterprise edge router will lead to a small
overall false-positive rate. To obtain a false-positive
rate of 1%, we need only 300 KB of fast memory to
store the FIB of 165K entries obtained from an edge
router with 10 next hops.

• To adapt Bloom filters for routing changes, which hap-
pen on a much longer time scale than packet forward-
ing, we store counting Bloom filters in the large, slow
memory. To reduce the false-positive rate under rout-
ing changes, we dynamically adjust the size and num-
ber of hash functions of Bloom filters in fast memory
by keeping large fixed-size counting Bloom filters in
slow memory.

• Since enterprise edge routers usually have multiple up-
stream providers, a few false positives are allowable.
We also propose multiple methods to handle false pos-
itives for enterprise edge routers.

The rest of the paper is organized as follows: Section 2
gives a brief introduction to Bloom filters. Section 3 de-
scribes our solution to perform the entire packet address
lookup in small fast memory, and our enhancements for
reducing computational overhead and false positives. Sec-
tion 4 evaluates the false-positive rate of our solution under
various settings. Section 5 shows how we leverage count-
ing Bloom filters in slow memory to handle routing changes.
Section 6 discusses our solutions to handle false positives.
Sections 7 and 8 discuss related work and conclude the pa-
per.

2. BACKGROUND ON BLOOM FILTERS
In this section, we give a brief introduction to Bloom fil-

ters and counting Bloom filters, which are the basis of our
address lookup solutions.

1These work design the algorithms of locating resources by
using one Bloom filter to store a list of resources that can
be accessed through each neighboring node.

A Bloom filter [4] is a compact data structure to store a
set of elements. A Bloom filter supports two operations –
inserting an element into the set and checking whether an
element is a member of the set. A Bloom filter consists of
an array of bits. To insert an element into a Bloom filter, we
compute k hash functions on the element, and get k values
each denoting a position in the array. All the k positions are
set to 1 in the array. By repeating the same procedure for
all the elements in the set, the Bloom filter is constructed to
represent the summary of the set of elements with constant
space. It is easy to check if an element belongs to the set
with Bloom filter. Given an element, we calculate the same
k hash functions and check the bits in the corresponding k
positions of the array. If all the bits are 1, we say that the
element is in the set; otherwise it is not.

Bloom filters have no false negatives — if one of the k
positions is set to 0, the element must not belong to the
set. However, Bloom filters can have false positives — an
element can absent from the set even if all k positions are set
to 1, since each position could be set by the other elements
in the set. Assume a Bloom filter with an array of m bits
stores n elements. The false-positive rate of a Bloom filter
is:

f = (1 − (1 − 1/m)kn)k ≈ (1 − e−kn/m)k

To store a set of n elements in a Bloom filter, the larger
m is the smaller the false-positive rate is. For a Bloom filter
with fixed size m, to minimize false-positive rate, the number
of hash functions k and the minimum false-positive rate f
are:

k = m ln 2/n, f = (0.5)k

We can add elements to standard Bloom filters, but there
is no way to delete an element. A counting Bloom filter [10] is
an extension of the Bloom filter to allow adding and deleting
elements in a set. A counting Bloom filter stores a counter
rather than a bit in each slot of the array. To add an element
to the counting Bloom filter, we increment the counters at
the positions calculated by the hash functions; to delete an
element, we decrement the counters. If the counters do not
overflow, counting Bloom filters do not have any false neg-
atives and their false-positive rates can be calculated in the
same way as standard Bloom filters.

3. BLOOM FILTER FORWARDING
In this section, we consider a forwarding table that con-

tains a fixed set of routes. We focus on the data plane in the
router, i.e., how to perform packet lookup and forwarding.
Our goal is to store the forwarding table in an M -bit fast
memory. We assume the router connects to T next hops,
which is typically small for enterprise edge routers. For sim-
plicity, we assume flat addresses first, and then extend the
solution to addresses with various prefix lengths.

We first give an overview of the basic idea of using one
Bloom filter for each next hop. We then discuss our practical
solutions of making the basic idea work for enterprise edge
routers, including the sizing of the Bloom filters and the
analysis of false positives for addresses with different prefix
lengths.

3.1 Basic Idea of Using Bloom Filters
For simplicity, we first consider using Bloom filters to per-

form FIB lookups for flat addresses, such as the MAC ad-
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dresses used in Ethernet. New protocols with flat address
spaces (e.g., ROFL [5], AIP [1]) have been proposed to fa-
cilitate the Internet’s growth and configuration. Even with
CIDR (variable length) prefixes, we can convert each prefix
into small, fixed-length (i.e., /24) sub-prefixes that do not
overlap.

We set one Bloom filter for each next hop (or outgoing
link), and use it to store all the addresses that are forwarded
to that next hop. For a router with T next hops, we need T
Bloom filters. An address with next-hop t is stored in Bloom
filter BF (t). To perform address lookup for an address p,
we check which BF (t) (t ∈ [1..T ]) p is in, and get the cor-
responding next hop p should be forwarded to. To reduce
the computational overhead of address lookup, we apply the
same group of hash functions to all the T Bloom filters.

This scheme is not affected by worst-case workloads as
opposed to route caching. The false positive of one address
lookup does not affect the lookup of other addresses. In
order to send packets that lead to false positives, attackers
have to know all the hash functions used to construct Bloom
filters. We can change hash functions over time to avoid such
attack.

3.2 Variable Size to Reduce False Positives
Since there are different numbers of addresses per next

hop, we should use different sizes for the Bloom filters ac-
cording to the number of addresses stored in them, in order
to minimize the overall false-positive rate with the small,
M-bit fast memory.

We first give the definition of the overall false-positive
rate. If any one of the T Bloom filters has a false positive,
an address will hit in multiple Bloom filters. In this case,
we will get multiple next hops for the address and cannot
decide which next hop to forward the packet to. We define
the overall false-positive rate as the probability that any
one of the T Bloom filters has a false positive. Let f(t)
denote the false-positive rate of Bloom filter BF (t). Since
Bloom filters for different next hops store independent sets
of addresses, and thus are independent of each other, the
overall false-positive rate of T Bloom filters is

F (T ) = 1 −
TY

t=1

(1 − f(t))

≈
TX

t=1

f(t) (when f(t) � 1/T, ∀t = 1..T )

From the equation, we can see that the false-positive rate is
relatively low for edge routers in enterprise networks, since
the number of next hops T is usually small.

The overall false-positive rate could be minimized by vary-
ing the sizes and the number of hash functions of Bloom fil-
ters. If we do not consider route changes, we are aware of the
exact number of addresses to be stored in each Bloom filter.
Let n(t) denote the number of addresses stored in Bloom
filter BF (t). We optimize the false-positive rate F (T ) by
choosing the best m(t) (the number of bits in BF (t)) and
k(t) (the number of hash functions used in BF (t)), with the
constraint that Bloom filters must not take more space than
the size of the fast memory. The problem to minimize the
overall false-positive rate is formulated as:

Minimize F (T ) =

TX

t=1

f(t)

s.t. f(t) = (1 − e−k(t)n(t)/m(t))k(t)

TX

t=1

m(t) = M

given M and n(t)(∀t ∈ [1..T ])

Through calculus calculation, F(T) is minimized when we
size each Bloom filter with

m(t) =
(λ − ln n(t))n(t)

ln2 2
(1)

λ = ln
M ln2 2 +

PT
t=1(n(t) ln n(t))

PT
t=1 n(t)

The number of functions used in each Bloom filter is:

k(t) =
m(t)

n(t)
ln 2

=
λ − ln n(t)

ln 2
(2)

The optimal F (T ) is

F (T ) =

TX

t=1

(
1

2
)k(t)

Now given a forwarding table and fast memory size, we are
able to construct T Bloom filters that minimize the overall
false-positive rate by calculating m(t) and k(t) with Equa-
tions (1) and (2). Interestingly, the false-positive rate on
each Bloom filter is not equal in the optimal solution. In
fact, Bloom filters with fewer elements obtain smaller false-
positive rate. This is because we have memory size con-
straint, adding the same amount of memory for the Bloom
filter with fewer addresses reduces its false-positive rate more
than for the one with more addresses. We evaluate both
equal false-positive rate solution and optimal solution in Sec-
tion 4.

We’ve discussed that T Bloom filters could share the same
group of hash functions to reduce computational overhead.
Though we have a different number of hash functions for
each Bloom filter, the Bloom filters can still share part of the
hash functions. We calculate the same group of kmax hash
functions hi (i ∈ [1..kmax]) to reduce the computational
overhead, where

kmax =
T

max
t=1

k(t).

To look up an address p, we use the first k(t) hash values for
Bloom filter BF (t) (t ∈ [1..T ]). Similar to the single Bloom
filter case, we check in Bloom filter BF (t), whether the bits
in positions

hi(p) mod m(t),∀i ∈ [1..k(t)]

are all 1. If so, p is in BF (t); otherwise, it is not.

3.3 False Positive Analysis on Longest Prefix
Match

To perform longest prefix match, similar to the solution
in [9], we use one Bloom filter for each prefix length. We con-
struct 32T Bloom filters with BF l(t)(l ∈ [1..32], t ∈ [1..T ])
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storing the addresses with prefix length l and outgoing link
t. We optimize the size of each Bloom filter ml(t) and the
number of hash functions in them kl(t) to obtain minimal
overall false-positive rate.

Now we describe the algorithm to perform lookup for ad-
dress p. Let pl denote the l bit prefix of address p. We first
calculate kmax hash functions hi (i ∈ [1..kmax]), where kmax

is the maximum number of hash functions in all the Bloom
filters.

kmax = max
l∈[1..32],t∈[1..T ]

kl(t)

We pick a next hop t∗, we search for the longest prefix length
l, such that prefix pl belongs to BF l(t∗). If we cannot find
p in any BF l(t∗), ∀l ∈ [1..32], we know that p should not
be forwarded to t∗. Repeating the same procedure for all t
(t ∈ [1..T ]), we will finally find out the outgoing link that p
should be forwarded to.

Using one Bloom filter per (next hop, prefix length) pair
has both good and bad effects on the correctness of our
decision on which next hop to output.

Good Effect: If a packet should be forwarded to t∗, the
false positives of Bloom filters BF l(t∗) (∀l ∈ [1..32]) do
not influence the overall false-positive rate. For example,
when an address hits only two Bloom filters BF l1(t∗) and
BF l2(t∗), even if one of the hits is false positive, we can
still determine t∗ is the correct next hop. Therefore if there
are not any false positives in the other Bloom filters BF l(t)
(∀t ∈ [1..T ], t �= t∗), we are sure that t∗ is the correct next
hop. In general, if an address p matches at least one entry
in the FIB and all the matching entries2 have the same next
hop t∗, the probability that the Bloom filter mechanism does
not output t∗ (i.e., the address hits Bloom filters for different
next hops due to false positives) is :

Prob(∃t ∈ [1..T ], t �= t∗,∃l ∈ [1..32], pl is in BF l(t))

= 1 −
Y

t �=t∗

32Y

l=1

(1 − f l(t)) ≈
X

t �=t∗

32X

l=1

f l(t)

This property reduces false positives significantly for enter-
prise edge routers where T is small.

Bad Effect: It is difficult to distinguish a false posi-
tive from the case that an address matches multiple entries
with different prefix lengths in the FIB. Sometimes an ad-
dress may hit multiple Bloom filters, though there are not
any false positives in all the 32T Bloom filters. For ex-
ample, in a router’s forwarding table, there are two en-
tries: “15.0.0.0/16 → A”, “15.128.0.0/17 → B”, while A
and B are two next hops belonging to different providers.
We thus store “15.0.0.0/16” in Bloom filter BF 16(A) and
“15.128.0.0/17” in BF 17(B). In this case, the address“15.128.0.8”
may hit both Bloom filters. Using longest prefix match, we
should send the packet to B. However, with our Bloom filter
mechanism, we cannot be sure the hit in BF 17(B) is not a
false positive. Therefore, when we find multiple next hops
matched in the Bloom filters, we are not able to distinguish
the false positives and the many valid matches with different
prefix lengths.

Our solution is to reconstruct the FIB such that the pre-
fixes from different entries in the FIB do not overlap. In the

2We mean the matches of prefixes of all the lengths, not just
longest prefix match.

previous example, if we know that the address “15.128.0.8”
hits only one entry in the FIB, when it hits multiple Bloom
filters with different next hops, we are sure a false positive
has happened. One way to reconstruct the FIB is to use
flat addresses. We can expand the prefix into a group of
non-overlapping prefixes with a fixed prefix length say /24.
However, using flat addresses may increase the number of
prefixes significantly. Therefore, we choose to expand the
prefixes to a group of non-overlapping prefixes with various
lengths. In the previous example, we use the two entries:
“15.0.0.0/17 → A”, “15.128.0.0/17 → B”, so “15.128.0.8”
only hits the second entry.

4. PERFORMANCE EVALUATION
We evaluate the false-positive rate with real forwarding

tables and packet traces from FUNET and Internet2, and
compare them to the analytical results.

4.1 Experimental Setup
We use routing table and packet traces from an edge router

in the Finnish University Network (FUNET) in March 2005.3

The edge router is located in Helsinki University of Technol-
ogy, which carries FUNET international traffic. The routing
table has 165K entries and 10 next hops. The packet trace
contains 20 million packets. For Internet 2, we use the rout-
ing table from the router located in Chicago and the cor-
responding netflow data for January 22, 2009. The routing
table contains 12K entries and 34 next hops. The netflow
trace contains 12 million packets.

4.2 Evaluation of False Positives
To study our mechanism on flat addresses, we convert

the prefixes in the routing tables into /24 prefixes. The
new FUNET and Internet2 table have 5400K and 900K flat
addresses respectively. Figure 1 shows the analytical false-
positive rate (labeled as ana in Figure 1) and the experimen-
tal result (labeled as sim) with the increase of fast memory
size. We test both the optimal setting based on Equations
(1) and (2) (labeled as opt) and the setting that has the
same false-positive rate for all the Bloom filters (labeled as
eq). Compared with equal false-positive rate setting, the
optimal setting of the same fast memory size reduces the
overall false-positive rate by 90% in FUNET and 70% in
Internet2. With optimal setting, to reach the false-positive
rate of 1%, we need only 6 MB fast memory in FUNET
(i.e., 9 bits/address) and 1.5 MB (i.e., 13 bits/address) in
Internet2. Since FUNET edge router has fewer next hops
than Internet2 router, it needs less memory space for each
address.

We then study the effect of longest prefix match on false
positives. We modified the original FIB by converting nested
prefixes to non-overlapping prefixes with various prefix lengths.
The modified FUNET table has 250K entries and Internet2
table contains 15K entries. Figure 2 shows the false-positive
rate with both original and modified FIBs in the optimal set-
ting. Since the modified FIB has more entries than the orig-
inal one, when the memory size is small, the false-positive
rate on the modified FIB is larger than the original FIB.
However, with the original FIB, the false-positive rate re-
mains around 0.8% with the increase of fast memory size.

3This trace is confidential due to the sensitive nature of
packets.
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Figure 1: False positives with flat address

This is because we are not able to distinguish false positives
and multiple valid matches on nested prefixes (the “bad ef-
fect” discussed in Section 3). With the modified FIB where
prefixes are not overlapping, the false-positive rate is further
reduced with the increase of fast memory size. To achieve
0.1% false-positive rate with modified FIBs, we need 400 KB
fast memory in FUNET and 40 KB in Internet2.

5. HANDLING ROUTING CHANGES
With standard Bloom filters (BF), we cannot delete ele-

ments from the set. We use counting Bloom filters (CBF),
which allow both addition and deletion operations, to han-
dle the dynamics of routing tables. However, CBFs require
more space than BFs since they store a counter rather than
a bit in each spot of the array. Fortunately, since routing
changes do not happen very often and thus allow more com-
putational overhead, we can store CBFs in slow memory,
and update BFs in small fast memory based on CBFs. By
using both CBFs and BFs, we make an efficient use of small
fast memory without losing the flexibility to support changes
in the FIB.

In this section, we first describe the use of CBFs in slow
memory to keep track of changes in the forwarding table.
We then discuss how to update the BF from the CBF and
how to change the size of the BF without reconstructing the
CBF.

5.1 Maintaining CBF in Slow Memory
In a router, the control plane maintains the RIB (Routing

Information Base) and updates the FIB (Forwarding Infor-
mation Base) in the data plane. We implement a group of T
CBFs, each containing the prefixes associated with one next
hop, corresponding to the BFs described in Section 3. If the
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Figure 2: False positives with longest prefix match

control plane adds a route to the FIB for a new address p
with next hop t, we will insert p to CBF (t). Similarly, to
delete a route is we delete p in CBF (t).4 The insertion and
deletion operations on the CBF are described in Section 2.
Since CBFs are maintained in slow memory, we set the sizes
of CBFs large enough, so that even with routing changes,
the false-positive rates on CBFs are low.

After the CBF (t) is updated, we update the correspond-
ing BF (t) based on the new CBF (t). If the CBF and BF
are of the same size, we can easily update the BF by check-
ing if each position in the CBF is 0 or not. However, we
have to dynamically adjust the size of the BF to reduce the
overall false-positive rate.

5.2 Adjust BF Size without Reconstructing CBF
When the forwarding table changes over time, the number

of prefixes in the BF changes, so the size of the BF and
the number of hash functions to achieve the optimal false-
positive rate also change (see Equations (1) and (2)). We
leverage the nice property that to halve the size of a Bloom
filter, we just OR the first and second halves together [4].
In general, the same trick applies to reducing the size of a
Bloom filter by a constant c. This works well in reducing the
BF size when the number of prefixes in the BF decreases.
However, when the number of prefixes increases, it is hard
to expand the BF.

Fortunately, we maintain a large, fixed size CBF in the
slow memory. We can dynamically increase or decrease the
size of the BF by mapping multiple positions in the CBF
to one position in the BF. For example in Figure 3, we can

4The control plane must make sure that p was forwarded to
t. Otherwise, deleting an element not in the Bloom filter
would cause errors on future queries.
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Figure 3: Adjust BF size from m to 2m based on
CBF

easily expand the BF with size m to BF ∗ with size 2m by
collapsing the same CBF.

To minimize the overall false-positive rate under routing
changes, we monitor the number of prefixes in each CBF,
and periodically reconstruct BFs to be of the optimal sizes
and number of hash functions. The procedure of recon-
structing a BF with an optimal size from the corresponding
CBF is described in three steps:

Step 1: Calculate the optimal BF size and the number of
hash functions. Using Equation (1), we first get the optimal
size of each BF and denote it by m∗. Then we round m∗ to
m′, which is a factor of S,

m′ = S/c, where c = 	S/m∗
.
Finally we calculate the optimal number of hash functions
to minimize false positive with size m′ and the number of
prefixes n in the BF: k′ = m′ ln 2/n.

Step 2: Change the number of hash functions in the CBF
from k to k′. There are two ways to change the number
of functions with either more computation or more space:
(i) If k′ > k, we calculate the hash values with the k′ −
k new hash functions on all the prefixes currently in the
BF, and update the CBF by incrementing the counters in
corresponding positions. If k′ < k, we also calculate k − k′

hash values, and decrementing the counters in corresponding
positions. (ii) Instead of doing the calculation on the fly, we
can pre-calculate the values of these hash functions with all
the elements and store them in the slow memory.

Step 3: Construct the BF of size m′ = S/c based on the
CBF of size S. As shown in Figure 3, the value of the BF
at position x (x ∈ [1..m′]) is updated by c positions in CBF
x, 2x, ... cx. If all the counters in the c positions of CBF are
0, we set the position x in BF to 0; otherwise, we set it to
1. During routing changes, the BFs can be updated based
on CBFs in the same way.

6. HANDLING FALSE POSITIVES
In this section, we first describe three ways to handle pack-

ets that experience false positives in the Bloom filters. Then
we discuss our caching solution to avoid subsequent packets
from experiencing false positives. Finally, we combine these
techniques to produce a practical solution for enterprise edge
routers.

6.1 Handling Packets with False Positives
When a packet has a match in multiple Bloom filters, we

detect that the packet is experiencing a false positive.5 We
provide three techniques to forward the packet that experi-
ences false positives.

Redirection: If a lookup returns multiple next hops, we
can redirect the packet to another place that knows the an-
swer. For example, we can redirect the packet to another
core in the multi-core system, which will do a conventional
look up on the FIB. Similar to ViAggre [2], if we have a
set of routers in the network each responsible for part of
the address space, the packets could be redirected to the
responsible router. Similar to Ethane [6], we can also have
a centralized server to handle packets that experience false
positives from any edge routers in the network. With packet
redirection, we are guaranteed to forward the packet cor-
rectly through a slower decision path.

Send duplicate packets out: To ensure the packets
experiencing false positives finally reach their destinations
without any delay in forwarding, we can just send a copy of
the packet out to each next hop that the packet hits. Since
false positives are rare, it is highly unlikely that two Bloom
filters experience false positives at the same time. Therefore
in most cases, we send only two packets out knowing that one
of them is sent to the correct next hop. The next-hop router
may either forward the packet if it knows how to reach the
destination or drop the packet if it does not. This solution
also guarantees the packet will reach the destination, though
with the risk of introducing extra traffic and packet loops.

Send to a random next hop: An alternative way to han-
dle false positives, which neither delays the packet nor adds
extra traffic, is to randomly pick one of the Bloom filters the
packet hit in, and send the packet to the corresponding next
hop. Since most edge routers are multi-homed, the packets
are likely to get to the destination finally through any next
hop we choose. The problem of this method is that some-
times the packet gets lost. However, a few packet losses are
tolerable in the Internet especially when false positives are
rare.

6.2 Caching for Subsequent Packets
Although the above three methods handle the case where

a few packets experience false positives, if a burst of pack-
ets to the same destination all experience false positives,
the packets will either experience a performance decrease
(through redirection), or cause a lot of traffic (if we send
multiple copies of the packet out), or significant packet loss
(if we direct the packet to just one of the next hops). There-
fore, when the first packet experiences a false positive, we
perform a conventional lookup and cache the result, so that
the subsequent packets will hit in the cache and no longer
experience false positives. Note that our caching solution
differs from conventional route caching in that it is robust
to malicious traffic. With conventional route caching, an at-

5Some FIBs do not have default route and assume that ad-
dresses that have no match in it should be dropped. How-
ever, in our Bloom filter based scheme, the address that has
no match in the forwarding table may hit one Bloom filter
because of a false positive. To detect such false positives,
we can either construct a Bloom filter to store a list of des-
tinations that should be dropped by the router, or just send
the packet out which will be finally dropped by the following
routers.
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tacker can easily send packets with a wide range of destina-
tions resulting in a high cache-miss rate. However, since the
attacker does not know the hash functions used for Bloom
filters, it is hard to construct a flow of packets that makes
our caching mechanism inefficient. Even if the attacker sends
lots of packets, detects a few packets that experience false
positives, and replay them, the replayed packets will hit in
the cache and will not experience false positives.

6.3 Case Study: Enterprise Edge Routers
We apply the techniques discussed above to handle false

positives for enterprise edge routers. Enterprise edge routers
are connected to routers both in different ISPs and within
its own network. There are only a few ISP routers, which
are the next hops for most of the addresses. The routers
within the enterprise network are next hops for a relatively
small number of addresses.

Next hops that are ISP routers: Edge routers are
usually home to multiple ISPs for load balancing and greater
reliability. Since vast majority of addresses will have these
ISP routers as next hops, if a packet with false positive ends
up with two ISP next-hop routers, sending it to either of
them would be fine in most cases. If the next-hop router we
pick does not have a route to forward the packet, it will drop
the packet. The end hosts have to retransmit the packet
when they detect packet loss.

Next hops that are within the enterprise: Different
from ISP routers, if the packets that are destined in the
enterprise network are sent to the wrong next hop, they
may never reach the destination. Fortunately, the addresses
within the enterprise may fall within one or a few address
blocks, so it is quick to check whether an address should
be forwarded internal or external. Since there are only a
small number of destinations inside the enterprise network,
we can afford to store the complete forwarding information
in a hash table.

We divide the FIB of the enterprise edge router into two
parts: for the destinations within the enterprise network,
we construct a hash table storing their next hops; for the
external destinations, we construct the Bloom filters for all
the next hops from different ISPs. To perform a packet
lookup on the edge router, we first check whether the address
is internal or external. If it is internal, we look up the hash
table with all the destinations in its sub-network for the
next hop. If the address is external, we perform the lookup
with the Bloom filters. If we get multiple hits in the Bloom
filters, we randomly pick one next hop and send the packet
out through it. At the same time, we redirect the packet
to another processor to perform a conventional FIB lookup
and cache the result, so the following packets that have the
same destination will hit in the cache and get to the correct
next hop directly without experiencing a false positive.

7. RELATED WORK
The idea of using small fast memory to improve packet ad-

dress lookup performance has been applied in route caching.
A route cache stores the most popular part of the forward-
ing table in a small, fast memory. However, as discussed in
Section 1, traffic with a wide range of destinations may in-
crease the cache miss rate significantly, leading to both the
inefficient packet lookup and the significant CPU consump-
tion due to cache swapping. In contrast, since the attacker

does not know the hash functions, the false positive in our
Bloom filters cannot be easily generated by malicious traffic.

Bloom filters have been used for longest prefix match [9].
The authors use Bloom filters to determine the length of the
longest matching prefix for an address, and then perform a
direct lookup in a large hash table in slow memory. Differ-
ent from their work, we perform the entire lookup in the fast
memory at the expense of a few false positives. In [9], the
goal is to reduce false positives in each Bloom filter. Thus
they choose to use the size of Bloom filters proportional to
the number of elements in it, and propose mini-Bloom filters
to deal with various distributions of prefix lengths. In con-
trast, our goal is to minimize the overall false-positive rate
rather than the false positive on each Bloom filter. We thus
choose the optimal sizes for Bloom filters and dynamically
adjust the size upon routing changes. The authors also dis-
cussed some alternative solutions to use less than 32 Bloom
filters in longest prefix match, such as grouping the prefix
lengths. Their techniques can be applied to our solution.

Bloom filters have also been used in resource routing [4,
12], which applies Bloom filters to probabilistic algorithms
for locating resources. Our “one Bloom filter per next hop”
is similar to their general idea of using one Bloom filter to
store the list of resources that can be accessed through each
neighboring node. In order to keep up with link speed in
packet forwarding with strict fast memory size constraint,
we dynamically tune the optimal size and the number of
hash functions of Bloom filters by keeping large fixed-size
counting Bloom filters in slow memory.

In general, packet address lookup can be viewed as an
application of a hash table, where for each key (address), we
find out the matching value (next hop). Bloomier filter [7] is
a generalization of Bloom filter to associate a function value
(from a discrete finite set of values) with each element in a
static set, which uses a group of Bloom filters to represent
the values. In theory, if both the set and the function values
are static, the Bloomier filter only needs linear space. Our
work is similar to the Bloomier filter in that we use a group
of Bloom filters, one for each value of a function that maps
a prefix to a next hop. Since we focus on the forwarding
table on enterprise edge routers, we provide simple, practical
solutions to handle false positives and routing changes.

People have proposed to use multiple hash functions to
store the matching of keys and values. With d hash func-
tions, we need to decide which of the d positions in the array
to store the value and how to handle collisions. The authors
in [3] design a d-left scheme for IP lookups. In this scheme,
there is a bucket corresponding to each position of the array
in the slow memory, and the value is stored in one of the
d buckets in a load balancing way. However, to perform an
IP lookup, we still need to access the slow memory at least
d times. In [13], the authors use Bloom filter in the fast
memory, and store the values in a linked structure in the
slow memory such that the value can be accessed via one
access on the slow memory most of the times. In contrast,
we perform the entire packet lookup in the fast memory.

To handle routing changes, the works in [9, 13] use the
counting Bloom filter (CBF) in fast memory, which uses
more memory space than the Bloom filter (BF). We leverage
the fact that routing changes happen on a much longer time
scale than address lookup, and thus store only the BF in fast
memory, and use the CBF in slow memory to handle routing
changes. Our idea of maintaining both the CBF and BF is
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similar to the work in [10], which uses BFs for sharing caches
among Web proxies. Since cache contents change frequently,
the authors suggest that caches use a CBF to track their
own cache contents, and broadcast the corresponding BF to
the other proxies. The CBF is used to avoid the cost of
reconstructing the BF from scratch when an update is sent;
the BF rather than the CBF is sent to the other proxies
to reduce the size of broadcast messages. Different from
their work, we dynamically adjust the size of the BF without
reconstructing the corresponding CBF, which may be useful
for other Bloom filter applications.

8. CONCLUSION
To improve packet-forwarding performance, we leverage

a hierarchy of small, fast memory and large, slow memory.
Leveraging the unique properties in enterprise edge routers,
we propose a Bloom filter based mechanism, which performs
the entire packet address lookup in less 1 MB fast memory.
Our mechanism works well under worst-case workloads such
as packets with a wide range of destinations, and is also
robust to route changes and malicious traffic.

We are implementing our Bloom filter mechanism as a
module in Click [11] modular router. We will deploy it on
multi-core commodity platforms. To leverage many cores
and the hierarchical cache architecture, we divide the FIB
into address ranges, where each core is responsible for packet
forwarding for one part of the address space. We lever-
age VMDq (Virtual Machine Device Queues) techniques in
modern NICs to demultiplex the packets to the appropriate
cores. Each core maintains a Bloom filter for each next hop,
which is sized to minimize the overall false-positive rate, sub-
ject to fitting in the cache associated with each core. In the
next-level cache shared amongst the cores, we store counting
Bloom filters to handle routing changes and the entire FIB
for forwarding packets that experience false positives. We
will evaluate our mechanism across a wide range of work-
loads and under routing changes.
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