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This paper uses data from the social bookmarking site del.icio.us to empirically examine the
dynamics of collaborative tagging systems and to study how coherent categorization schemes
emerge from unsupervised tagging by individual users.

First, we study the formation of stable distributions in tagging systems, seen as an implicit form
of “consensus” reached by the users of the system around the tags that best describe a resource.
We show that final tag frequencies for most resources converge to power law distributions and we
propose an empirical method to examine the dynamics of the convergence process, based on the
Kullback-Leibler divergence measure. The convergence analysis is performed both for the most
utilized tags at the top of tag distributions and the so-called “long tail.”

Second, we study the information structures that emerge from collaborative tagging, namely
tag correlation (or folksonomy) graphs. We show how community-based network techniques can
be used to extract simple tag vocabularies from the tag correlation graphs by partitioning them
into subsets of related tags. Furthermore, we also show, for a specialized domain, that shared
vocabularies produced by collaborative tagging are richer than the vocabularies which can be
extracted from large-scale query logs provided by a major search engine.

Although the empirical analysis presented in this paper is based on a set of tagging data
obtained from del.icio.us, the methods developed are general, and the conclusions should be ap-
plicable across all websites that employ tagging.
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1. INTRODUCTION
1.1 Tagging versus Taxonomies on the Web

The issue of how knowledge engineering on the Web shouldgewith the greatest ef-
ficiency and efficacy is a central concern as the amount ofriméition on the Web grows.
A small but increasingly influential set of web applicatipiecluding the social book-
marking site del.ici.ous, Flickr, Furl, Rojo, Connoteagcfirorati, and Amazon allow users
to tag objects with keywords to facilitate retrieval both for theting user and for other
users. Sets of categories derived based on the tags usedrcttize some resource
are commonly referred to as folksonomies. This approachigarozing online informa-
tion is usually contrasted with taxonomies, including thpr@ach some associate with the
Semantic Web.

There are concrete benefits to the tagging approach. Théifigxof tagging systems
is thought to be an asset; tagging is a categorization psptesontrast to a pre-optimized
classification process such as expert-generated taxosormedefining this distinction,
[Jacob 2004] believes that “categorization divides theldvof experience into groups or
categories whose members share some perceptible signilatiitin a given context. That
this context may vary and with it the composition of the catgds the very basis for both
the flexibility and the power of cognitive categorizatio@lassification, on the other hand
“involves the orderly and systematic assignment of eactiyeiot one and only one class
within a system of mutually exclusive and non-overlappilagses; it mandates consistent
application of these principles within the framework of @guribed ordering of reality”
[Jacob 2004]. Other authors argue that tagging enables tserder and share data more
efficiently than using classification schemes; the fre@@asion process involved in tag-
ging is cognitively much more simple than are decisions abinding and matching exist-
ing categories [Butterfield 2004]. Additionally, proporenf tagging systems show that
users of tagging systems only need to agree on the generaimgeaf a tag in order to
provide shared value instead of agreeing on a specific,leeétaxonomy [Mathes 2004].

However, a number of problems stem from organizing inforomethrough tagging sys-
tems, including ambiguity in the meaning of tags and the dsymonyms which creates
informational redundancy. Additionally, an important apguestion concerning the use
of collaborative tagging to organize metadata is whethewothe system becometable
over time. Bystable we mean that users have collectively developed some iihptio-
sensus about which tags best describe a site, and thesetagswry much over time. We
will assume that the tags that best describe a resource evilidise that used most often,
and new users mostly reinforce already-present tags witlasifrequencies. Since users
of a tagging system are not acting under a centralized déinggovocabulary, one might
imagine that no coherent categorization schemes wouldgsegrall from collaborative
tagging. In this case, tagging systems, especially thotie avi open-ended number of
non-expert users like del.icio.us, would be inherentlytabke such that the tags used and
their frequency of use would be in a constant state of fluxhi#f were the case, identifying
coherent, stable structures of collective categorizatimauced by users with respect to a
site would be difficult or impossible.

Given the debate over the utility of collaborative taggilygtems compared to other
methods of knowledge engineering on the Web, it is increggimportant to understand
whether a coherent and socially navigable method of caitegjmn can emerge from col-
laborative tagging systems. This paper will empiricallyaemne a crucial aspect of this
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question: do tag distributions stabilize over time and,adf what type of distributions
emerge? Since each tag for a given web resource (such as aagepip repeated a num-
ber of times by different users, for any given tagged resothere is a distribution of tags
and their associated frequencies. The collection of al§ tagd their frequencies ordered
by rank frequency for a given resource is thg distributionof that resource.

The hope among proponents of collaborative tagging sysi®that stable tag distribu-
tions, and thus, possibly, stable categorization schemigt arise from these systems.
Again, bystablewe do not mean that users stop tagging the resource, buadhttat users
collectively settle on a group of tags that describe theusgsowell and new users mostly
reinforce already-present tags with the same frequendyegsare represented in the exist-
ing distribution. Online tagging systems have a varietyeattfires that are often associated
with complex systems such as a large number of users and aflaektral coordination.
These types of systems are known to produce a distributiowkras a power law over
time. A crucial feature of some power laws - and one that we ekploit in this work - is
that they can be produced by scale-free networks. So reggsrdf how large the system
grows, the shape of the distribution remains the same argistable Researchers have
observed, some casually and some more rigorously, thaigtréodtion of tags applied to
particular resources in tagging systems follows a powerdasiribution where there are
a relatively small number of tags that are used with greafueacy and a great number
of tags that are used infrequently [Mathes 2004]. If thihis ¢ase, tag distributions may
provide the stability necessary to draw out useful infoiorastructures.

This paper will empirically examine two important quessaregarding the structure of
tagging systems; first, whether tag distributions stabitizer time, and if so, what type of
distribution emerges and second, whether the resultingtsire of tags can be utilized to
construct categorizations that provide meaningful infation. This works seeks to make
a contribution both to the theoretical understanding ofidweire of tagging systems and to
applied problems of information extraction from taggingtgyns.

1.2 Overview of Related Work

Existing research on tagging has explored a wide varietyalflpms, ranging from funda-
mental to more practical concerns. In this section, we pi@gibroad overview of the types
of problems that interest researchers and practitionettisrarea. We then focus on the
research most relevant to the work presented here, in avderderscore our contribution.

A number of papers [Halvey and Keane 2007; Kuo et al. 2007r$iead Rosner 2008]
examine which tag presentation techniques enable usersdtinformation with greatest
ease and speed. They often put a special emphasis on tag ctbadnost widely used
presentation technique). [Halvey and Keane 2007] provisigstematic evaluation of the
properties of tag interfaces which have the most effect enaitcuracy and speed with
which users find information. Using a set of 62 test subjebtsy show that alphabetiza-
tion, font size and position of the tags play an importarg.rdlhey also conclude that users
scan lists and clouds of tags, rather than reading themtljirfi€uo et al. 2007] perform a
similar study, but focused on the field of biomedical infotima. They compare the results
of user search based on the PubMed database with resultafse@rch using tag clouds
extracted from search summaries returned by PubMed. Theglwde that a tag cloud
interface is advantageous in presenting descriptive méion, but it may be less effective
in enabling users to discover relationships between cdadkan full text summaries.

In more recent work, [Hearst and Rosner 2008] extend theystfithg clouds by also
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examining the subjective reactions of users to differepolds. They also discuss the
role that social signaling may play in motivating the use aif tlouds. Another paper
concerned with visualization is [Kaser and Lemire 2007]pvstudy the performance of
different visualization algorithms for the 2-dimensioted) cloud drawing problem. The
algorithms proposed are evaluated based on criteria suahirashization of the screen
area required and computational speed. Compared to our, taskdirection of research
on tag visualization is different in scope, since we are nommecerned with macro-level
properties of tagging systems (e.g. convergence, emezgdrghared vocabularies) than
with visualization and usability aspects. However, asreitvork, comparing visualization
methods using tag correlation graphs (as discussed in &a&xdtthis paper) with existing
approaches using tag clouds may prove insightful.

[Boydell and Smyth 2006] propose an approach for buildingramunity-based snippet
index that reflects the expertize and revolving interesta gfoup of searchers. They
show how such an index could be used to re-rank the resulttipea by an underlying
search engine, such as to give a higher rank to results thatleen frequently selected
by members of the same community in the past. [Boydell andtBr2907] build on
the idea of using community knowledge, by proposing a satiaimarization technique
which allows the generation of more community-focused amerygrsensitive summaries
than those returned by standard search engines. Whileiriki®f work does not focus
explicitly on tagging, it uses the same underlying pringjphat of capturing the expertize
of a community of like-minded searchers to improve searshits.

Other research examines the use of tagging for specificxtsragrd applications. [Hayes
and Avesani 2007] provides a discussion of how tag cluggggohniques could be used to
retrieve information in blogs, while [Bateman et al. 200@ékdribe how using tagging in
an e-learning system can supplement traditional metagkteering approaches. [Dubinko
et al. 2006] consider the problem of visualizing the evolnf tags within the Flickr com-
munity. They develop several methods and algorithms foaedyinally presenting tags to
users given a sliding time window. [Rattenbury et al. 200'8sent a method for the auto-
matic extraction of event and place semantics from Fliogs t§Chirita et al. 2007] develop
a system for the automatic generation of personalized tagsglbrowsing, based on the
data residing on the surfer’s desktop. All of these techesquould benefit from a method
for determining whether a given set of tags has stabilizech as the one proposed in this
paper, in order to present the most stable tags to the ustagdfwere presented before
they stabilized, the information presented to the user hibghess valuable.

In a direction of work that bears directly on the larger gigesof this research, [Mika
2005] addresses the problem of extracting taxonomic inédion from tagging systems
in the form of Semantic Web ontologies. The paper extendgr#uitional model of tax-
onomies by incorporating a social dimension, thus estaiblisan essential connection be-
tween tagging and the techniques developed in the Semaetica¥éna. However, unlike
this work, Mika does not study the stabilization of the tagbutions themselves. Ideally,
one would want to know if a tag distribution was stable befaitempting to extract any
taxonomic information from it.

There are several lines of research which take a perspettisely related to our work.
Shen and Wu are interested in the structure of a tagging mietiwo del.icio.us data as
we are in Section 4. Unlike in our examples, their graph is eigived [Shen and Wu
2005] and does not reflect the information in the tag distidisu They examine the degree
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distribution (the distribution of the number of other no@esh node is connected to) and
the clustering coefficient (based on a ratio of the total neinolb edges in a subgraph to the
number of all possible edges) of this network and find thatisgvork is indeed “scale-
free” and has the features [Watts and Strogatz 1998] fourimetoharacteristic of small
world networks: small average path length and relativedjhlulustering coefficient.

An early line of research that has attempted to formalize quahtify the underlying
dynamics of a collaborative tagging systems is [Golder andedman 2006], which also
make use of del.ici.ous data. They show the majority of sgash their peak popularity,
the highest frequency of tagging in a given time period, imiten days of being saved on
del.icio.us (67% in their data set), though some sites adiscovered” by users (about
17% in their data set), suggesting stability in most sitetssbine degree of “burstiness”
in the dynamics that could lead to cyclical patterns of ditgbtharacteristic of chaotic
systems. Importantly, Golder and Huberman find that theidigion of tags within a
given site stabilizes over time, usually around one huntagding events. They do not,
however, examine what type of distribution arises from &ib®d tagging process, nor
do they present a method for determining the stability ofdiséribution which we see as
central to understanding the possible utility of tagginsteyns.

In avery recent line of research, [Heymann et al. 2008] plewilarge-scale comparison
between social bookmarking and traditional web search, @dtng del.icio.us data. They
find that tags used on del.icio.us are, on the whole accusdiide the class of users that
use this system is broad, i.e. not restricted to a small sufsesers. They also observe,
however, that a large proportion of the tags assigned to gagsh (or resource) already
appear in the title, forward and backward links to that padreerefore, while tags assigned
to resources are accurate, their distributions may not babde to make a significant
impact on search performance. This is somewhat in line withfimdings: while tags
converge relatively fast to stable, power law distribusigo.f. Sect. 2), the top of these
distributions may contain common (or obvious) tags. A soluto this problem (also
suggested in [Heymann et al. 2008]) may be a better mechdoisracommending tags.
Conceivably, the local “vocabulary extraction” methodegented in Sect. 5 of this paper
(and adaptations thereof) could be used to this end.

One important result is represented by [Cattuto et al. 20@fich discuss generative
models to produce power law distributions for tag correlssi They also take a complex
systems perspective to tagging and propose a generic madisef behavior of taggers,
in the form of a Yule-Simon process with memory. However,ti@a et al. 2007] do
not provide an analysis of how tag frequencies per websiigallg converge in time to
stable distributions. [Dellschaft and Staab 2008] propasenore-parametrized model
that accounts for power law distributions in tag vocabugngwth and in tag distributions
for websites. Overall, we see our work and that of [Cattutale2007] and [Dellschaft
and Staab 2008] as complementary in scope. While they peavitheoretical model of
a process which could give rise to power law distributionsaigging, we propose using
an information-theoretic technique in Section 3 to analjiseconvergence of power law
distributions in already-existing tagging systems. Femtiore, we demonstrate its utility
in several applications, such as extracting tag graphslsar@d vocabularies.

Another important direction of work is represented by [Seale2006]. They present a
user-centric model of tagging that distinguishes betwessgnal tendency and community
influence in the behavior of individual taggers. Furthereydhey propose a method to
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select tags to be displayed to a user, such as to maximizetitiig adoption and user
satisfaction. In this work, tagging is introduced as a nex¢nsion of an already existing
recommender system, MovieLens. By contrast to [Sen et &IER®ur work is more
concerned with studying the tag distributions that emergafthe actions of a community
of users and their mutual influence and choice. Of courseh@srsby [Sen et al. 2006],
some tags are simply personal bookmarks - and they are dtgispecific (even invented),
as their scope is retrieval of a resource by an individuat. uslowever, in the analysis
performed in this paper, we focus on the aggregate tagllisitons per resource which, in
a large tagging system are highly unlikely to be personakbwoks, but rather reflect the
opinion or consensus of the user community. We also distiesdytnamics of the tags in
the long tail, but as a macro-level convergence phenomenon.

In a recent position paper [Mikroyannidis 2007], using th@p@ical results presented
in the conference version of this work [Halpin et al. 200Tyees that Semantic Web and
Social Web approaches are essentially compatible and carisb While we support the
basic argument presented by [Mikroyannidis 2007], we ghpoint out that convergence
to stable tag distributions does not, by itself, imply that tonverged distributions are
directly usable for the Semantic Web, just as we do not preplosy are directly usable
for information retrieval. The process of constructinggenformal ontologies from folk-
sonomies, while perhaps possible under certain condijtiensot a straightforward task.
The shared tag vocabularies (c.f. Sect. 5 of this paper)ariitly-fledged formal Seman-
tic Web ontologies, but they can also be useful structuresnfany information retrieval
applications, even without additional formalization.

Finally, in related work by some of the authors of this pafegbu et al. 2009] use
complex systems techniques to study the dynamics of speds@arch markets, as well
as the vocabularies which can be extracted from sponsoaedsguery and click logs.

1.3 The Tripartite Structure of Tagging

To begin, we review the conceptual model of generic collathee tagging systems theo-

rized by [Marlow et al. 2006; Mika 2005] in order to make piitins about collaborative

tagging systems based on empirical data and based on geaéeatures of the model.
There are three main types of entities that compose anyrtggyistem:

—The users of the system (people who actually do the tagging)
—The tags themselves
—The resources being tagged (in this case, the websites)

Each of these can be seen as forming separate spaces ognsisets of nodes, which
are linked together by edges (see Fig. 1). The first spaceis#espace, consists of the
set of all users of the tagging system, where each node israTise second space is the
tag space, the set of all tags, where a tag corresponds to a term (“fjusicneologism
(“toread”) in natural language. The third space is thsource space, the set of all re-
sources, where usually each resource is a website denotadibigjue URF A tagging

1This may require for instance, some decision support iniggithe user, or a more structured design of the
interface used to input the tags.

2A URI is a “Universal Resource Identifier” such hitp://www.example.corthat can return a webpage when
accessed. Some tagging based systems such as Bippm/\fww.spurl.nét store the entire document, not the
URI, but most systems such as del.icio.us store only the URe&.resource space, in this definition, represents
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instance can be seen as the two edges that links a user to adabad tag to a given
website or resource. Note that a tagging instance can ass@cdate with its tuple of user,
tag(s), and resource.

C
N
X
)
N

RESOURCES
(WEBSITES)

Fig. 1. Tripartite graph structure of a tagging system. Ageetinking a user, a tag and a resource (website)
represents one tagging instance

From Figure 1, we observe that tags provide the link betwherusers of the system
and the resources or concepts they search for.

This analysis reveals a number of dimensions of taggingiteedften under-emphasized.
In particular, tagging is oftea methodology for information retrievahuch like traditional
search engines, but with a number of key differences. Tolgyrgrastically, with a tradi-
tional search engine a user enters a number of tags and tlen@natic algorithm labels
the resources with some measure of relevance to thepraggdiscoverydisplaying rele-
vant resources to the user. In contrast, with collabor&gigging a user finds a resource and
then adds one or more tags to the resource manually, withyiters storing the resource
and the tagpost-discovery When faced with a case of retrieval, an automatic algorithm
does not have to assign tags to the resource automaticatlgan follow the tags used
by the user. The difference between this and traditionakte@zg algorithms is two-fold:
collaborative tagging relies on human knowledge, as opgptisan algorithm, to directly
connect terms to documents before a search begins, andeliessan the collective intel-
ligence of its human users fwe-filter the search results for relevance. When a search is
complete and a resource of interest is found, collabor&digging often requires the user
to tag the resource in order to store the result in his or hexgpel collection. This causes
a feedback cycle These characteristics motivate many systems like delusiand it is
well-known that feedback cycles are one ingredient of caxpl/stems [Bar-Yam 2003],
giving further indication that a power law in the taggingtdizution might emerge.

1.4 Organization of the paper

This paper is organized as follows. In the first part of theguape examine how to detect
the emergence of stable “consensus” distributions of tagjgaed to individual resources.
In Section 2 we demonstrate a method for empirically examginvhether tagging distri-

butions follows a power law distribution. In Section 3 we whiwow this convergence to

whatever is being tagged, which may or may not be websiteseper
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a power law distribution can be detected over time by usiregkthllback-Leibler diver-
gence. We further empirically analyze the trajectory ofgiag distributions before they
have stabilized, as well as the dynamics of the “long tailtagf distributions. In the sec-
ond part of the paper, we examine the applications of thesgespower law distributions.
In Section 4 we demonstrate how the most frequent tags intabdison can be used in
inter-tag correlation graphs (or folksonomy graphs) torctieeir relation to one another.
Section 5 shows how these folksonomy graphs can be (autmatig}ipartitioned, using
community-based methods, in order to extract shared tagbedaries. Finally, Section 6
provides an independent benchmark to compare our empigsalts from collaborative
tagging, by solving the same problems using a completelgrdifit data set: search engine
qguery logs. The paper concludes with a discussion of futwnmkw

2. DETECTING POWER LAWS IN TAGS

This section uses data from del.icio.us to empirically exeewhether intuitions regarding
tagging systems as complex systems exhibiting power latrilaliions hold.

2.1 Power Law Distributions: Definition
A power law is a relationship between two scalar quantitieendy of the form:
y = cx® 1)

wherea andc are constants characterizing the given power law. Eq. 1 lsanb@ written
as:
logy = alogx + log ¢ (2)

When written in this form, a fundamental property of poweawvdabecomes apparent;
when plotted in log-log space, power laws are straight lindserefore, the most simple
and widely used method to check whether a distribution fedla power law and to deduce
its parameters is to apply a logarithmic transformatiomw, taen perform linear regression
in the resulting log-log space. Recent work on the subjedti&yman ([Newman 2005])
suggests, however, that this may introduce a bias in theealthe exponent, and as the
reliable alternative proposes the following formula tosdetinea:

n -1
a=1+nx* Zln i ] 3)
i=1

LTmin

wherez;, i = 1..n are the measured values:oandzx,,;, corresponds to the lowest value
for which the power law behavior holds. This formula was aised in this work (the
interested reader can consult the full derivation of thevalformula in [Newman 2005]).

In our tagging domain, the intuitive explanation of the abparameters is as follows:
represents the number of times the most common tag for tHagiteds used, while: gives
the power law decay parameter for the frequency of tags aespent positions. Thus, the
number of times the tag in positignis used (wherep = 1..25, since we considered the
tags in the top 25 positions) can be approximated by a fumctahe form:

Frequency(p) = % 4)

where—a > 0 andc = Frequency(p = 1) is the frequency of the tag in the first position
in the tag distribution (thus, it is a constant that is speddi each site/resource).
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Number of times the tag is used (Iog2 scale)

14

.
N

2.2 Empirical Results for Power Law Regression for Individual Sites

For this analysis, we used two different data sets. The fatd det contained a subset of
500 “Popular” sites from del.icio.us that were tagged asti€®00 times (i.e. where we
would expect a “converged” power law distribution to appe@he second data set consid-
ers a subset of another 500 sites selected randomly fronRieeht” section of del.icio.us.
Both sections are prominently displayed on the del.icigites though “Recent” sites are
those tagged within the short time period immediately ptioviewing by the user and
“Popular” sites are those which are heavily tagged in geérievéhile the exact algorithms
used by del.icio.us to determine these categories are wikrtbey are currently the best
available approximations for random sampling of del.iggp both of heavily tagged sites
and of a wider set of sites that may not be heavily tagged.

The mean number of users who tagged resources in the “Pbplaliar set was 2074.8
with a standard deviation of 92.9, while the mean number efsisf the “Recent” data set
was 286.1 with a standard deviation of 18.2. In all casegafein the top 25 positions in
the distributions have been considered and thus all of @imelrefer to these tags. Since
the tags are rank-ordered by frequency and the top 25 is tieesaf tags that are actually
available to del.icio.us users to examine for each site, geeathat using the top 25 tags
is adequate for this examination.

Results are presented in Figure 2. In all cases, logarithivasé 2 was used in the
log-log transformation?

Individual tag distributions for 500 popular sites (log-log scale) Individual tag distributions for 250 less popular sites (log-log scale)
T T T T T

T T 10 T T T T T T T

Number of times the tag is used (Iog2 scale)

0.5 1

15 25 3.
Relative position of a tag (Iog2 scale)

Fig. 2. Frequency of tag usage relative to tag position. fohesite, the 25 most frequently used tags were
considered. The plot uses a double logarithmic (log-log)escThe data is shown for a set of 500 randomly-
selected, heavily tagged sites (left) and for a set of 508c0any-selected, less-heavily tagged sites (right).

As shown by [Newman 2005] and others, the main characiten$t@ power law is its
slope parametet. On a log-log scale, the constant parametenly gives the “vertical

3All data used in the convergence analysis was collectedeinvérek immediately prior to 19 Nov 2006.
4Note that the base of the logarithm does not actually appethei power law equation (c.f. Eq. 1), but because
we use empirical and thus possibly noisy data, this choightintroduce errors in the fitting of the regression
phase. However, we did not find significant differences frévanging the base of the logarithmear 10.
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shift” of the distribution with respect to the y-axis. Forchaof the sites in the data set,
the corresponding power law function was derived and thees@f eachq parameters)
were compared. The slopes indicate the fundamental clegistizt of the power laws, as
vertical shifts can and do vary significantly between défersites.

Our analysis shows that for the subset of heavily tagged, dite slope parameters are
very similar to one another, with an averagewof —1.22 and a standard deviatiar).03.
Thus, it appears that the power law decay slope is relativehsistent across the sites
studied. This pattern where the top tags are considerabig papular than the rest of the
tags indicates a fundamental effect of the way tags areituliséd in individual websites
which is independent of the content of individual websites.

For the set of less-heavily tagged sites, we found the sldiffesed from each other to
a much greater extent than with the heavily tagged data, avitaveragex = —3.9 and
standard deviatior-4.63. Clearly, the power law effect is much less pronounced fer th
less-heavily tagged sites as opposed to the heavily taggsq as the standard deviation
reveals a much poorer fit of the regression line to the logplotted aggregate data. For
random sites with relatively few instances of tagging, tesuits reveal little other than
noise, though even for some of these less popular sites, erpaw is beginning to emerge.

2.3 Empirical Results for Power Law Regression Using Relative Frequencies

In the previous section, we applied power law regressiohrtiggies to individual sites,
using the number of hits for a tag in a given position in theritigtion. In this section, we
examine the aggregate case where we no longer use the ravenafitgs (because these
are not directly comparable across sites), and insteadhegerelative frequencies. The
relative frequency is defined as the ratio between the nupftignes a tag in a particular
position is used for a resource and the total number of tilmatsreésource is taggedThus,
relative frequencies for a given site always sum to one. @hektive frequencies based
on the averaged data from all 500 sites of the “Popular” dettaResults are presented in
Figure 3.

To summarize our results, we found that the data points céibwi¢h a linear regression
line, with some error. With the aggregate function, the paater for the slope of the power
law, using the above equation (see Equation 3), had the value—1.278. As mentioned
before, for the individual sites, the slopes found were innailar range, i.e. with an
averagenr = —1.22, and standard deviatio10.03. Thus, it appears that the power law
decay (i.e. slope) is relatively consistent, both in the clative case and across individual
sites. Intuitively, this indicates a fundamental effecttioé way tags are distributed in
individual websites independent of the context and cordétite specific website.

There is a caveat, however. We observed that tags in pasitewen to ten have a
considerably sharper drop in frequency than the genenadl tiee would predict. This
means that if we were to do a piece-wise regression for tteitatie first seven positions
and the tags in the last fifteen positions, we would get lifeactions for both, though
with different slopes. Furthermore, as Fig. 2 shows, thisctflargely holds for almost
all sites in the data set considered, so it is not attribetédhoise alone, but a consistent
effect of the way tagging was performed. We have no fullyséatitory explanation for this
effect, although several hypotheses seem plausible.

5To be more precise, the denominator is taken as the total @uaftimes the resource is tagged with a tag from
the top 25 positions, given available data.
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Relative frequency of tags per position and the derived power law (log-log scale)

Log2 of the average relative frequency
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Position of a tag in the distribution (Icng2 scale)

Fig. 3. Average relative frequency of tag usage, for the 6800 “Popular” sites from above. On the y-axis, the
logarithm of the relative frequency (probability) is giveFhe plot uses a double logarithmic (log-log) scale, thus
on the y-axis values are negative since relative frequerasie less than one.

One possible line of explanation states a cognitive limitrenpart of the users, i.e. there
may be a maximum number of tags that an average, “typical eisgloys to bookmark
a random resource. This effect may also be an artifact of #ee imterface specific to
del.icio.us, as users see space for a particular numbeg®btaeceive a particular number
of suggestions for tags to use. We have no way to derive a tiedirdonclusion from
available Del.icio.us data, as there is no comparison data & “control group”, that
could be used to benchmark the different explanations. Morgroled user experiments
in the future should be able to shade more light into this end&tithough there are obvious
challenges in conducting large-scale experimentationganly case, this observation does
not affect our basic conclusion that tag distributionsdwalpower laws.

3. THE DYNAMICS OF TAG DISTRIBUTIONS

In Section 2, we provide a method for detecting a power latvidigion in the tags of a site

or collection of sites. In this section, we study anotheeaspf the problem, namely how
the shape of these distributions develops in time from tpgitey actions of the individual

users. First, we examine the how power law distributionsnfat the top (the first 25

positions) of tag distributions for each site. For this, wepdoy a method from information

theory, namely the Kullback-Leibler divergence. Second,study the dynamics of the
entire tag distributions, including all tags used for a,séted we show that the relative
weights of the top and tail of tag distributions convergetaike ratios in the data sets.

3.1 Kullback-Leibler Divergence: Definition

In probability and information theory, the Kullback-Ledldivergence (also known “rela-
tive entropy” or “information divergence”) represents dumal distance measure between
two probability distributiong”? and@ (in our case P and(@ are two vectors representing
discrete probability distributions). Formally, the Kuditk-Leibler divergence betwedh
andQ is defined as:
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P(x)
Dk (P = P(x)log(—= 5
kL(P||Q) Z (z) og(Q(x)) (5)
The Kullback-Leibler distance is a non-negative, convexction, i.e.
Dk (P,Q) > 0,VP,Q (note thatDk 1,(P, Q) = 0 iff. P and Q coincide). Also, unlike
other distance measures it is not symmetric, i.e. in gerderal (P, Q) # Dk (Q, P).

3.2 Application to Tag Dynamics

We propose two complementary ways to detect whether aldisioh has converged to a
steady state using the Kullback-Leibler divergence:

—The first is to take the relative entropy between every twosegutive points in time
of the distribution, where each point in time representseschange in the distribution.
Again, in our data, tag distributions are based on the radkred tag frequencies for
the top 25 highest-ranked unique tags for any one websiteh Raint in time was a
given month where the tag distribution had changed; monttes@there was no tagging
change were not counted as time points. Using this methggicdotag distribution that
was “stable” would show the relative entropy convergingrid eemaining at zero over
time. If the Kullback-Leibler divergence between two cange/e time points becomes
zero (or close to zero), it suggests that the shape of théuisbn has stopped evolving.
This technigue may be most useful when it is completely unknawhether or not the
tagging of a particular site has stabilized at all.

—The second method involves taking the relative entropyeftag distribution for each
time step with respect to the final tag distribution, theréhstion at the time the mea-
surement was taken or the last observation in the data, &rsite. This method is
most useful for heavily tagged sites where it is already kmowsuspected that the final
distribution has already converged to a power law.

The two methods are complementary; the first methodologyidvoenverge to zero if
the two consecutive distributions are the same, and thusauid detect whether distribu-
tions converged if even temporarily. Cyclical patternstabdization and destabilization
may be detected using this first method. The second methodhassthat the final time
point is the stable distribution so this method detects ecgence only towards the final
distribution. If both of these methods produce relative@pies that approach zero, then
one can claim that the distributions have converged over tora single distribution, the
distribution at the final time point.

3.3 Empirical Results for Tag Dynamics

The analysis of the intermediate dynamics of tagging is icemably more involved than
the analysis of final tag distributions. Because the lengtthe histories varies widely,
there is no meaningful way to compute a cumulative measuosgaall sites as in Section
2, so our analysis has to consider each resource individuallFigure 4 (A and B), we
plot the results for the convergence of the 500 “Populagssibn the basis that their final
distribution must have converged to a power law, that theinglete tagging history was
available from the first tagging instances, and that thi®hysvas of substantial length. In
the data set considered, up to 35 time points are availableofoe sites (which roughly
corresponds to three years of data, since one time poirgsepts one month).
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KL distance w.r.t. the final distribution
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Fig. 4. A (left). Kullback-Leibler divergence between tagduency distributions at consecutive time steps for
500 "Popular” sites. B (right). Kullback-Leibler diverges of tag frequency distribution at each time step with
respect to the final distribution.

There is a clear effect in the dynamics of the above distiobsf At the beginning of
the process when the distributions contain only a few tdgsetis a high degree of ran-
domness, indicated by early data points. However, in masgcthis converges relatively
quickly to a very small value, and then in the final ten steps, iKullback-Leibler distance
which is graphically indistinguishable from zero (with gial few outliers). If the Kullback-
Leibler divergence between two consecutive time points-{gure 4A) or between each
step and the final one (Figure 4B) becomes zero or close toir@rdicates that the shape
of the distribution has stopped changing. The results haygest that the power law may
form relatively early on in the process for most sites andigethroughout. Even if the
number of tags added by the users increases many-fold, thtags reinforce the already-
formed power law. Interestingly, there is a substantial amt@f variation in the initial
values of the Kullback-Leibler distance prior to the comesrce. Future work might ex-
plore the factors underlying this variation and whethes & ifunction of the content of the
sites or of the mechanism behind the tagging of the site. thadtdilly, convergence to zero
occurs at approximately the same time period (often witlfewamonths) for these sites.

The results of the Kullback-Leibler analysis provide a pduietool for analyzing the
dynamics of tagging distributions. These results may veszl e the consequence of the
“scale-free” property of tagging networks, so that oncet#fygying of users has reached a
certain threshold, regardless of how many tags are addedlistribution remains stable.
This method can be very useful in analyzing real-world taggystems where the stability
of the categorization scheme produced by the tagging nedms¢onfirmed.

3.4 Examining the dynamics of the entire tag distribution

In the previous sections, we focused on the distributiote@tags in the top 25 positions.
However, heavily tagged or popular resources, such as toosgdered in our analysis, can

6Note that in Figure 4, the first two time points were omittedaaese their distribution involved few tags and
were thus very highly random.
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be tagged several tens of thousands of times each, prodogimyeds or even thousands
of distinct tags. It is true that many of these distinct tagssmply personal bookmarks
which have no meaning for the other users in the system. Henvéus still crucial to
understand their dynamics and the role they play in taggsgecially with respect to the
top of the tag distribution. Some sources (e.g. [Andersdd6P0 have argued that the
dynamics of long tails are a fundamental feature of Intestale systems. Here we were
particularly interested in two questions. First, how ddesrtumber of times a site is tagged
(including the long tail) evolve in time? Second, how doesrlative importance of the
head (top 25 tags) to the long tail change as tags are addeesoarce?

Results for the same set of 500 “Popular” sites describedeabee shown in Figure 5.
Note that the tag distributions were reconstructed throtgWwing the tagging history of
the individual site as available through del.icio.us anlteeting the growth of this tagging
distribution over time, thus allowing us to record the growf tags outside the 25 most
popular.

Frequency of tagging for individual sites Weight of the tags in the top 25 positions w.r.t. the total number of tags received by a site
T T T T T T 1 T T T T T
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Proportion of taggings received by the top 25 sites

5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40
Time points Time points

Fig. 5. A (left). Cumulative number of times a resource igged) for each time point. B (right). Proportion of
times a tag in the top 25 spots of the distribution has beed tstag a resource to the total number of times the
resource has been tagged with any tag.

As seenin Figure 5, the total number of times a site is taggaelgcontinuously at a rate
that is specific to each site and this probably depends owitgath and particular context.
Though the results are not shown here due to space consfraisimilar conclusion can
be formulated for the number of distinct tags, given thatrtbmber of distinct tags varies
considerably per site and does not seem to stabilize in thosvever for virtually all of
the sites in the data set considered, the proportion of tartag from the top 25 positions
is used relative to the total number of times that a resowdagged did stabilize over
time. So, while the total number of tags per resource growsimaously, the relative
frequency of the tags in the top of the tag distribution coragao the those in the long tail
does stabilize to a constant ratio. This is an importancetiad it represents a significant
addition to our analysis of the stability analysis of the &fp positions, since it shows
the relative importance of the long tail with respect to tleadh of the distribution does
eventually stabilize regardless of the growth of tags inlding tail.
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4. CONSTRUCTING TAG CORRELATION GRAPHS

The previous section examines the type of frequency digtdbs that emerge from the
collective tagging actions of individual users, as welllesdynamics of this process. This
section examines the type of information structures thamfioom these actions, given the
hypothesized importance of the information value of taganderstanding tagging sys-
tems. We look at one of the most simple information structinat can be derived through
collaborative tagging: inter-tag correlation graphs parhaps more simply, “folksonomy
graphs”) . We discuss the methodology used for obtaining guaphs and then illustrate
our approach through an example domain study.

4.1 Methodology

The act of tagging resources by different users induced)eatég level, a simple dis-
tance measure between any pair of tags. This distance neceepiures a degree of co-
occurrence which we interpret as a similarity metric betwie concepts represented by
the two tags.

The collaborative filtering [Sarwar et al. 2001; Robu andtR®A006] and natural lan-
guage processing [Manning and Schutze 2002] literatuneqses several distance or sim-
ilarity measures that can be employed for such problemsnigigc we found most useful
for this problem iscosine distancé

Formally, letT;, T; represent two random tags. We denote\b{Z;) andN (T;) respec-
tively the number of times each of the tags was used indiNigltmtag all resources, and
by N(T;,T};) the number of times two tags are used to tag the same rescolinea. the
similarity between any pair of tagsandj is defined as:

N(TivTj)
N(T;) « N(T})

In the rest of the paper, we use the shorthagigh;; to denotesimilarity(T;, T;).

From these similarities we can construct a tag-tag coroglaraph or network, where
the nodes represent the tags themselves weighed by theiutb&equencies, while the
edges are weighed with the cosine distance measure. We duilsualization of this
weighed tag-tag correlation, by using a “spring-embeddei’spring relaxation” type of
algorithm. We tested two such algorithms: Fruchtermam&aid and Kawada-Kawai[Batagel]
and Mrvar 1998]; the two graphs included in this paper aretas the later. An analysis
of the structural properties of such tag graphs may proviggortant insights into both
how people tag and how structure emerges in collaboratgrig.

(6)

similarity(T;, T;) =

4.2 Constructing the tag correlation (folksonomy) graphs

In order to exemplify our approach, we collected the data@mstructed visualizations
for a restricted class of 50 tags, all related to the tag “dewify.” Our goal in this exam-
ple was to examine which sciences the user community ofctteLis sees as most related
to “complexity” science, a problem which has traditionadhcited some discussion. The
visualizations were made on Pajek [Batagelj and Mrvar 199Bg purpose of the visual-
ization was to study whether the proposed method retriemesection between a central
tag “complexity” and related disciplines. We considered tases:

"This should not be interpreted as a conclusion on our partctigine distance is always an optimal choice for
this problem. This issue probably requires further redearnt even larger data sets.
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Fig. 7. Folksonomy graph, considering all relevant inggg-torrelations

—Only the dependencies between the tag “complexity” andthér tags in the subset are
taken into account when building the graph (Fig. 6).
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—The weights of all the 1175 possible edges between the Sat@gconsidered (Fig. 7).

In both figures, the sizes of the nodes are proportional taltiselute frequencies of each
tag, while the distances are, roughly speaking, inversted to the distance measure as
returned by the “spring-embedder” algoritfmwWe tested two energy measures for the
“springs” attached to the edges in the visualization: KaaEdwai and Fruchterman-
Reingold [Batagelj and Mrvar 1998]. For lack of space, ohly visualization returned by
Kamada-Kawai is presented here, since we found it morefteith the proportions in the
data.

The results from the visualization algorithm match rekgvwell with the intuitions
of an expert in this field. Some nodes are much larger tharr®thibich again shows
that taggers prefer to use to general, heavily used tags (eegtag “art” was used 25
times more than “chaos”). Tags such as “chaos”, “alife” dletion” or “networks” which
correspond to topics generally seen as close to compleiépce are close to the node for
tag “complexity”. Atthe other end, the tag “art” is a largéstdnt node from “complexity.”
This is not so much due to the absence of sites discussingtaggfecomplexity in art as
there are quite a few of such sites, but instead due to theHatthey represent only a
small proportion of the total sites tagged with “art,” leglito a large distance measure.

In Figure 7, the distances to “complexity” change signifibgrdue to the addition of
the correlations to all other tags. However, one can obsseveral clusters emerging
which match reasonably well with intuitions regarding thaeywhese disciplines should

be clustered. Thus, in the upper-left corner one can findgagk as “mathematics”, “al-
gorithmics”, “optimization”, “computation”, while immedtely below are the disciplines
related to Al (“neural” [networks], “evolutionary” [algghms] and the like). The bottom
left is occupied by tags with biology-related subjects hsas “biology”, “life”, “genetics”,
“ecology” etc, while the right-hand side consists of tagshwhore “social” disciplines

(“markets”, “economics”, “organization”, “society” ejc.Finally, some tags are both large
and central, pertaining to all topics (“research”, “scieh¢information”).

We also observed some tags that are non-standard Englists wadthough we filtered
most out as not relevant to this analysis. One example is pexsystems” (spelled as
one word), which was kept as such, although the tags ™coxi@ad “system” taken
individually are also present in the set. Perhaps unsiingtis the similarity computed
between the tags “complexsystems” and “complex” is one®tlongest between any tag
pair in this set. One implication of this finding is that tagtdinces could be used to find tags
that have minor syntactic variance with more well-knowrstagyich as “complesystems,”
but which cannot simply detected by morphological stemming

5. IDENTIFYING TAG VOCABULARIES IN FOLKSONOMIES USING COMMU-
NITY DETECTION ALGORITHMS

The previous sections analyzed the temporal dynamics trfildison convergence and
stabilization in collaborative tagging as well as some iinfation structures, like tag cor-
relation (or folksonomy) graphs, that can be created froese¢htag distributions. In this
Section, we look at how these folksonomy graphs could be tsadlve an important
problem in collaborative tagging: identifying shared tagabularies.

8For two of the tags, namely “algorithms” and “networks,” mbological stemming was employed. So both
absolute frequencies and co-dependencies were summethewngular form tag, i.e. “network” and the plural
“networks,” since both forms occur with relatively high dieency.
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The problem considered in this section can be summarizediasn a heterogeneous
set of tags (which can be represented as a folksonomy giaglv);an we partition this set
into subsets of related tags? We call this problem a “voeagutlentification” problem.
It is important to note that we use the term “vocabulary” onlya restricted sense, i.e. as
a collection of related terms, relevant to a specific domBgor.instance, a list of tropical
diseases is a “vocabulary”, a list of electronic componéentsgiven electronic device is
a vocabulary, and a list of specialized terms connected teem gcientific subfield would
all be “vocabularies” in our definition.

We acknowledge that this is a restricted definition: in sorpplieations, especially
Semantic Web approaches, we would also like to know praciselv these terms are
related. This type of structural information is difficultéatract only from tags, given the
simple structure of folksonomies. Nevertheless, our aggacould still prove useful in
such applications: for example, one could construct thefselated terms as a first rough
step and then a human expert (or, perhaps, another [setifhated method) could be
used to add more more detail to the extracted vocabulary set.

However, there are many settings in which the fully autochéehnique presented in
this paper could prove very useful. For example, drawinggfdlouds has received sig-
nificant attention, but how to select the subset of relatgd that will be presented in a
cloud is an open problem. Another potential applicationisdlecting terms for sponsored
search auctions. Some keywords (tags) bring a high valuelteraisers, and knowing
all the related keywords in a category that people can pialgntise in search for can be
very useful information for an advertiser. Conversely,itffermation regarding subsets of
related tags could also be useful for the search enginedimgrsearches using these tags.

Note that the complexity-related disciplines data see@aly introduced in Sect. 4) is
a useful tool to examine this question, since the tags inritiali set are heterogeneous
(complexity science is, by its very nature, an interdisognly field), but there are natural
divisions into sub-fields, based on different criteria. STallows easier intuitive interpreta-
tion of the obtained results (besides the mathematical tadtiucriteria described below).

The technique we will use in our approach is based on the edc¢aommunity detec-
tion” algorithms, developed in the context of complex syst@nd network analysis theory
[Newman and Girvan 2004; Newman 2004]. Such techniques be@e well studied at a
formal level and have been used to study large-scale neswor& variety of fields from
social analysis (e.g. analysis of co-citation networksa|gsis of biological nets (e.g. food
chains) to gene interaction networks. [Newman and Girvad4Pprovide an overview of
existing applications of this theory, while [Newman 200/ sents a formal analysis of the
algorithm class used in this paper. To the best of the autkoosviedge, however, this is
the first paper that studies the application of these teciasitp tagging systems and folk-
sonomies. In a somewhat related direction of work, [Jin €2@07] study the application
of community detection techniques to aggregate biddeepeetes in Ebay auctions.

5.1 Using community detection algorithms to partition tag graphs

In network analysis theory, a community is defined as a sulfseides that are connected
more strongly to each other than to the rest of the networkhiminterpretation, a com-
munity is related to clusters in the network. If the networlalgzed is a social network
(i.e. vertices represent people), then “community” hasndmtive interpretation. For ex-
ample, in a social network where people who know each otleecannected by edges, a
group of friends are likely to be identified as a communitypeople attending the same
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school may form a community. We should stress, however, tttehetwork-theoretic
notion of community is much broader, and is not exclusivelyled to people. Some ex-
amples [Newman and Girvan 2004; Jin et al. 2007] are netwafrikems on Ebay, physics
publications on arXiv, or even food webs in biology. We w#leua community detection al-
gorithm to identify “vocabularies” within a folksonomy grh, identifying “communities”
as “vocabularies.”

5.1.1 Community detection: a formal discussidret the network considered be rep-
resented a grapy = (V, E), when|V| = n and|E| = m. The community detection
problem can be formalized as a partitioning problem, sulbjea constraint. The partition-
ing algorithm will result in a finite number of explicit paitins, based on clusters in the
network, that will considered “communities.”

Eachv € V must be assigned to exactly one clusigt Cs, ...C,,., where all clusters
are disjoint, i.evv € V,v € Cj,v € C; =i = j.

In order to compare which partition is “optimal”, the glolmaktric used isnodularity,
henceforth denoted . Intuitively, any edge that in a given partition has both®imthe
same cluster contributes to increasing modularity, whileedge that “cuts across” clusters
has a negative effect on modularity. Formally, det, 7,5 = 1..nc be the fraction of all
edges in the graph that connect clusteaad; and leta; = % Zj e;; be the fraction of the
ends of edges in the graph that fall within clustéhus, we havé ", a; = Zi’j eij =m).

The modularityQ of a graph|G| with respect to a partitiot’ is defined as:

Q(G,C)=> (e —a}) (7)

i

Informally, soQ is defined as the fraction of edges in the network that falhinia par-
tition, minus the expected value of the fraction of edges wrauld fall within the same
partition if all edges would be assigned using a uniformdaan distribution. These par-
titions are identified as communities by [Newman and Girve@4. In tagging, each of
these partitions is identified as a vocabulary.

As shown in [Newman 2004], i€) = 0, then the chosen partitionshows the same
modularity as a random divisioh.A value of ) closer to 1 is an indicator of stronger
community structure - in real networks, however, the highegorted value i) = 0.75.

In practice, [Newman 2004] found (based on a wide range ofigcapstudies) that values
of @ above around 0.3 indicate a strong community structurengtven network.

Generally speaking, determining the optimal partitionhwiéspect to our modularity
metric has been shown to be a computationally hard probleanides et al. 2006]. The
number of possible ways to partition a graghs very large: [Newman 2004] shows there
are more thar2”~! ways to form a partition, thus the problem is at least exptiakim
n. Furthermore, in many real life applications (includingdang), the optimal number
of disjoint clustersuc is generally not known in advance. We will return shortly ts-d
cuss an algorithm by which an efficient partition can acyulb# computed, but first some
additional steps are needed to link this formal definitionto tagging domain.

9Note thatQ can also take values smaller than 0, which would indicatettieachosen partition is worse than
expected at random.
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5.2 Edge filtering step
As shown in the tag graph construction step above, for oua det the initial inter-tag

graph contain = 1225 pairwise similarities (edges), one for each potential tag

2
pair. Most of these dependencies are, however, spuriousegisrépresent just noise in
the data, and our analysis benefits from using only the tagiiéna, corresponding to the
strongest dependencies.

In this paper, we make the choice to filter and use in furthatyasis only the topn =
kq x n edges, corresponding to the strongest pairwise siméaritierek, is a parameter
that controls the density of the given graph (i.e. how mamesdare there to be considered
vs. the number of vertices in the graph). In practice, we tatees oft; = 1..10, which
for the tag graph we consider means a number of edges fromd&a9 w 50.

5.3 Normalized vs. non-normalized edge weights

The graph community identification literature [Newman arid/& 2004] generally con-
siders graphs consisting of discrete edges (for exampbesorcial network graph, people
either know or do not know each other, edges do not usuallgdgaa “degree” of friend-
ship). In our graph, however, edges represent similatiteda/een pairs of tags (c.f. EqQ.
6). There are two ways to specify edge weights.

The non-normalized case assigns each edge that is retaitieel graph, after filtering,
a weight of 1. Edges filtered out are implicitly assigned aghieof zero.

The normalized case assigns each edge a weight proportiotied similarity between
the tags corresponding to the ends. Formally, using theinntafrom Eqg. 6 and 7 from
above, we initialize the values; as:

i = =81 8
€ij > simg 5115 (8)
Where% is simply a normalization factor, which assures tha; ei;; = m.

5.4 The graph partitioning algorithm

Since we have established our framework, we can now forntkgfine the graph parti-
tioning algorithm. As already shown, the number of possjiaeitions for this problem
is at leas2™ ! (e.g. for our 50 tag setting®® > 10'®). Therefore, to explore all these
partitions exhaustively would be clearly unfeasible. Thgodathm we use to determine
the optimal partition (Alg. 1) is based on [Newman 2004], &rfdlls into the category of
“greedy” clustering heuristics.

Informally described, the algorithm runs as follows. lally, each of the vertices (in
our case, the tags) are assigned to their own individuatelusThen, at each iteration
of the algorithm, two clusters are selected which, if merdead to the highest increase
in the modularity@ of the partition. As can be seen from lines 5-6 of Alg. 1, begau
exactly two clusters are merged at each step, it is easy tpuetenthis increase i) as:
AQ = (eij + eji — 2a,a;) or AQ = 2 « (e;; — a;a;) (the value ofe;; being symmetric).
The algorithm stops when no further increasé)iis possible by further merging.

Note that it is possible to specify another stopping créiteni Alg. 1, line 9, e.g. itis
possible to ask the algorithm to return a minimum number wételrs (subsets), by letting
the algorithm run untih reaches this minimum value.
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Algorithm 1 GreedyQ DeterminatianGiven a graphG = (V, E), |V| = n,|E| = m
returns partition< C1, ...Cy,, >

1. Ci={v},Vi=1,n

2. nc =mn

3. Vi, 7, e;; initialized as in Eq. 8

4. repeat

5. <, Cj >=argmax, ; (eij +e5; — QCLZ‘G,J‘)
6

7

8

9

1

AQ = max; ¢, (eij +ej; — 2aiaj)
Ci=C; UCj, Cj =0 //mergeCz ande
. nc =ngc — 1
. untilAQ < 0
0maz@ = Q(C4,..Ch)

5.5 Graph partitioning: experimental results

The experimental results from applying Alg. 1 to our dataasetshown in Fig. 9. In Fig.
8 we present a detailed “snapshot” of the partition obtafieedne of the experimental
configurations. There are several interesting featureseofdsults.

First, it becomes clear that using normalized edge weigtddyzes partitions with
higher modularity than assigning all the top edges the samightvof 1. This was in-
tuitively hypothesized by us, since edge weights represéditional information we can
use, but it was confirmed experimentally. Second, we arelglable to identify partitions
with a modularity higher than around 0.3, which exhibit @sfy community structure ac-
cording to [Newman and Girvan 2004]. Yet perhaps the mostwaoithy feature of the
partitions is the rapid increase both in the modularityda® and in the number of parti-
tions, as the number of edges filtered decreases (from lafihi in Figure 9).

The filtering decision represents, in fact, a trade-off. iHgwoo many edges in the
graph may stop us from finding a partition with a reasonabldutarity, due to the high
volume of “noise” represented by weaker edges. Howevepikgenly a small proportion
of the strongest edges (e.g. 100 or 50 for a 50-tag graph,riexample), may also have
disadvantages, since we risk throwing away useful infoienatwhile a high modularity
partition can be obtained this way, the graph may become fragrhented”: arguably,
dividing 50 tags into 10 or 15 vocabularies may not be veryulse

Note that it is difficult to establish a general rule for wh&gaod” or universally “cor-
rect” partition should be in this setting. For example, etrentrivial partition that assigns
each tag to its own individual cluster cannot be rejectedhasrig” but such a trivial parti-
tion would not be considered a useful result for most purpobethis paper we generally
report the partitions found to have the highest modulaotythe setting. However, for
many applications, having a partition with a certain numifeclusters, or some average
cluster size, may be more desirable. The clustering algoriropose here (Alg. 1) can be
easily modified to account for such desiderata, by chan@iegtop criteria in line 9.

Fig. 8 shows the solution with the highest moduladyfor a graph with 200 edges,
in which 7 clusters are identified. This partition assigrgsteelated to mathematics and
computer science to Cluster 1, tags related to social seiand phenomena to Cluster 2,
complexity-related topics to Cluster 4 etc., while “art’d@ssigned to its own individual
cluster. This matches quite well our intuition, and its miadity () = 0.34 is above (albeit

ACM Transactions on the Web, Vol. 3, No. 4, September 2009.



o o o
o @ o IS o o o
w a IS 2] @ a o

o
N
o

Modularity (Q-factor) of the optimal partition

22

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6 | Cluster 7
computation markets semantics powerlaw genetics robustness art
optimization economics | cognition nonlinear biology
visualization society neural complexsystems| evolution

physics community ai dynamics evolutionary
mathematics | organization alife chaos science
math ecology artificial emergence
computational | ecosystem life networks

algorithms environment | behavior systems
information simulation complex

computing research complexity

theory
Tags that increase modularity the most, if eliminated: thexcience, research, simulation, networks.

Fig. 8. Optimal partition in tag clusters (i.e. “commundig of the folksonomy graph, when the top 200 edges
are considered. This partition has a Q=0.34. After elinigathe 5 tags mentioned at the bottom, Q can increase
t0 0.43.

Modularity of the optimal partition for different filtering and normalization criteria Number of subsets in the optimal partition, for different filtering an normalization criteria
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Number of edges selected for the tag graph (50 tags) Number of edges selected for the tag graph (50 tags)

Fig. 9. Modularity (Q-factor) and number of partitions ahtd from applying community detection algorithms
to the scientific disciplines data set

close) to the theoretical relevance threshold of 0.3. Ini&e® we will compare this
partition (as well as the entire tag graphs constructed ai@®4) against an independent
benchmark that addresses the same problem, but based orpketayndifferent data set:
search engine query logs. However, first we briefly presenethod that can further
improve the modularity of the retrieved tag graphs.

5.6 Eliminating tags from resulting partitions to improve modularity

The analysis in the previous section shows that communitgctien algorithms were
able to produce useful partitions, with above-relevancdutarity. Still, there are a few
general-meaning tags that would fit well into any of the stsesulting after the par-
tition. These tags generally reduce tQemodularity measure significantly, since they
increase the inter-cluster edges. Therefore, we hypatbeéshat the modularity of the re-
sulting partitions could be greatly improved by removingtja few tags from the set under
consideration. In order to test this hypothesis, we testedheer greedy tag elimination
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algorithm, formally defined as Alg. 2. Result graphs are showFig 10, while in Fig. 8
we show the top 5 tags that, if eliminated, would increaseuterdy ¢ from 0.34 to 0.43.

Algorithm 2 GreedyQ Elimination Given a partitionC1, ...C,,. of graphG = (V, E)
removes all vertices; € V that increase)
1. repeat
2. wv; =argmax,[Q(..,C \ {vi},..) — Q(..,Ck,..)]
3. AQ =max,[Q(..,Cr \{vi},..) — Q(..,Ck, ..)]
wherev; € Cy lICy is the partition of vertex i
. untilAQ <0

N

Modularity of the optimal partition, as general tags are removed Number of subsets in the optimal partition, with general tags removed
T T T T T T T T T T T T T T T T T T

N
=}

=
@

=
@

-
N

.

—0o— 100 edges | 7
—&— 150 edges
—e— 200 edges | |

—0o— 100 edges | -
—A— 150 edges
—e— 200 edges

Number of communities (subsets) in the optimal partition
2
IS

—w— 300 edges
—O— 400 edges | |

—w— 300 edges | |
—O0— 400 edges

Number of tags removed from the graph, in decreasing order of generality.

. I . I . . . . . . . I . . . I . .
1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10
Number of tags removed from the graph, in decreasing order of generality.

Fig. 10. Modularity (Q-factors) and number of partitiondabed after gradually eliminating tags from the data
set, such as to increase the modularity. At each step, ththéagroduced the highest increase in modularity
between the initial and resulting partition was selectadhése results, all edge weights are normalized.

As seen in Fig. 2, for this data set only 5-6 tags need to beirdited as eliminating
more does not lead to a further increasegjinin the example in Fig. 8, we see which
these are, in order of elimination: theory, science, reteaimulation, networks. In fact,
these tags, that are marked for elimination automaticalljlyg. 2, are exactly those that
are the most general in meaning and would fit well into any efshbsets.

Regarding scalability, it is relatively straightforwaghow that both Alg. 1 and 2 have
linear running time the number of verticesi.e. in this case, number of tags considered
in the initial set. In the case of Alg.1, exactly two clustefs¢ags are merged at each step,
SO one cluster increases in size by a minimum of one, untiatgerithm terminates. In
case of Alg. 2, one tag is eliminated per step, until terndmatin practice, this scalability
property means they are easily applicable to analyze mughr&lksonomy systems.

To our knowledge, this is the first paper to investigate thaiegbility of this type of
algorithms to tagging, and we can conclude that results ang encouraging. We leave
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some aspects open to further work. For instance, in the muamgproach, similarity dis-
tances between pairs of tags are computed using all thengggitances in the data set. In
some applications, it might be useful to first partition tleé af users that do the tagging,
and then consider only the tags assigned by a certain claseo$. For example, for tags
related to a given scientific field, expert taggers may comwitipa different vocabulary
partition than novice users. This may require a two-foldli@agion of this algorithm: first
to partition and select the set of users, and then the segebiased on the most promising
category of users.

While these applications of tagging distributions havessimpromise, one question that
can be reasonably asked is how well these applications giitggompare to some bench-
mark that does not use tagging distributions. In the nexiaewe will compare the results
obtained here from collaborative tagging data against atimeark case, which uses “clas-
sic” search engine query data.

6. COMPARISON BENCHMARK: AUTOMATIC CONSTRUCTION OF KEYWORD
VOCABULARIES FROM SEARCH ENGINE QUERY DATA

The obvious candidate for finding such a comparison bendhimdo use of large-scale
query data produced by a search engine. The idea of appromgrsemantics by using
search engine data has, in fact, been proposed before, amdaly found in existing lit-
erature under the name of “Google distance.” [Cilibrasi &ftdnyi 2007] were the first
to introduce the concept of “Google distance” from an infatimn-theoretic standpoint,
while other researchers [Gligorov et al. 2008] have regemtbposed using it for tasks
such as approximate ontology matching. It is fair to assuattequgh we have no way
of knowing this with certainty), that current search engiaad related applications, such
as Google Sets [http://labs.google.com/sets 2008], alsdaxt or query log mining tech-
nigues (as opposed to collaborative tagging) to solve airpitoblems.

There are two ways of comparing terms (in this case, keywarsiag a search engine.
One method would be to compare the number of resources thegtaieved using each of
the keywords and their combinations. Another method is ®the query log data itself,
where the co-occurrence of the terms in the same queriebeis.individual frequency is
the indicator of semantic distance. We employ this lattetho@ as it is more amendable to
comparison with our work on tagging. In the latter method,dbery terms are comparable
to tags, where instead of basing our folksonomy graphs acdbrdary extraction on tags,
we used query terms. In general, query log data is consigeogatietary and much more
difficult to obtain than tagging data. We were fortunate t@ehaccess to a large-scale
data set of query log data, from a proposal awarded throughogioft's “Beyond Search”
awards'? In the following we describe our methodology and empiriesiuits.

6.1 Data set and methodology employed

The data set we used consists of 101,000,000 organic seaectes, produced from Mi-
crosoft search engine Live.com, during a 3-month intem&006. Based on this set of
gueries, we computed the bilateral correlation betweepaits from the set of of com-
plexity related terms considered in Sect. 4 and 5 above. &hefderms are, however,

10The authors wish to thank Microsoft Research for their kinprt in providing this data.
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Fig. 11. Correlation graph from Microsoft queries, showardy correlations to the term “complexity”.

quantitative

Fig. 12. Correlation graph obtained from Microsoft quergdpconsidering all relevant search terms.

no longer treated as tags, but as search keywdr@ie correlation between any two key-

11we acknowledge this method has some drawbacks, as a fewitethescomplexity-related set, such as “pow-
erlaw” and “complexsystems” (spelled as one word) or “al{fer “artificial life”) are natural to use as tags, but
not very natural as search keywords. However, since thererdy 3 such non-word tags, they do not significantly
affect our analysis.
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Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6
complexity systems networks algorithms mathematics research
evolution visualization ai ecology physics quantitative
evolutionary | organization | emergence math economics qualitative
chaos information neural computing art society
cognition community optimization science
biology computation simulation
theory environment dynamics
behavior nonlinear
markets computational
genetics ecosystem
agent
Terms left unclassified (i.e. one word clusters): complexngplexsystems, robustness,
multi-agent, life, artificial, semantics, powerlaw, alife

Fig. 13. Optimal partition into clusters, obtained from tké&rosoft query data, when the top 200 edges are
considered. The resulting partition has a Q=0.536. Howe¥éerms were assigned to their own cluster, thus
basically left unclassified.

wordsT; and7j; is computed using the cosine distance formula in Equatioaré Section

4 above. However, he®¥ (T}, T;) represents the number of queries in which the keywords
T; andTj; appear in together, whil®/'(7;) and N (T;) are the numbers of queries in which
T;, respectivelyl’; appear in total (irrespective of other terms in the quernpmfthe 100
million queries in the data set.

The rest of the analysis mirrors closely the steps desciitbeé®kections 4 and 5, but
optimizing the learning parameters which best fit this datgais order to give both methods
a fair chance in the comparison. More specifically, the Paiskalization of the keyword
graphs in Figs.11 and 12 were also built by using a springegldér algorithm based on
the Kamada-Kawai distance, while Fig. 13 shows the keywohiulary partition that
maximizes the modularity coefficiet in the new setting, considering the top 200 edges.
For clarity, the graph pictures are depicted in a differesibcscheme, to clearly show
they result from entirely different data sets: Figures 6 @rfilbm del.icio.us collaborative
tagging data, and Figures 11 and 12 from Microsoft’s Liven@pery logs.

6.2 Discussion of the results from the query log data and comparison

When comparing the graphs in Figures 6 and 11 (i.e. the on&hwhly depict the rela-
tions to the central term “complexity”) an important diféerce can be observed. While the
graph in Fig. 6, based on collaborative tagging data, sh@&xsrns related to complexity,
the one is Fig. 11, based on query log data, shows just 6. Tdie teason is that no rela-
tionship between the term “complexity” and the other 40ntgercan be inferred from the
query log data. These relationships either do not appebeiguery logs or are statistically
too weak (only based on a few instances).

It is important to emphasize here that this result is not difaat of the cosine simi-
larity measure we use. Even if we were to use another, morgleandistance measure
between keywords, such as some suggested in the previetatdite [Cilibrasi and Vi-
tanyi 2007], we would get very similar results. The fundataereason for the sparseness
of the resulting graph is that the query log data itself dogiscontain enough relevant
information about complexity-related disciplines. Foaewple, among the 101,000,000
gueries, the term complexity appears exactly 138 timesyna seich as “networks” 1074
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times. Important terms such as “cognition” or “semantio® @ven less common, featur-
ing only 47 and 26 times respectively among more than 100amitjueries. Therefore, it
is fair to conclude that the query log data, while very langsize, is quite poor in useful
information about the complexity-related sciences domais a caveat, we do note that
more common terms, such as “community” (78,862 times) diimfation” (36,520 times),
“art” (over 52,000), or even “agent” (about 7,000) do appmare frequently, but these
words have a more general language usage and are not egstddhe scientific domain.
Therefore, these higher frequencies do not actually preve useful for identifying the
relationship of these terms to complexity science, which war initial target question.

Turning our attention to the second graph in Fig. 12 and th&tjoa in Fig. 13, we can
see that query logs can also produce good results in coropavigh tagging, although they
are somewhat different from the ones obtained from tagdhog example, if we compare
the partitions obtained in Fig. 8 (resulting from taggingedand the one in Fig. 13 (from
query log data), we see that tagging produces a more preaitiign of the disciplines
into scientific sub-fields. For instance, it is clear from.FRggthat cluster 1 corresponds to
mathematics, optimization and computation, cluster 2 tcketa and economics, cluster 5
to biology and genetics, cluster 4 to disciplines very edab complexity science and so
forth. The partition obtained from query log data in Fig. @dile still very reasonable,
reflects perhaps how a general user would classify the diisesp rather than a specialist:
organization is related to both information, systems androanity (cluster 2), research
is either qualitative or quantitative (cluster 6), and titke.| There are also some counter-
intuitive associations, such as putting biology and markethe same cluster (number 1).
Note that the clustering (or modularity) coefficigptis higher in Fig. 13 than 8, but this
is only because there are less inter-connections betwems ta general in the query log
data, thus there are less edges to “cut” in the clusterinayitgn.

To conclude, while both methods produce reasonable resuoltaborative tagging does
better, at least for this domain. Tagging data appears todse nich in information about
interconnections between the terms that can be exploitatefiltering algorithms pro-
posed in this paper. This can probably be explained by theli@cdel.icio.us users have
more expertise and interest in complexity-related tofiestgeneral web searchers. Fur-
thermore, they are probably more careful in selecting nessuto tag and in selecting
labels for them that would be useful to other users as welhdpgd web searchers are
known to be “lazy” in typing queries). As a caveat, we note thé target domain (i.e.
complexity-related disciplines) is scientific and very gpézed. If the target would be
more general (for example, if we selected a set of termsaeliat pop-culture), the com-
parison might lead to different results.

In future work, it may be interesting to study the formatidrnsach vocabularies, but
taking into account only the opinion (expressed in termsakmarks or queries) of a
group or sub-community of users rather than all users, famgte the community of users
expertin a particular field. While this should be theordljcaossible for both approaches,
in practice, it may be easier to trace identities of userh wdtlaborative tagging, not least
due to privacy concerns. People who sign up to use a collabertagging system are
implicitly more willing to share their knowledge and expsetwith a community of other
users. By contrast, web search is implicitly a private atgtiwhere tracing users’ actual
identity, hence his/her expertise level may be undesir&ble

12 Although, from anecdotal evidence, this probably happers®me degree in current practice.
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7. CONCLUSIONS AND FUTURE WORK

This work has explored the important question of whetherteeoent, stable way of char-
acterizing information can emerge from collaborative taggystems and has presented
several novel methods for analyzing data from such systems.

First, we show that tagging distributions of heavily taggesources tend to stabilize
into power law distributions and present a method for detggiower law distributions in
tagging data. We see the emergence of stable power lanbditstms as an aspect of what
may be seen as collective consensus around the categamizdtinformation driven by
tagging behaviours. We have additionally presented a nddtireexamining the dynamics
and convergence of stable tag distributions over time byisigeof Kullback-Leibler diver-
gence between tag distributions at different time stepso Alcluded is an empirical study
of the importance of the “long tail” of the tag distributioimsthe convergence process.

In the second part of the paper, we propose a method for cmtisty and visualizing
correlation graphs from tags, and show how they can lend itapbinsights into how
a community of users sees the relations between a set of.taMasalso use a method
from network theory for partitioning tag correlation graptiat can be used to identify
vocabularies shared by a community of users. Finally, waghat vocabularies extracted
from collaborative tagging data can be significantly ricla¢teast for some domains, than
the ones that can be extracted from general search enginglqge. While these methods
were empirically tested using del.icio.us data, the predasethods are general enough to
be applicable to most existing tagging systems.

This work suggests a nhumber of exciting problems, both #témal and applied, that
merit further research. These include examining whethgeas of tagging distributions
and dynamics are subject to the influence of particular feataf tagging sites, to human
cognitive limits, or some mixture of the two. A thorough exaation of this aspect would
represent a significant contribution to work in this area wodld be important to many
practical tagging applications.

Another important direction of work would be examining ttiieets of using specialized
sub-communities of users in the study of convergence ofitglulitions and resulting in-
formation structures, rather than the entire user pomrias in this paper. As shown by
[Heymann et al. 2008], del.icio.us is not dominated by a smainber of core users, but
other tagging sites may be. We know relatively little aboomvhuser concentration might
influence the types of information structures that can b&ééifrom tags. Furthermore,
the shared vocabulary used by a specialized sub-commuhnitgeos may differ consider-
ably to that of a larger user base.

Based on these results, it seems quite plausible that fiothades can be fruitfully uti-
lized for a wide category of applications related to orgatian of information on the web.
Insights gained by taking collaborative tagging systemi®ssly as an empirical object of
study could result in insight into the complexity of the orfdle world’s most complex
systems, the World Wide Web.
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