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This paper uses data from the social bookmarking site del.icio.us to empirically examine the
dynamics of collaborative tagging systems and to study how coherent categorization schemes
emerge from unsupervised tagging by individual users.

First, we study the formation of stable distributions in tagging systems, seen as an implicit form
of “consensus” reached by the users of the system around the tags that best describe a resource.
We show that final tag frequencies for most resources converge to power law distributions and we
propose an empirical method to examine the dynamics of the convergence process, based on the
Kullback-Leibler divergence measure. The convergence analysis is performed both for the most
utilized tags at the top of tag distributions and the so-called “long tail.”

Second, we study the information structures that emerge from collaborative tagging, namely
tag correlation (or folksonomy) graphs. We show how community-based network techniques can
be used to extract simple tag vocabularies from the tag correlation graphs by partitioning them
into subsets of related tags. Furthermore, we also show, for a specialized domain, that shared
vocabularies produced by collaborative tagging are richer than the vocabularies which can be
extracted from large-scale query logs provided by a major search engine.

Although the empirical analysis presented in this paper is based on a set of tagging data
obtained from del.icio.us, the methods developed are general, and the conclusions should be ap-
plicable across all websites that employ tagging.
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1. INTRODUCTION

1.1 Tagging versus Taxonomies on the Web

The issue of how knowledge engineering on the Web should proceed with the greatest ef-
ficiency and efficacy is a central concern as the amount of information on the Web grows.
A small but increasingly influential set of web applications, including the social book-
marking site del.ici.ous, Flickr, Furl, Rojo, Connotea, Technorati, and Amazon allow users
to tag objects with keywords to facilitate retrieval both for the acting user and for other
users. Sets of categories derived based on the tags used to characterize some resource
are commonly referred to as folksonomies. This approach to organizing online informa-
tion is usually contrasted with taxonomies, including the approach some associate with the
Semantic Web.

There are concrete benefits to the tagging approach. The flexibility of tagging systems
is thought to be an asset; tagging is a categorization process, in contrast to a pre-optimized
classification process such as expert-generated taxonomies. In defining this distinction,
[Jacob 2004] believes that “categorization divides the world of experience into groups or
categories whose members share some perceptible similarity within a given context. That
this context may vary and with it the composition of the category is the very basis for both
the flexibility and the power of cognitive categorization.”Classification, on the other hand
“involves the orderly and systematic assignment of each entity to one and only one class
within a system of mutually exclusive and non-overlapping classes; it mandates consistent
application of these principles within the framework of a prescribed ordering of reality”
[Jacob 2004]. Other authors argue that tagging enables users to order and share data more
efficiently than using classification schemes; the free-association process involved in tag-
ging is cognitively much more simple than are decisions about finding and matching exist-
ing categories [Butterfield 2004]. Additionally, proponents of tagging systems show that
users of tagging systems only need to agree on the general meaning of a tag in order to
provide shared value instead of agreeing on a specific, detailed taxonomy [Mathes 2004].

However, a number of problems stem from organizing information through tagging sys-
tems, including ambiguity in the meaning of tags and the use of synonyms which creates
informational redundancy. Additionally, an important open question concerning the use
of collaborative tagging to organize metadata is whether ornot the system becomesstable
over time. Bystable, we mean that users have collectively developed some implicit con-
sensus about which tags best describe a site, and these tags do not vary much over time. We
will assume that the tags that best describe a resource will be those that used most often,
and new users mostly reinforce already-present tags with similar frequencies. Since users
of a tagging system are not acting under a centralized controlling vocabulary, one might
imagine that no coherent categorization schemes would emerge at all from collaborative
tagging. In this case, tagging systems, especially those with an open-ended number of
non-expert users like del.icio.us, would be inherently unstable such that the tags used and
their frequency of use would be in a constant state of flux. If this were the case, identifying
coherent, stable structures of collective categorizationproduced by users with respect to a
site would be difficult or impossible.

Given the debate over the utility of collaborative tagging systems compared to other
methods of knowledge engineering on the Web, it is increasingly important to understand
whether a coherent and socially navigable method of categorization can emerge from col-
laborative tagging systems. This paper will empirically examine a crucial aspect of this
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question: do tag distributions stabilize over time and, if so, what type of distributions
emerge? Since each tag for a given web resource (such as a web page) is repeated a num-
ber of times by different users, for any given tagged resource there is a distribution of tags
and their associated frequencies. The collection of all tags and their frequencies ordered
by rank frequency for a given resource is thetag distributionof that resource.

The hope among proponents of collaborative tagging systemsis that stable tag distribu-
tions, and thus, possibly, stable categorization schemes,might arise from these systems.
Again, bystablewe do not mean that users stop tagging the resource, but instead that users
collectively settle on a group of tags that describe the resource well and new users mostly
reinforce already-present tags with the same frequency as they are represented in the exist-
ing distribution. Online tagging systems have a variety of features that are often associated
with complex systems such as a large number of users and a lackof central coordination.
These types of systems are known to produce a distribution known as a power law over
time. A crucial feature of some power laws - and one that we also exploit in this work - is
that they can be produced by scale-free networks. So regardless of how large the system
grows, the shape of the distribution remains the same and thus stable. Researchers have
observed, some casually and some more rigorously, that the distribution of tags applied to
particular resources in tagging systems follows a power lawdistribution where there are
a relatively small number of tags that are used with great frequency and a great number
of tags that are used infrequently [Mathes 2004]. If this is the case, tag distributions may
provide the stability necessary to draw out useful information structures.

This paper will empirically examine two important questions regarding the structure of
tagging systems; first, whether tag distributions stabilize over time, and if so, what type of
distribution emerges and second, whether the resulting structure of tags can be utilized to
construct categorizations that provide meaningful information. This works seeks to make
a contribution both to the theoretical understanding of thenature of tagging systems and to
applied problems of information extraction from tagging systems.

1.2 Overview of Related Work

Existing research on tagging has explored a wide variety of problems, ranging from funda-
mental to more practical concerns. In this section, we provide a broad overview of the types
of problems that interest researchers and practitioners inthis area. We then focus on the
research most relevant to the work presented here, in order to underscore our contribution.

A number of papers [Halvey and Keane 2007; Kuo et al. 2007; Hearst and Rosner 2008]
examine which tag presentation techniques enable users to find information with greatest
ease and speed. They often put a special emphasis on tag clouds, the most widely used
presentation technique). [Halvey and Keane 2007] provide asystematic evaluation of the
properties of tag interfaces which have the most effect on the accuracy and speed with
which users find information. Using a set of 62 test subjects,they show that alphabetiza-
tion, font size and position of the tags play an important role. They also conclude that users
scan lists and clouds of tags, rather than reading them directly. [Kuo et al. 2007] perform a
similar study, but focused on the field of biomedical information. They compare the results
of user search based on the PubMed database with results froma search using tag clouds
extracted from search summaries returned by PubMed. They conclude that a tag cloud
interface is advantageous in presenting descriptive information, but it may be less effective
in enabling users to discover relationships between concepts than full text summaries.

In more recent work, [Hearst and Rosner 2008] extend the study of tag clouds by also
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examining the subjective reactions of users to different layouts. They also discuss the
role that social signaling may play in motivating the use of tag clouds. Another paper
concerned with visualization is [Kaser and Lemire 2007], who study the performance of
different visualization algorithms for the 2-dimensionaltag cloud drawing problem. The
algorithms proposed are evaluated based on criteria such asminimization of the screen
area required and computational speed. Compared to our work, this direction of research
on tag visualization is different in scope, since we are moreconcerned with macro-level
properties of tagging systems (e.g. convergence, emergence of shared vocabularies) than
with visualization and usability aspects. However, as future work, comparing visualization
methods using tag correlation graphs (as discussed in Sect.4 of this paper) with existing
approaches using tag clouds may prove insightful.

[Boydell and Smyth 2006] propose an approach for building a community-based snippet
index that reflects the expertize and revolving interests ofa group of searchers. They
show how such an index could be used to re-rank the results produced by an underlying
search engine, such as to give a higher rank to results that have been frequently selected
by members of the same community in the past. [Boydell and Smyth 2007] build on
the idea of using community knowledge, by proposing a socialsummarization technique
which allows the generation of more community-focused and query-sensitive summaries
than those returned by standard search engines. While this line of work does not focus
explicitly on tagging, it uses the same underlying principle, that of capturing the expertize
of a community of like-minded searchers to improve search results.

Other research examines the use of tagging for specific contexts and applications. [Hayes
and Avesani 2007] provides a discussion of how tag clustering techniques could be used to
retrieve information in blogs, while [Bateman et al. 2007] describe how using tagging in
an e-learning system can supplement traditional metadata-gathering approaches. [Dubinko
et al. 2006] consider the problem of visualizing the evolution of tags within the Flickr com-
munity. They develop several methods and algorithms for dynamically presenting tags to
users given a sliding time window. [Rattenbury et al. 2007] present a method for the auto-
matic extraction of event and place semantics from Flickr tags. [Chirita et al. 2007] develop
a system for the automatic generation of personalized tags during browsing, based on the
data residing on the surfer’s desktop. All of these techniques would benefit from a method
for determining whether a given set of tags has stabilized, such as the one proposed in this
paper, in order to present the most stable tags to the user. Iftags were presented before
they stabilized, the information presented to the user might be less valuable.

In a direction of work that bears directly on the larger question of this research, [Mika
2005] addresses the problem of extracting taxonomic information from tagging systems
in the form of Semantic Web ontologies. The paper extends thetraditional model of tax-
onomies by incorporating a social dimension, thus establishing an essential connection be-
tween tagging and the techniques developed in the Semantic Web arena. However, unlike
this work, Mika does not study the stabilization of the tag distributions themselves. Ideally,
one would want to know if a tag distribution was stable beforeattempting to extract any
taxonomic information from it.

There are several lines of research which take a perspectiveclosely related to our work.
Shen and Wu are interested in the structure of a tagging network for del.icio.us data as
we are in Section 4. Unlike in our examples, their graph is unweighted [Shen and Wu
2005] and does not reflect the information in the tag distribution. They examine the degree
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distribution (the distribution of the number of other nodeseach node is connected to) and
the clustering coefficient (based on a ratio of the total number of edges in a subgraph to the
number of all possible edges) of this network and find that thenetwork is indeed “scale-
free” and has the features [Watts and Strogatz 1998] found tobe characteristic of small
world networks: small average path length and relatively high clustering coefficient.

An early line of research that has attempted to formalize andquantify the underlying
dynamics of a collaborative tagging systems is [Golder and Huberman 2006], which also
make use of del.ici.ous data. They show the majority of sitesreach their peak popularity,
the highest frequency of tagging in a given time period, within ten days of being saved on
del.icio.us (67% in their data set), though some sites are “rediscovered” by users (about
17% in their data set), suggesting stability in most sites but some degree of “burstiness”
in the dynamics that could lead to cyclical patterns of stability characteristic of chaotic
systems. Importantly, Golder and Huberman find that the distribution of tags within a
given site stabilizes over time, usually around one hundredtagging events. They do not,
however, examine what type of distribution arises from a stabilized tagging process, nor
do they present a method for determining the stability of thedistribution which we see as
central to understanding the possible utility of tagging systems.

In a very recent line of research, [Heymann et al. 2008] provide a large-scale comparison
between social bookmarking and traditional web search, also using del.icio.us data. They
find that tags used on del.icio.us are, on the whole accurate,while the class of users that
use this system is broad, i.e. not restricted to a small subset of users. They also observe,
however, that a large proportion of the tags assigned to a webpage (or resource) already
appear in the title, forward and backward links to that page.Therefore, while tags assigned
to resources are accurate, their distributions may not be suitable to make a significant
impact on search performance. This is somewhat in line with our findings: while tags
converge relatively fast to stable, power law distributions (c.f. Sect. 2), the top of these
distributions may contain common (or obvious) tags. A solution to this problem (also
suggested in [Heymann et al. 2008]) may be a better mechanismfor recommending tags.
Conceivably, the local “vocabulary extraction” methods presented in Sect. 5 of this paper
(and adaptations thereof) could be used to this end.

One important result is represented by [Cattuto et al. 2007], which discuss generative
models to produce power law distributions for tag correlations. They also take a complex
systems perspective to tagging and propose a generic model for the behavior of taggers,
in the form of a Yule-Simon process with memory. However, [Cattuto et al. 2007] do
not provide an analysis of how tag frequencies per website actually converge in time to
stable distributions. [Dellschaft and Staab 2008] proposes a more-parametrized model
that accounts for power law distributions in tag vocabularygrowth and in tag distributions
for websites. Overall, we see our work and that of [Cattuto etal. 2007] and [Dellschaft
and Staab 2008] as complementary in scope. While they provide a theoretical model of
a process which could give rise to power law distributions intagging, we propose using
an information-theoretic technique in Section 3 to analyzethe convergence of power law
distributions in already-existing tagging systems. Furthermore, we demonstrate its utility
in several applications, such as extracting tag graphs and shared vocabularies.

Another important direction of work is represented by [Sen et al. 2006]. They present a
user-centric model of tagging that distinguishes between personal tendency and community
influence in the behavior of individual taggers. Furthermore, they propose a method to
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select tags to be displayed to a user, such as to maximize tag utility, adoption and user
satisfaction. In this work, tagging is introduced as a novelextension of an already existing
recommender system, MovieLens. By contrast to [Sen et al. 2006], our work is more
concerned with studying the tag distributions that emerge from the actions of a community
of users and their mutual influence and choice. Of course, as shown by [Sen et al. 2006],
some tags are simply personal bookmarks - and they are often very specific (even invented),
as their scope is retrieval of a resource by an individual user. However, in the analysis
performed in this paper, we focus on the aggregate tag distributions per resource which, in
a large tagging system are highly unlikely to be personal bookmarks, but rather reflect the
opinion or consensus of the user community. We also discuss the dynamics of the tags in
the long tail, but as a macro-level convergence phenomenon.

In a recent position paper [Mikroyannidis 2007], using the empirical results presented
in the conference version of this work [Halpin et al. 2007], argues that Semantic Web and
Social Web approaches are essentially compatible and can co-exist. While we support the
basic argument presented by [Mikroyannidis 2007], we should point out that convergence
to stable tag distributions does not, by itself, imply that the converged distributions are
directly usable for the Semantic Web, just as we do not propose they are directly usable
for information retrieval. The process of constructing proper formal ontologies from folk-
sonomies, while perhaps possible under certain conditions, is not a straightforward task.1

The shared tag vocabularies (c.f. Sect. 5 of this paper) are not fully-fledged formal Seman-
tic Web ontologies, but they can also be useful structures for many information retrieval
applications, even without additional formalization.

Finally, in related work by some of the authors of this paper,[Robu et al. 2009] use
complex systems techniques to study the dynamics of sponsored search markets, as well
as the vocabularies which can be extracted from sponsored search query and click logs.

1.3 The Tripartite Structure of Tagging

To begin, we review the conceptual model of generic collaborative tagging systems theo-
rized by [Marlow et al. 2006; Mika 2005] in order to make predictions about collaborative
tagging systems based on empirical data and based on generative features of the model.

There are three main types of entities that compose any tagging system:

—The users of the system (people who actually do the tagging)

—The tags themselves

—The resources being tagged (in this case, the websites)

Each of these can be seen as forming separate spaces consisting of sets of nodes, which
are linked together by edges (see Fig. 1). The first space, theuser space, consists of the
set of all users of the tagging system, where each node is a user. The second space is the
tag space, the set of all tags, where a tag corresponds to a term (“music”) or neologism
(“toread”) in natural language. The third space is theresource space, the set of all re-
sources, where usually each resource is a website denoted bya unique URI.2 A tagging

1This may require for instance, some decision support in guiding the user, or a more structured design of the
interface used to input the tags.
2A URI is a “Universal Resource Identifier” such ashttp://www.example.comthat can return a webpage when
accessed. Some tagging based systems such as Spurl (http://www.spurl.net) store the entire document, not the
URI, but most systems such as del.icio.us store only the URI.The resource space, in this definition, represents
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instance can be seen as the two edges that links a user to a tag and that tag to a given
website or resource. Note that a tagging instance can associate a date with its tuple of user,
tag(s), and resource.

Fig. 1. Tripartite graph structure of a tagging system. An edge linking a user, a tag and a resource (website)
represents one tagging instance

From Figure 1, we observe that tags provide the link between the users of the system
and the resources or concepts they search for.

This analysis reveals a number of dimensions of tagging thatare often under-emphasized.
In particular, tagging is oftena methodology for information retrieval, much like traditional
search engines, but with a number of key differences. To simplify drastically, with a tradi-
tional search engine a user enters a number of tags and then anautomatic algorithm labels
the resources with some measure of relevance to the tagspre-discovery, displaying rele-
vant resources to the user. In contrast, with collaborativetagging a user finds a resource and
then adds one or more tags to the resource manually, with the system storing the resource
and the tagspost-discovery. When faced with a case of retrieval, an automatic algorithm
does not have to assign tags to the resource automatically, but can follow the tags used
by the user. The difference between this and traditional searching algorithms is two-fold:
collaborative tagging relies on human knowledge, as opposed to an algorithm, to directly
connect terms to documents before a search begins, and thus relies on the collective intel-
ligence of its human users topre-filter the search results for relevance. When a search is
complete and a resource of interest is found, collaborativetagging often requires the user
to tag the resource in order to store the result in his or her personal collection. This causes
a feedback cycle. These characteristics motivate many systems like del.icio.us and it is
well-known that feedback cycles are one ingredient of complex systems [Bar-Yam 2003],
giving further indication that a power law in the tagging distribution might emerge.

1.4 Organization of the paper

This paper is organized as follows. In the first part of the paper, we examine how to detect
the emergence of stable “consensus” distributions of tags assigned to individual resources.
In Section 2 we demonstrate a method for empirically examining whether tagging distri-
butions follows a power law distribution. In Section 3 we show how this convergence to

whatever is being tagged, which may or may not be websites perse.
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a power law distribution can be detected over time by using the Kullback-Leibler diver-
gence. We further empirically analyze the trajectory of tagging distributions before they
have stabilized, as well as the dynamics of the “long tail” oftag distributions. In the sec-
ond part of the paper, we examine the applications of these stable power law distributions.
In Section 4 we demonstrate how the most frequent tags in a distribution can be used in
inter-tag correlation graphs (or folksonomy graphs) to chart their relation to one another.
Section 5 shows how these folksonomy graphs can be (automatically) partitioned, using
community-based methods, in order to extract shared tag vocabularies. Finally, Section 6
provides an independent benchmark to compare our empiricalresults from collaborative
tagging, by solving the same problems using a completely different data set: search engine
query logs. The paper concludes with a discussion of future work.

2. DETECTING POWER LAWS IN TAGS

This section uses data from del.icio.us to empirically examine whether intuitions regarding
tagging systems as complex systems exhibiting power law distributions hold.

2.1 Power Law Distributions: Definition

A power law is a relationship between two scalar quantitiesx andy of the form:

y = cxα (1)

whereα andc are constants characterizing the given power law. Eq. 1 can also be written
as:

log y = α log x + log c (2)

When written in this form, a fundamental property of power laws becomes apparent;
when plotted in log-log space, power laws are straight lines. Therefore, the most simple
and widely used method to check whether a distribution follows a power law and to deduce
its parameters is to apply a logarithmic transformation, and then perform linear regression
in the resulting log-log space. Recent work on the subject byNewman ([Newman 2005])
suggests, however, that this may introduce a bias in the value of the exponent, and as the
reliable alternative proposes the following formula to determineα:

α = 1 + n ∗

[

n
∑

i=1

ln
xi

xmin

]

−1

(3)

wherexi, i = 1..n are the measured values ofx andxmin corresponds to the lowest value
for which the power law behavior holds. This formula was alsoused in this work (the
interested reader can consult the full derivation of the above formula in [Newman 2005]).

In our tagging domain, the intuitive explanation of the above parameters is as follows:c

represents the number of times the most common tag for that website is used, whileα gives
the power law decay parameter for the frequency of tags at subsequent positions. Thus, the
number of times the tag in positionp is used (wherep = 1..25, since we considered the
tags in the top 25 positions) can be approximated by a function of the form:

Frequency(p) =
c

p−α
(4)

where−α > 0 andc = Frequency(p = 1) is the frequency of the tag in the first position
in the tag distribution (thus, it is a constant that is specific for each site/resource).
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2.2 Empirical Results for Power Law Regression for Individual Sites

For this analysis, we used two different data sets. The first data set contained a subset of
500 “Popular” sites from del.icio.us that were tagged at least 2000 times (i.e. where we
would expect a “converged” power law distribution to appear). The second data set consid-
ers a subset of another 500 sites selected randomly from the “Recent” section of del.icio.us.
Both sections are prominently displayed on the del.icio.ussite, though “Recent” sites are
those tagged within the short time period immediately priorto viewing by the user and
“Popular” sites are those which are heavily tagged in general.3 While the exact algorithms
used by del.icio.us to determine these categories are unknown, they are currently the best
available approximations for random sampling of del.icio.us, both of heavily tagged sites
and of a wider set of sites that may not be heavily tagged.

The mean number of users who tagged resources in the “Popular” data set was 2074.8
with a standard deviation of 92.9, while the mean number of users of the “Recent” data set
was 286.1 with a standard deviation of 18.2. In all cases, thetags in the top 25 positions in
the distributions have been considered and thus all of our claims refer to these tags. Since
the tags are rank-ordered by frequency and the top 25 is the subset of tags that are actually
available to del.icio.us users to examine for each site, we argue that using the top 25 tags
is adequate for this examination.

Results are presented in Figure 2. In all cases, logarithm ofbase 2 was used in the
log-log transformation.4
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Fig. 2. Frequency of tag usage relative to tag position. For each site, the 25 most frequently used tags were
considered. The plot uses a double logarithmic (log-log) scale. The data is shown for a set of 500 randomly-
selected, heavily tagged sites (left) and for a set of 500 randomly-selected, less-heavily tagged sites (right).

As shown by [Newman 2005] and others, the main characteristic of a power law is its
slope parameterα. On a log-log scale, the constant parameterc only gives the “vertical

3All data used in the convergence analysis was collected in the week immediately prior to 19 Nov 2006.
4Note that the base of the logarithm does not actually appear in the power law equation (c.f. Eq. 1), but because
we use empirical and thus possibly noisy data, this choice might introduce errors in the fitting of the regression
phase. However, we did not find significant differences from changing the base of the logarithm toe or 10.
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shift” of the distribution with respect to the y-axis. For each of the sites in the data set,
the corresponding power law function was derived and the slopes of each (α parameters)
were compared. The slopes indicate the fundamental characteristic of the power laws, as
vertical shifts can and do vary significantly between different sites.

Our analysis shows that for the subset of heavily tagged sites, the slope parameters are
very similar to one another, with an average ofα = −1.22 and a standard deviation±0.03.
Thus, it appears that the power law decay slope is relativelyconsistent across the sites
studied. This pattern where the top tags are considerably more popular than the rest of the
tags indicates a fundamental effect of the way tags are distributed in individual websites
which is independent of the content of individual websites.

For the set of less-heavily tagged sites, we found the slopesdiffered from each other to
a much greater extent than with the heavily tagged data, withan averageα = −3.9 and
standard deviation±4.63. Clearly, the power law effect is much less pronounced for the
less-heavily tagged sites as opposed to the heavily tagged sites, as the standard deviation
reveals a much poorer fit of the regression line to the log-logplotted aggregate data. For
random sites with relatively few instances of tagging, the results reveal little other than
noise, though even for some of these less popular sites, a power law is beginning to emerge.

2.3 Empirical Results for Power Law Regression Using Relative Frequencies

In the previous section, we applied power law regression techniques to individual sites,
using the number of hits for a tag in a given position in the distribution. In this section, we
examine the aggregate case where we no longer use the raw number of tags (because these
are not directly comparable across sites), and instead use their relative frequencies. The
relative frequency is defined as the ratio between the numberof times a tag in a particular
position is used for a resource and the total number of times that resource is tagged.5 Thus,
relative frequencies for a given site always sum to one. These relative frequencies based
on the averaged data from all 500 sites of the “Popular” data set. Results are presented in
Figure 3.

To summarize our results, we found that the data points can befit with a linear regression
line, with some error. With the aggregate function, the parameter for the slope of the power
law, using the above equation (see Equation 3), had the value: α = −1.278. As mentioned
before, for the individual sites, the slopes found were in a similar range, i.e. with an
averageα = −1.22, and standard deviation±0.03. Thus, it appears that the power law
decay (i.e. slope) is relatively consistent, both in the cumulative case and across individual
sites. Intuitively, this indicates a fundamental effect ofthe way tags are distributed in
individual websites independent of the context and contentof the specific website.

There is a caveat, however. We observed that tags in positions seven to ten have a
considerably sharper drop in frequency than the general trend line would predict. This
means that if we were to do a piece-wise regression for the tags in the first seven positions
and the tags in the last fifteen positions, we would get linearfunctions for both, though
with different slopes. Furthermore, as Fig. 2 shows, this effect largely holds for almost
all sites in the data set considered, so it is not attributable to noise alone, but a consistent
effect of the way tagging was performed. We have no fully satisfactory explanation for this
effect, although several hypotheses seem plausible.

5To be more precise, the denominator is taken as the total number of times the resource is tagged with a tag from
the top 25 positions, given available data.
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Fig. 3. Average relative frequency of tag usage, for the set of 500 “Popular” sites from above. On the y-axis, the
logarithm of the relative frequency (probability) is given. The plot uses a double logarithmic (log-log) scale, thus
on the y-axis values are negative since relative frequencies are less than one.

One possible line of explanation states a cognitive limit onthe part of the users, i.e. there
may be a maximum number of tags that an average, “typical” user employs to bookmark
a random resource. This effect may also be an artifact of the user interface specific to
del.icio.us, as users see space for a particular number of tags or receive a particular number
of suggestions for tags to use. We have no way to derive a definitive conclusion from
available Del.icio.us data, as there is no comparison data from a “control group”, that
could be used to benchmark the different explanations. Morecontroled user experiments
in the future should be able to shade more light into this matter (although there are obvious
challenges in conducting large-scale experimentation). In any case, this observation does
not affect our basic conclusion that tag distributions follow power laws.

3. THE DYNAMICS OF TAG DISTRIBUTIONS

In Section 2, we provide a method for detecting a power law distribution in the tags of a site
or collection of sites. In this section, we study another aspect of the problem, namely how
the shape of these distributions develops in time from the tagging actions of the individual
users. First, we examine the how power law distributions form at the top (the first 25
positions) of tag distributions for each site. For this, we employ a method from information
theory, namely the Kullback-Leibler divergence. Second, we study the dynamics of the
entire tag distributions, including all tags used for a site, and we show that the relative
weights of the top and tail of tag distributions converge to stable ratios in the data sets.

3.1 Kullback-Leibler Divergence: Definition

In probability and information theory, the Kullback-Leibler divergence (also known “rela-
tive entropy” or “information divergence”) represents a natural distance measure between
two probability distributionsP andQ (in our case,P andQ are two vectors representing
discrete probability distributions). Formally, the Kullback-Leibler divergence betweenP
andQ is defined as:
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DKL(P ||Q) =
∑

x

P (x)log(
P (x)

Q(x)
) (5)

The Kullback-Leibler distance is a non-negative, convex function, i.e.
DKL(P, Q) ≥ 0, ∀P, Q (note thatDKL(P, Q) = 0 iff. P and Q coincide). Also, unlike
other distance measures it is not symmetric, i.e. in generalDKL(P, Q) 6= DKL(Q, P ).

3.2 Application to Tag Dynamics

We propose two complementary ways to detect whether a distribution has converged to a
steady state using the Kullback-Leibler divergence:

—The first is to take the relative entropy between every two consecutive points in time
of the distribution, where each point in time represents some change in the distribution.
Again, in our data, tag distributions are based on the rank-ordered tag frequencies for
the top 25 highest-ranked unique tags for any one website. Each point in time was a
given month where the tag distribution had changed; months where there was no tagging
change were not counted as time points. Using this methodology, a tag distribution that
was “stable” would show the relative entropy converging to and remaining at zero over
time. If the Kullback-Leibler divergence between two consecutive time points becomes
zero (or close to zero), it suggests that the shape of the distribution has stopped evolving.
This technique may be most useful when it is completely unknown whether or not the
tagging of a particular site has stabilized at all.

—The second method involves taking the relative entropy of the tag distribution for each
time step with respect to the final tag distribution, the distribution at the time the mea-
surement was taken or the last observation in the data, for that site. This method is
most useful for heavily tagged sites where it is already known or suspected that the final
distribution has already converged to a power law.

The two methods are complementary; the first methodology would converge to zero if
the two consecutive distributions are the same, and thus onecould detect whether distribu-
tions converged if even temporarily. Cyclical patterns of stabilization and destabilization
may be detected using this first method. The second method assumes that the final time
point is the stable distribution so this method detects convergence only towards the final
distribution. If both of these methods produce relative entropies that approach zero, then
one can claim that the distributions have converged over time to a single distribution, the
distribution at the final time point.

3.3 Empirical Results for Tag Dynamics

The analysis of the intermediate dynamics of tagging is considerably more involved than
the analysis of final tag distributions. Because the length of the histories varies widely,
there is no meaningful way to compute a cumulative measure across all sites as in Section
2, so our analysis has to consider each resource individually. In Figure 4 (A and B), we
plot the results for the convergence of the 500 “Popular” sites, on the basis that their final
distribution must have converged to a power law, that their complete tagging history was
available from the first tagging instances, and that this history was of substantial length. In
the data set considered, up to 35 time points are available for some sites (which roughly
corresponds to three years of data, since one time point represents one month).
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Fig. 4. A (left). Kullback-Leibler divergence between tag frequency distributions at consecutive time steps for
500 ”Popular” sites. B (right). Kullback-Leibler divergence of tag frequency distribution at each time step with
respect to the final distribution.

There is a clear effect in the dynamics of the above distributions.6 At the beginning of
the process when the distributions contain only a few tags, there is a high degree of ran-
domness, indicated by early data points. However, in most cases this converges relatively
quickly to a very small value, and then in the final ten steps, to a Kullback-Leibler distance
which is graphically indistinguishable from zero (with only a few outliers). If the Kullback-
Leibler divergence between two consecutive time points (inFigure 4A) or between each
step and the final one (Figure 4B) becomes zero or close to zero, it indicates that the shape
of the distribution has stopped changing. The results here suggest that the power law may
form relatively early on in the process for most sites and persist throughout. Even if the
number of tags added by the users increases many-fold, the new tags reinforce the already-
formed power law. Interestingly, there is a substantial amount of variation in the initial
values of the Kullback-Leibler distance prior to the convergence. Future work might ex-
plore the factors underlying this variation and whether it is a function of the content of the
sites or of the mechanism behind the tagging of the site. Additionally, convergence to zero
occurs at approximately the same time period (often within afew months) for these sites.

The results of the Kullback-Leibler analysis provide a powerful tool for analyzing the
dynamics of tagging distributions. These results may very well be the consequence of the
“scale-free” property of tagging networks, so that once thetagging of users has reached a
certain threshold, regardless of how many tags are added, the distribution remains stable.
This method can be very useful in analyzing real-world tagging systems where the stability
of the categorization scheme produced by the tagging needs to be confirmed.

3.4 Examining the dynamics of the entire tag distribution

In the previous sections, we focused on the distributions ofthe tags in the top 25 positions.
However, heavily tagged or popular resources, such as thoseconsidered in our analysis, can

6Note that in Figure 4, the first two time points were omitted because their distribution involved few tags and
were thus very highly random.
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be tagged several tens of thousands of times each, producinghundreds or even thousands
of distinct tags. It is true that many of these distinct tags are simply personal bookmarks
which have no meaning for the other users in the system. However, it is still crucial to
understand their dynamics and the role they play in tagging,especially with respect to the
top of the tag distribution. Some sources (e.g. [Anderson 2006]), have argued that the
dynamics of long tails are a fundamental feature of Internet-scale systems. Here we were
particularly interested in two questions. First, how does the number of times a site is tagged
(including the long tail) evolve in time? Second, how does the relative importance of the
head (top 25 tags) to the long tail change as tags are added to aresource?

Results for the same set of 500 “Popular” sites described above are shown in Figure 5.
Note that the tag distributions were reconstructed throughviewing the tagging history of
the individual site as available through del.icio.us and collecting the growth of this tagging
distribution over time, thus allowing us to record the growth of tags outside the 25 most
popular.
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Fig. 5. A (left). Cumulative number of times a resource is tagged for each time point. B (right). Proportion of
times a tag in the top 25 spots of the distribution has been used to tag a resource to the total number of times the
resource has been tagged with any tag.

As seen in Figure 5, the total number of times a site is tagged grows continuously at a rate
that is specific to each site and this probably depends on its domain and particular context.
Though the results are not shown here due to space constraints, a similar conclusion can
be formulated for the number of distinct tags, given that thenumber of distinct tags varies
considerably per site and does not seem to stabilize in time.However for virtually all of
the sites in the data set considered, the proportion of timesa tag from the top 25 positions
is used relative to the total number of times that a resource is tagged did stabilize over
time. So, while the total number of tags per resource grows continuously, the relative
frequency of the tags in the top of the tag distribution compared to the those in the long tail
does stabilize to a constant ratio. This is an important effect and it represents a significant
addition to our analysis of the stability analysis of the top25 positions, since it shows
the relative importance of the long tail with respect to the head of the distribution does
eventually stabilize regardless of the growth of tags in thelong tail.
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4. CONSTRUCTING TAG CORRELATION GRAPHS

The previous section examines the type of frequency distributions that emerge from the
collective tagging actions of individual users, as well as the dynamics of this process. This
section examines the type of information structures that form from these actions, given the
hypothesized importance of the information value of tags inunderstanding tagging sys-
tems. We look at one of the most simple information structures that can be derived through
collaborative tagging: inter-tag correlation graphs (or,perhaps more simply, “folksonomy
graphs”) . We discuss the methodology used for obtaining such graphs and then illustrate
our approach through an example domain study.

4.1 Methodology

The act of tagging resources by different users induces, at the tag level, a simple dis-
tance measure between any pair of tags. This distance measure captures a degree of co-
occurrence which we interpret as a similarity metric between the concepts represented by
the two tags.

The collaborative filtering [Sarwar et al. 2001; Robu and Poutré 2006] and natural lan-
guage processing [Manning and Schutze 2002] literature proposes several distance or sim-
ilarity measures that can be employed for such problems. Themetric we found most useful
for this problem iscosine distance.7

Formally, letTi, Tj represent two random tags. We denote byN(Ti) andN(Tj) respec-
tively the number of times each of the tags was used individually to tag all resources, and
by N(Ti, Tj) the number of times two tags are used to tag the same resource.Then the
similarity between any pair of tagsi andj is defined as:

similarity(Ti, Tj) =
N(Ti, Tj)

√

N(Ti) ∗ N(Tj)
(6)

In the rest of the paper, we use the shorthand:simij to denotesimilarity(Ti, Tj).
From these similarities we can construct a tag-tag correlation graph or network, where

the nodes represent the tags themselves weighed by their absolute frequencies, while the
edges are weighed with the cosine distance measure. We builda visualization of this
weighed tag-tag correlation, by using a “spring-embedder”or ”spring relaxation” type of
algorithm. We tested two such algorithms: Fruchterman-Reingold and Kawada-Kawai[Batagelj
and Mrvar 1998]; the two graphs included in this paper are based on the later. An analysis
of the structural properties of such tag graphs may provide important insights into both
how people tag and how structure emerges in collaborative tagging.

4.2 Constructing the tag correlation (folksonomy) graphs

In order to exemplify our approach, we collected the data andconstructed visualizations
for a restricted class of 50 tags, all related to the tag “complexity.” Our goal in this exam-
ple was to examine which sciences the user community of del.icio.us sees as most related
to “complexity” science, a problem which has traditionallyelicited some discussion. The
visualizations were made on Pajek [Batagelj and Mrvar 1998]. The purpose of the visual-
ization was to study whether the proposed method retrieves connection between a central
tag “complexity” and related disciplines. We considered two cases:

7This should not be interpreted as a conclusion on our part that cosine distance is always an optimal choice for
this problem. This issue probably requires further research and even larger data sets.
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Fig. 6. Folksonomy graph, considering only correlations corresponding to central tag “complexity”
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—Only the dependencies between the tag “complexity” and allother tags in the subset are
taken into account when building the graph (Fig. 6).
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—The weights of all the 1175 possible edges between the 50 tags are considered (Fig. 7).

In both figures, the sizes of the nodes are proportional to theabsolute frequencies of each
tag, while the distances are, roughly speaking, inversely related to the distance measure as
returned by the “spring-embedder” algorithm.8 We tested two energy measures for the
“springs” attached to the edges in the visualization: Kamada-Kawai and Fruchterman-
Reingold [Batagelj and Mrvar 1998]. For lack of space, only the visualization returned by
Kamada-Kawai is presented here, since we found it more faithful to the proportions in the
data.

The results from the visualization algorithm match relatively well with the intuitions
of an expert in this field. Some nodes are much larger than others which again shows
that taggers prefer to use to general, heavily used tags (e.g. the tag “art” was used 25
times more than “chaos”). Tags such as “chaos”, “alife”, “evolution” or “networks” which
correspond to topics generally seen as close to complexity science are close to the node for
tag “complexity”. At the other end, the tag “art” is a large, distant node from “complexity.”
This is not so much due to the absence of sites discussing aspects of complexity in art as
there are quite a few of such sites, but instead due to the factthat they represent only a
small proportion of the total sites tagged with “art,” leading to a large distance measure.

In Figure 7, the distances to “complexity” change significantly, due to the addition of
the correlations to all other tags. However, one can observeseveral clusters emerging
which match reasonably well with intuitions regarding the way these disciplines should
be clustered. Thus, in the upper-left corner one can find tagssuch as “mathematics”, “al-
gorithmics”, “optimization”, “computation”, while immediately below are the disciplines
related to AI (“neural” [networks], “evolutionary” [algorithms] and the like). The bottom
left is occupied by tags with biology-related subjects, such as “biology”, “life”, “genetics”,
“ecology” etc, while the right-hand side consists of tags with more “social” disciplines
(“markets”, “economics”, “organization”, “society” etc.). Finally, some tags are both large
and central, pertaining to all topics (“research”, “science”, “information”).

We also observed some tags that are non-standard English words, although we filtered
most out as not relevant to this analysis. One example is “complexsystems” (spelled as
one word), which was kept as such, although the tags ”“complex” and “system” taken
individually are also present in the set. Perhaps unsurprisingly, the similarity computed
between the tags “complexsystems” and “complex” is one of the strongest between any tag
pair in this set. One implication of this finding is that tag distances could be used to find tags
that have minor syntactic variance with more well-known tags, such as “complesystems,”
but which cannot simply detected by morphological stemming.

5. IDENTIFYING TAG VOCABULARIES IN FOLKSONOMIES USING COMMU-
NITY DETECTION ALGORITHMS

The previous sections analyzed the temporal dynamics of distribution convergence and
stabilization in collaborative tagging as well as some information structures, like tag cor-
relation (or folksonomy) graphs, that can be created from these tag distributions. In this
Section, we look at how these folksonomy graphs could be usedto solve an important
problem in collaborative tagging: identifying shared tag vocabularies.

8For two of the tags, namely “algorithms” and “networks,” morphological stemming was employed. So both
absolute frequencies and co-dependencies were summed overthe singular form tag, i.e. “network” and the plural
“networks,” since both forms occur with relatively high frequency.
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The problem considered in this section can be summarized as:given a heterogeneous
set of tags (which can be represented as a folksonomy graph),how can we partition this set
into subsets of related tags? We call this problem a “vocabulary identification” problem.
It is important to note that we use the term “vocabulary” onlyin a restricted sense, i.e. as
a collection of related terms, relevant to a specific domain.For instance, a list of tropical
diseases is a “vocabulary”, a list of electronic componentsin a given electronic device is
a vocabulary, and a list of specialized terms connected to a given scientific subfield would
all be “vocabularies” in our definition.

We acknowledge that this is a restricted definition: in some applications, especially
Semantic Web approaches, we would also like to know precisely how these terms are
related. This type of structural information is difficult toextract only from tags, given the
simple structure of folksonomies. Nevertheless, our approach could still prove useful in
such applications: for example, one could construct the setof related terms as a first rough
step and then a human expert (or, perhaps, another [semi]-automated method) could be
used to add more more detail to the extracted vocabulary set.

However, there are many settings in which the fully automated technique presented in
this paper could prove very useful. For example, drawing of tag clouds has received sig-
nificant attention, but how to select the subset of related tags that will be presented in a
cloud is an open problem. Another potential application is in selecting terms for sponsored
search auctions. Some keywords (tags) bring a high value to advertisers, and knowing
all the related keywords in a category that people can potentially use in search for can be
very useful information for an advertiser. Conversely, theinformation regarding subsets of
related tags could also be useful for the search engine in pricing searches using these tags.

Note that the complexity-related disciplines data set (already introduced in Sect. 4) is
a useful tool to examine this question, since the tags in the initial set are heterogeneous
(complexity science is, by its very nature, an interdisciplinary field), but there are natural
divisions into sub-fields, based on different criteria. This allows easier intuitive interpreta-
tion of the obtained results (besides the mathematical modularity criteria described below).

The technique we will use in our approach is based on the so-called “community detec-
tion” algorithms, developed in the context of complex systems and network analysis theory
[Newman and Girvan 2004; Newman 2004]. Such techniques havebeen well studied at a
formal level and have been used to study large-scale networks in a variety of fields from
social analysis (e.g. analysis of co-citation networks), analysis of biological nets (e.g. food
chains) to gene interaction networks. [Newman and Girvan 2004] provide an overview of
existing applications of this theory, while [Newman 2004] presents a formal analysis of the
algorithm class used in this paper. To the best of the authors’ knowledge, however, this is
the first paper that studies the application of these techniques to tagging systems and folk-
sonomies. In a somewhat related direction of work, [Jin et al. 2007] study the application
of community detection techniques to aggregate bidder preferences in Ebay auctions.

5.1 Using community detection algorithms to partition tag graphs

In network analysis theory, a community is defined as a subsetof nodes that are connected
more strongly to each other than to the rest of the network. Inthis interpretation, a com-
munity is related to clusters in the network. If the network analyzed is a social network
(i.e. vertices represent people), then “community” has an intuitive interpretation. For ex-
ample, in a social network where people who know each other are connected by edges, a
group of friends are likely to be identified as a community, orpeople attending the same
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school may form a community. We should stress, however, thatthe network-theoretic
notion of community is much broader, and is not exclusively applied to people. Some ex-
amples [Newman and Girvan 2004; Jin et al. 2007] are networksof items on Ebay, physics
publications on arXiv, or even food webs in biology. We will use a community detection al-
gorithm to identify “vocabularies” within a folksonomy graph, identifying “communities”
as “vocabularies.”

5.1.1 Community detection: a formal discussion.Let the network considered be rep-
resented a graphG = (V, E), when|V | = n and |E| = m. The community detection
problem can be formalized as a partitioning problem, subject to a constraint. The partition-
ing algorithm will result in a finite number of explicit partitions, based on clusters in the
network, that will considered “communities.”

Eachv ∈ V must be assigned to exactly one clusterC1, C2, ...CnC
, where all clusters

are disjoint, i.e.∀v ∈ V, v ∈ Ci, v ∈ Cj ⇒ i = j.
In order to compare which partition is “optimal”, the globalmetric used ismodularity,

henceforth denoted byQ. Intuitively, any edge that in a given partition has both ends in the
same cluster contributes to increasing modularity, while any edge that “cuts across” clusters
has a negative effect on modularity. Formally, leteij , i, j = 1..nC be the fraction of all
edges in the graph that connect clustersi andj and letai = 1

2

∑

j eij be the fraction of the
ends of edges in the graph that fall within clusteri (thus, we have

∑

i ai =
∑

i,j eij = m).
The modularityQ of a graph|G| with respect to a partitionC is defined as:

Q(G, C) =
∑

i

(ei,i − a2

i ) (7)

Informally, soQ is defined as the fraction of edges in the network that fall within a par-
tition, minus the expected value of the fraction of edges that would fall within the same
partition if all edges would be assigned using a uniform, random distribution. These par-
titions are identified as communities by [Newman and Girvan 2004]. In tagging, each of
these partitions is identified as a vocabulary.

As shown in [Newman 2004], ifQ = 0, then the chosen partitionc shows the same
modularity as a random division.9 A value of Q closer to 1 is an indicator of stronger
community structure - in real networks, however, the highest reported value isQ = 0.75.
In practice, [Newman 2004] found (based on a wide range of empirical studies) that values
of Q above around 0.3 indicate a strong community structure for the given network.

Generally speaking, determining the optimal partition with respect to our modularity
metric has been shown to be a computationally hard problem [Brandes et al. 2006]. The
number of possible ways to partition a graphG is very large: [Newman 2004] shows there
are more than2n−1 ways to form a partition, thus the problem is at least exponential in
n. Furthermore, in many real life applications (including tagging), the optimal number
of disjoint clustersnC is generally not known in advance. We will return shortly to dis-
cuss an algorithm by which an efficient partition can actually be computed, but first some
additional steps are needed to link this formal definition toour tagging domain.

9Note thatQ can also take values smaller than 0, which would indicate that the chosen partition is worse than
expected at random.
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5.2 Edge filtering step

As shown in the tag graph construction step above, for our data set the initial inter-tag

graph contains

(

50
2

)

= 1225 pairwise similarities (edges), one for each potential tag

pair. Most of these dependencies are, however, spurious as they represent just noise in
the data, and our analysis benefits from using only the top fraction, corresponding to the
strongest dependencies.

In this paper, we make the choice to filter and use in further analysis only the topm =
kd ∗ n edges, corresponding to the strongest pairwise similarities. Here,kd is a parameter
that controls the density of the given graph (i.e. how many edges are there to be considered
vs. the number of vertices in the graph). In practice, we takevalues ofkd = 1..10, which
for the tag graph we consider means a number of edges from 500 down to 50.

5.3 Normalized vs. non-normalized edge weights

The graph community identification literature [Newman and Girvan 2004] generally con-
siders graphs consisting of discrete edges (for example, ina social network graph, people
either know or do not know each other, edges do not usually encode a “degree” of friend-
ship). In our graph, however, edges represent similaritiesbetween pairs of tags (c.f. Eq.
6). There are two ways to specify edge weights.

The non-normalized case assigns each edge that is retained in the graph, after filtering,
a weight of 1. Edges filtered out are implicitly assigned a weight of zero.

The normalized case assigns each edge a weight proportionalto the similarity between
the tags corresponding to the ends. Formally, using the notations from Eq. 6 and 7 from
above, we initialize the valueseij as:

eij =
m

∑

ij simij

simij (8)

Where m
∑

ij
simij

is simply a normalization factor, which assures that
∑

ij eiij = m.

5.4 The graph partitioning algorithm

Since we have established our framework, we can now formallydefine the graph parti-
tioning algorithm. As already shown, the number of possiblepartitions for this problem
is at least2n−1 (e.g. for our 50 tag setting250 > 1015). Therefore, to explore all these
partitions exhaustively would be clearly unfeasible. The algorithm we use to determine
the optimal partition (Alg. 1) is based on [Newman 2004], andit falls into the category of
“greedy” clustering heuristics.

Informally described, the algorithm runs as follows. Initially, each of the vertices (in
our case, the tags) are assigned to their own individual cluster. Then, at each iteration
of the algorithm, two clusters are selected which, if merged, lead to the highest increase
in the modularityQ of the partition. As can be seen from lines 5-6 of Alg. 1, because
exactly two clusters are merged at each step, it is easy to compute this increase inQ as:
∆Q = (eij + eji − 2aiaj) or ∆Q = 2 ∗ (eij − aiaj) (the value ofeij being symmetric).
The algorithm stops when no further increase inQ is possible by further merging.

Note that it is possible to specify another stopping criteria in Alg. 1, line 9, e.g. it is
possible to ask the algorithm to return a minimum number of clusters (subsets), by letting
the algorithm run untilnC reaches this minimum value.
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Algorithm 1 GreedyQ Determination: Given a graphG = (V, E), |V | = n, |E| = m

returns partition< C1, ...CnC
>

1. Ci = {vi}, ∀i = 1, n

2. nC = n

3. ∀i, j, eij initialized as in Eq. 8
4. repeat
5. < Ci, Cj >= argmaxci,cj

(eij + eji − 2aiaj)
6. ∆Q = maxci,cj

(eij + eji − 2aiaj)
7. Ci = Ci

⋃

Cj , Cj = ∅ //mergeCi andCj

8. nC = nC − 1
9. until ∆Q ≤ 0
10.maxQ = Q(C1, ..CnC

)

5.5 Graph partitioning: experimental results

The experimental results from applying Alg. 1 to our data setare shown in Fig. 9. In Fig.
8 we present a detailed “snapshot” of the partition obtainedfor one of the experimental
configurations. There are several interesting features of the results.

First, it becomes clear that using normalized edge weights produces partitions with
higher modularity than assigning all the top edges the same weight of 1. This was in-
tuitively hypothesized by us, since edge weights representadditional information we can
use, but it was confirmed experimentally. Second, we are clearly able to identify partitions
with a modularity higher than around 0.3, which exhibit a strong community structure ac-
cording to [Newman and Girvan 2004]. Yet perhaps the most noteworthy feature of the
partitions is the rapid increase both in the modularity factor Q and in the number of parti-
tions, as the number of edges filtered decreases (from left toright, in Figure 9).

The filtering decision represents, in fact, a trade-off. Having too many edges in the
graph may stop us from finding a partition with a reasonable modularity, due to the high
volume of “noise” represented by weaker edges. However, keeping only a small proportion
of the strongest edges (e.g. 100 or 50 for a 50-tag graph, in our example), may also have
disadvantages, since we risk throwing away useful information. While a high modularity
partition can be obtained this way, the graph may become too “fragmented”: arguably,
dividing 50 tags into 10 or 15 vocabularies may not be very useful.

Note that it is difficult to establish a general rule for what a“good” or universally “cor-
rect” partition should be in this setting. For example, eventhe trivial partition that assigns
each tag to its own individual cluster cannot be rejected as “wrong” but such a trivial parti-
tion would not be considered a useful result for most purposes. In this paper we generally
report the partitions found to have the highest modularity for the setting. However, for
many applications, having a partition with a certain numberof clusters, or some average
cluster size, may be more desirable. The clustering algorithm propose here (Alg. 1) can be
easily modified to account for such desiderata, by changing the stop criteria in line 9.

Fig. 8 shows the solution with the highest modularityQ for a graph with 200 edges,
in which 7 clusters are identified. This partition assigns tags related to mathematics and
computer science to Cluster 1, tags related to social science and phenomena to Cluster 2,
complexity-related topics to Cluster 4 etc., while “art” isassigned to its own individual
cluster. This matches quite well our intuition, and its modularity Q = 0.34 is above (albeit
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Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6 Cluster 7
computation markets semantics powerlaw genetics robustness art
optimization economics cognition nonlinear biology
visualization society neural complexsystems evolution

physics community ai dynamics evolutionary
mathematics organization alife chaos science

math ecology artificial emergence
computational ecosystem life networks

algorithms environment behavior systems
information simulation complex
computing research complexity

theory
Tags that increase modularity the most, if eliminated: theory, science, research, simulation, networks.

Fig. 8. Optimal partition in tag clusters (i.e. “communities”) of the folksonomy graph, when the top 200 edges
are considered. This partition has a Q=0.34. After eliminating the 5 tags mentioned at the bottom, Q can increase
to 0.43.
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Fig. 9. Modularity (Q-factor) and number of partitions obtained from applying community detection algorithms
to the scientific disciplines data set

close) to the theoretical relevance threshold of 0.3. In Section 6 we will compare this
partition (as well as the entire tag graphs constructed in Section 4) against an independent
benchmark that addresses the same problem, but based on a completely different data set:
search engine query logs. However, first we briefly present a method that can further
improve the modularity of the retrieved tag graphs.

5.6 Eliminating tags from resulting partitions to improve modularity

The analysis in the previous section shows that community detection algorithms were
able to produce useful partitions, with above-relevance modularity. Still, there are a few
general-meaning tags that would fit well into any of the subsets resulting after the par-
tition. These tags generally reduce theQ modularity measure significantly, since they
increase the inter-cluster edges. Therefore, we hypothesized that the modularity of the re-
sulting partitions could be greatly improved by removing just a few tags from the set under
consideration. In order to test this hypothesis, we tested another greedy tag elimination
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algorithm, formally defined as Alg. 2. Result graphs are shown in Fig 10, while in Fig. 8
we show the top 5 tags that, if eliminated, would increase modularity Q from 0.34 to 0.43.

Algorithm 2 GreedyQ Elimination: Given a partitionC1, ...CnC
of graphG = (V, E)

removes all verticesvi ∈ V that increaseQ

1. repeat
2. vi = argmaxvi

[Q(.., Ck \ {vi}, ..) − Q(.., Ck, ..)]
3. ∆Q = maxvi

[Q(.., Ck \ {vi}, ..) − Q(.., Ck, ..)]
wherevi ∈ Ck //Ck is the partition of vertex i

4. until ∆Q ≤ 0
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Fig. 10. Modularity (Q-factors) and number of partitions obtained after gradually eliminating tags from the data
set, such as to increase the modularity. At each step, the tagthat produced the highest increase in modularity
between the initial and resulting partition was selected. In these results, all edge weights are normalized.

As seen in Fig. 2, for this data set only 5-6 tags need to be eliminated as eliminating
more does not lead to a further increases inQ. In the example in Fig. 8, we see which
these are, in order of elimination: theory, science, research, simulation, networks. In fact,
these tags, that are marked for elimination automatically by Alg. 2, are exactly those that
are the most general in meaning and would fit well into any of the subsets.

Regarding scalability, it is relatively straightforward to show that both Alg. 1 and 2 have
linear running time the number of verticesn, i.e. in this case, number of tags considered
in the initial set. In the case of Alg.1, exactly two clustersof tags are merged at each step,
so one cluster increases in size by a minimum of one, until thealgorithm terminates. In
case of Alg. 2, one tag is eliminated per step, until termination. In practice, this scalability
property means they are easily applicable to analyze much larger folksonomy systems.

To our knowledge, this is the first paper to investigate the applicability of this type of
algorithms to tagging, and we can conclude that results are very encouraging. We leave
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some aspects open to further work. For instance, in the current approach, similarity dis-
tances between pairs of tags are computed using all the tagging instances in the data set. In
some applications, it might be useful to first partition the set of users that do the tagging,
and then consider only the tags assigned by a certain class ofusers. For example, for tags
related to a given scientific field, expert taggers may come upwith a different vocabulary
partition than novice users. This may require a two-fold application of this algorithm: first
to partition and select the set of users, and then the set of tags based on the most promising
category of users.

While these applications of tagging distributions have shown promise, one question that
can be reasonably asked is how well these applications of tagging compare to some bench-
mark that does not use tagging distributions. In the next section we will compare the results
obtained here from collaborative tagging data against a benchmark case, which uses “clas-
sic” search engine query data.

6. COMPARISON BENCHMARK: AUTOMATIC CONSTRUCTION OF KEYWORD
VOCABULARIES FROM SEARCH ENGINE QUERY DATA

The obvious candidate for finding such a comparison benchmark is to use of large-scale
query data produced by a search engine. The idea of approximating semantics by using
search engine data has, in fact, been proposed before, and isusually found in existing lit-
erature under the name of “Google distance.” [Cilibrasi andVitanyi 2007] were the first
to introduce the concept of “Google distance” from an information-theoretic standpoint,
while other researchers [Gligorov et al. 2008] have recently proposed using it for tasks
such as approximate ontology matching. It is fair to assume (although we have no way
of knowing this with certainty), that current search engines and related applications, such
as Google Sets [http://labs.google.com/sets 2008], also use text or query log mining tech-
niques (as opposed to collaborative tagging) to solve similar problems.

There are two ways of comparing terms (in this case, keywords) using a search engine.
One method would be to compare the number of resources that are retrieved using each of
the keywords and their combinations. Another method is to use the query log data itself,
where the co-occurrence of the terms in the same queries vs. their individual frequency is
the indicator of semantic distance. We employ this latter method as it is more amendable to
comparison with our work on tagging. In the latter method, the query terms are comparable
to tags, where instead of basing our folksonomy graphs and vocabulary extraction on tags,
we used query terms. In general, query log data is consideredproprietary and much more
difficult to obtain than tagging data. We were fortunate to have access to a large-scale
data set of query log data, from a proposal awarded through Microsoft’s “Beyond Search”
awards.10 In the following we describe our methodology and empirical results.

6.1 Data set and methodology employed

The data set we used consists of 101,000,000 organic search queries, produced from Mi-
crosoft search engine Live.com, during a 3-month interval in 2006. Based on this set of
queries, we computed the bilateral correlation between allpairs from the set of of com-
plexity related terms considered in Sect. 4 and 5 above. The set of terms are, however,

10The authors wish to thank Microsoft Research for their kind support in providing this data.
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Fig. 11. Correlation graph from Microsoft queries, showingonly correlations to the term “complexity”.

Fig. 12. Correlation graph obtained from Microsoft query logs, considering all relevant search terms.

no longer treated as tags, but as search keywords.11 The correlation between any two key-

11We acknowledge this method has some drawbacks, as a few termsin the complexity-related set, such as “pow-
erlaw” and “complexsystems” (spelled as one word) or “alife” (for “artificial life”) are natural to use as tags, but
not very natural as search keywords. However, since there are only 3 such non-word tags, they do not significantly
affect our analysis.
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Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6
complexity systems networks algorithms mathematics research
evolution visualization ai ecology physics quantitative

evolutionary organization emergence math economics qualitative
chaos information neural computing art society

cognition community optimization science
biology computation simulation
theory environment dynamics

behavior nonlinear
markets computational
genetics ecosystem

agent
Terms left unclassified (i.e. one word clusters): complex, complexsystems, robustness,

multi-agent, life, artificial, semantics, powerlaw, alife.

Fig. 13. Optimal partition into clusters, obtained from theMicrosoft query data, when the top 200 edges are
considered. The resulting partition has a Q=0.536. However, 9 terms were assigned to their own cluster, thus
basically left unclassified.

wordsTi andTj is computed using the cosine distance formula in Equation 6 from Section
4 above. However, hereN(Ti, Tj) represents the number of queries in which the keywords
Ti andTj appear in together, whileN(Ti) andN(Tj) are the numbers of queries in which
Ti, respectivelyTj appear in total (irrespective of other terms in the query), from the 100
million queries in the data set.

The rest of the analysis mirrors closely the steps describedin Sections 4 and 5, but
optimizing the learning parameters which best fit this data set, in order to give both methods
a fair chance in the comparison. More specifically, the Pajekvisualization of the keyword
graphs in Figs.11 and 12 were also built by using a spring-embedder algorithm based on
the Kamada-Kawai distance, while Fig. 13 shows the keyword vocabulary partition that
maximizes the modularity coefficientQ in the new setting, considering the top 200 edges.
For clarity, the graph pictures are depicted in a different color scheme, to clearly show
they result from entirely different data sets: Figures 6 and7 from del.icio.us collaborative
tagging data, and Figures 11 and 12 from Microsoft’s Live.com query logs.

6.2 Discussion of the results from the query log data and comparison

When comparing the graphs in Figures 6 and 11 (i.e. the ones which only depict the rela-
tions to the central term “complexity”) an important difference can be observed. While the
graph in Fig. 6, based on collaborative tagging data, shows 48 terms related to complexity,
the one is Fig. 11, based on query log data, shows just 6. The basic reason is that no rela-
tionship between the term “complexity” and the other 40+ terms can be inferred from the
query log data. These relationships either do not appear in the query logs or are statistically
too weak (only based on a few instances).

It is important to emphasize here that this result is not an artifact of the cosine simi-
larity measure we use. Even if we were to use another, more complex distance measure
between keywords, such as some suggested in the previous literature [Cilibrasi and Vi-
tanyi 2007], we would get very similar results. The fundamental reason for the sparseness
of the resulting graph is that the query log data itself does not contain enough relevant
information about complexity-related disciplines. For example, among the 101,000,000
queries, the term complexity appears exactly 138 times, a term such as “networks” 1074
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times. Important terms such as “cognition” or “semantics” are even less common, featur-
ing only 47 and 26 times respectively among more than 100 million queries. Therefore, it
is fair to conclude that the query log data, while very large in size, is quite poor in useful
information about the complexity-related sciences domain. As a caveat, we do note that
more common terms, such as “community” (78,862 times), “information” (36,520 times),
“art” (over 52,000), or even “agent” (about 7,000) do appearmore frequently, but these
words have a more general language usage and are not restricted to the scientific domain.
Therefore, these higher frequencies do not actually prove very useful for identifying the
relationship of these terms to complexity science, which was our initial target question.

Turning our attention to the second graph in Fig. 12 and the partition in Fig. 13, we can
see that query logs can also produce good results in comparison with tagging, although they
are somewhat different from the ones obtained from tagging.For example, if we compare
the partitions obtained in Fig. 8 (resulting from tagging data) and the one in Fig. 13 (from
query log data), we see that tagging produces a more precise partition of the disciplines
into scientific sub-fields. For instance, it is clear from Fig. 8 that cluster 1 corresponds to
mathematics, optimization and computation, cluster 2 to markets and economics, cluster 5
to biology and genetics, cluster 4 to disciplines very related to complexity science and so
forth. The partition obtained from query log data in Fig. 13,while still very reasonable,
reflects perhaps how a general user would classify the disciplines, rather than a specialist:
organization is related to both information, systems and community (cluster 2), research
is either qualitative or quantitative (cluster 6), and the like. There are also some counter-
intuitive associations, such as putting biology and markets in the same cluster (number 1).
Note that the clustering (or modularity) coefficientQ is higher in Fig. 13 than 8, but this
is only because there are less inter-connections between terms in general in the query log
data, thus there are less edges to “cut” in the clustering algorithm.

To conclude, while both methods produce reasonable results, collaborative tagging does
better, at least for this domain. Tagging data appears to be more rich in information about
interconnections between the terms that can be exploited bythe filtering algorithms pro-
posed in this paper. This can probably be explained by the fact the del.icio.us users have
more expertise and interest in complexity-related topics than general web searchers. Fur-
thermore, they are probably more careful in selecting resources to tag and in selecting
labels for them that would be useful to other users as well (general web searchers are
known to be “lazy” in typing queries). As a caveat, we note that this target domain (i.e.
complexity-related disciplines) is scientific and very specialized. If the target would be
more general (for example, if we selected a set of terms related to pop-culture), the com-
parison might lead to different results.

In future work, it may be interesting to study the formation of such vocabularies, but
taking into account only the opinion (expressed in terms of bookmarks or queries) of a
group or sub-community of users rather than all users, for example the community of users
expert in a particular field. While this should be theoretically possible for both approaches,
in practice, it may be easier to trace identities of users with collaborative tagging, not least
due to privacy concerns. People who sign up to use a collaborative tagging system are
implicitly more willing to share their knowledge and expertise with a community of other
users. By contrast, web search is implicitly a private activity, where tracing users’ actual
identity, hence his/her expertise level may be undesirable.12

12Although, from anecdotal evidence, this probably happens to some degree in current practice.
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7. CONCLUSIONS AND FUTURE WORK

This work has explored the important question of whether a coherent, stable way of char-
acterizing information can emerge from collaborative tagging systems and has presented
several novel methods for analyzing data from such systems.

First, we show that tagging distributions of heavily taggedresources tend to stabilize
into power law distributions and present a method for detecting power law distributions in
tagging data. We see the emergence of stable power law distributions as an aspect of what
may be seen as collective consensus around the categorization of information driven by
tagging behaviours. We have additionally presented a method for examining the dynamics
and convergence of stable tag distributions over time by theuse of Kullback-Leibler diver-
gence between tag distributions at different time steps. Also included is an empirical study
of the importance of the “long tail” of the tag distributionsin the convergence process.

In the second part of the paper, we propose a method for constructing and visualizing
correlation graphs from tags, and show how they can lend important insights into how
a community of users sees the relations between a set of terms. We also use a method
from network theory for partitioning tag correlation graphs that can be used to identify
vocabularies shared by a community of users. Finally, we show that vocabularies extracted
from collaborative tagging data can be significantly richer, at least for some domains, than
the ones that can be extracted from general search engine query logs. While these methods
were empirically tested using del.icio.us data, the proposed methods are general enough to
be applicable to most existing tagging systems.

This work suggests a number of exciting problems, both theoretical and applied, that
merit further research. These include examining whether aspects of tagging distributions
and dynamics are subject to the influence of particular features of tagging sites, to human
cognitive limits, or some mixture of the two. A thorough examination of this aspect would
represent a significant contribution to work in this area andwould be important to many
practical tagging applications.

Another important direction of work would be examining the effects of using specialized
sub-communities of users in the study of convergence of tag distributions and resulting in-
formation structures, rather than the entire user population as in this paper. As shown by
[Heymann et al. 2008], del.icio.us is not dominated by a small number of core users, but
other tagging sites may be. We know relatively little about how user concentration might
influence the types of information structures that can be derived from tags. Furthermore,
the shared vocabulary used by a specialized sub-community of users may differ consider-
ably to that of a larger user base.

Based on these results, it seems quite plausible that folksonomies can be fruitfully uti-
lized for a wide category of applications related to organization of information on the web.
Insights gained by taking collaborative tagging systems seriously as an empirical object of
study could result in insight into the complexity of the one of the world’s most complex
systems, the World Wide Web.
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