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ABSTRACT

Networked, distributed real world sensing is an increasingly promi-
nent topic in computing and has quickly expanded from resource
constrained “sensor networks” measuring simple values to “sen-
sor webs” of heterogenous networks encompassing many types of
services and hosts, processing a wide variety of data and media.
This paper presents ongoing work on OntoNet, which aims to pro-
vide messaging middleware in support of such rich sensor systems.
In particular, this paper discusses the underlying message deliv-
ery model assumptions required in effectively supporting these set-
tings. Those assumptions in turn present large implications for the
mechanisms used to describe and match messages and destinations,
as well as how to effectively do so in a scalable but correct manner.
Initial concepts are also presented for two approaches to aggregat-
ing metadata and reducing network and memory consumption in
OntoNet. One is a new application of least common subsumer in-
duction, a known but infrequently used description logic inference.
The other is a novel application of Bloom filters to representing and
querying ontology driven data.

Categories and Subject Descriptors

H.4.3 [Information Systems Applications]: Communications Ap-
plications; 1.2.4 [Computing Methodologies]: Artificial Intelli-
gence—Knowledge Representation Formalisms and Methods

1. INTRODUCTION

Networked, distributed real world sensing is an increasingly promi-
nent topic in computing. The field has quickly expanded from “sen-
sor networks” of low power, wireless, ad hoc networks of resource
constrained mote processors measuring simple values [14], to “sen-
sor webs” of heterogenous networks encompassing many types of
services and hosts, processing a wide variety of data and media,
often over extensive geographic areas [11].

This work is primarily concerned with settings closer to the lat-
ter, in which motes and embedded sensors, handhelds, laptops, and
desktops or servers, connected via a variety of network mediums,
are employed to produce and process a large mix of data, from
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simple readings and notifications to large data sets, reports, and
media. As computing platforms and sensors become more capa-
ble, such systems might range from relatively small networks rem-
iniscent of traditional sensor networks, to vast, Internet-enabled,
multi-organization sensor webs. There will always be a role for
extremely resource constrained, highly focused sensor networks
generating and managing continual flows of relatively homogenous
data. However, as computing platforms of all sizes become increas-
ingly powerful, batteries longer lived, and available sensors more
diverse, there will be increasing focus on complex systems process-
ing an assortment of rich data and media.

Traditional sensor networks are primarily challenged by efficiently
collating data at gateways or storing for later collection, all un-
der considerable resource constraints. Whether on sensor webs or
smaller networks, rich sensor systems encompassing many types
of data producers and consumers don’t necessarily suffer the same
constraints, but still face a variety of challenges. Critical among
these is getting the right data to the right consumers. Given the di-
versity of sensors and software present and more capable underly-
ing platforms, this problem area is more akin to those of service ori-
ented computing, content based addressing, and peer to peer com-
puting than traditional sensor networking, and is the focus of this
work. As opposed to continuous queries over streams of simple
measures, the core paradigm is message delivery of larger data and
work products such as collections of readings, analyses, and media,
as well as requests and notifications.

Presented here is ongoing work on OntoNet [12], which aims to
provide that service via content delivery and service discovery mid-
dleware connecting sensors, services, and agents on the network.
OntoNet draws heavily from Semantic Web [5] technology as well
as research from sensor, mobile ad hoc, and overlay networking.
In particular, this paper discusses the underlying message deliv-
ery model assumptions required in effectively supporting these set-
tings. Those assumptions in turn present large implications for the
mechanisms used to describe and match messages and destinations,
as well as how to effectively do so in a scalable but correct manner.

2. EMERGENCY RESPONSE SCENARIO

Many organizations maintain response teams for chemical, biolog-
ical, or radiological (CBR) incidents, such as industrial or transport
accidents. Unfortunately, current best practices largely use non-
integrated and redundant tools applied via manual processes. Even
among well provisioned teams, critical data collection is frequently
performed via clipboard and pen—a difficult task in full protective
suits. Automating these processes stands to significantly improve
team performance and efficiency but faces several challenges.



Among these are basic network connectivity and management is-
sues. A mix of mobile and fixed nodes may be in use, fielded by a
number of different organizations and potentially using low power,
low cost radios. Importantly, team members must be able to operate
and work together before infrastructure may be deployed, as well as
in environments where disconnections are frequent and they must
operate independently. These constraints may imply complex, het-
erogenous network topologies spanning organizations and employ-
ing mobile ad hoc and mesh networking techniques as necessary
while also utilizing infrastructure such as base stations as available
to gain higher performance and wider resource accessibility.

Many information management challenges are also presented by
this setting, mostly centered around basic interoperability prob-
lems. A wide variety of information may be generated and used by
different elements of the system, including command, sensor, and
background data, with many different producers and consumers.
Several generations of equipment may also be present, from sensors
placed years previously to a mix of modern and dated equipment
fielded by response teams of varying funding levels. A variety of
organizations and manufacturers will likely also have to cooperate,
with corporate, local, state, and federal responders all deploying
their own equipment, procedures, and policies.

A key aspect of OntoNet’s approach is that sensors or software
generate messages with associated metadata, with is used to de-
liver those messages to the appropriate destination(s). This basic
functionality can be used to support many tasks such as data and
alert dissemination, service requests, and content retrieval. By ad-
dressing messages and destinations via declarative, ontology driven
languages, the above interoperability challenges may be met with
flexible, extensible, formal reasoning mechanisms. Applying that
query based messaging paradigm in distributed, robust middleware
also decouples message senders and receivers to a great degree,
promoting rapid system integration and improved manageability.

3. RELATED WORK

Previous work on OntoNet [12] focused on the network protocols
enabling metadata dissemination and message delivery. This paper
follows on that work from two directions. First is that the assumed
messaging paradigm—destinations publishing queries which are
matched against message metadata—could not support requests,
only announcements. The second came from further study of the
proposed hybrid mesh/trees network structure for maintaining des-
tination state and routing messages. Although effective in static set-
tings, the structures performed poorly on mobile networks due to
disruption. These factors lead to interest in effective aggregation in
support of both requests and announcements, enabling destination
state to be spread more widely throughout the network, reducing
the network structures required to tightly control its propagation.

Similarly, nearly all existing related messaging middleware, such as
publish/subscribe [10, 9] or intentional naming [1, 4], do not recog-
nize the distinction between request and announcement paradigms,
and support only one or the other. Other ontology based messag-
ing middleware [16] has also not closely examined the messaging
assumptions in use, and frequently applies ontological supports to
provide hierarchical topic labels rather than query support.

Several projects [15, 11] exist developing rich sensor systems sim-
ilar to that envisioned in OntoNet, some also utilizing Semantic
Web technology. However, most are based around collecting and
fusing data from fixed sensor network installations over the Internet

<cbr2:N4242Spectometry rdf:about="#MSG1134">
<msg:source>
<cbr2:Fixed-FT-IR rdf:about="#Sensor0O3NG">
<msg:org rdf:resource="&orgs;#NEAir-Haz" />
</cbr2:Fixed-FT-IR>
</msg:source>

<cbr:nuclideDetected>
<cbr2:Am-241>
<cbr:confidence>93.0</cbr:confidence>
<cbr2:concentration>0.002</cbr2:concentration>
</cbr2:Am-241>
</cbr:nuclideDetected>
</cbr2:Spectometry>

Figure 1: OWL/RDF description of a message containing spectom-
etry data, noting a particular finding.

with at least partially centralized repositories and portals. OntoNet
instead focuses on smaller, distributed, mobile sensors and users.

4. MESSAGE METADATA AND QUERIES

Messages and destinations are described in OntoNet using the Se-
mantic Web’s Resource Description Framework (RDF) [13] and
Web Ontology Language (OWL) [8]. RDF is an XML syntax for
first order models restricted to binary relations—Ilabeled graphs.
OWL is an RDF language for encoding ontologies, taken here as
formal, machine interpretable, logical specifications of domain struc-
ture. OWL is defined by description logic [2], an object oriented
subset of first order logic. Both are well documented, open stan-
dards endorsed by the World Wide Web Consortium (W3C).

Figure 1 depicts the OWL/RDF description! for a typical message
in the scenario of Section 2. It declares that the message contains
sensor data, the source is a spectrometer deployed by the NEAir-
GM organization, contents are in the [IEEE/ANSI N42.42 radiation
data format?, and the sensor has detected a particular nuclide?. No-
tably, this description does not replace message contents or formats,
such as SensorML, N42.42, CAP, or DoD CBRN in this scenario.
Instead it captures metadata and key content, rendering datasets,
images, and other opaque messages accessible to general inference.

To receive this message, a process would register an appropriate
query defined using OWL class expressions. Figure 2 gives an ex-
ample that might be registered by an analysis package or handheld
display to receive such a message. The class consists of all objects
with a source that belongs to the NEAir organization, use the ANSI
N42.42 format, and are reporting a suspicious nuclide.

Matching the description against the class requires using OWL se-
mantics to apply background ontologies and derive inferences. Core
OntoNet ontologies define generic description elements such as
msg:format while application specific ontologies encode domain
elements and knowledge such as the taxonomy of sensors.

For example, matching Figure 1 and Figure 2 requires knowing
and utilizing the background knowledge in Figure 3. The middle-
ware must reason about subclasses, such as cbr2: Am-241 implies
cbr:SuspiciousNuclide, apply the orgs:NEAir-Haz object’s

INamespace declarations, ontology imports, and rdf :RDF wrap-
pers have been removed from these examples for clarity.
’http://standards.ieee.org/getN42/

3This example is based on http://units.nist.gov/
Divisions/Div846/Gp4/ANSIN4242/2005/annexC.n42



<owl:Class rdf:about="#Query">
<owl:intersectionOf rdf:parseType="Collection">
<owl:Restriction>
<owl:onProperty rdf:resource="&msg;#source" />
<owl:someValuesFrom>
<owl:Restriction>
<owl:onProperty rdf:resource="&msg;#org"/>
<owl:someValuesFrom
rdf :resource="&orgs; #NEAir" />
</owl:Restriction>
<owl:someValuesFrom>
</owl:Restriction>

<owl:Restriction>
<owl:onProperty
rdf :resource="&cbr;#nuclideDetected" />
<owl:someValuesFrom
rdf :resource="&cbr;#SuspiciousNuclide" />
</owl:Restriction>

<owl:Restriction>
<owl:onProperty
rdf :resource="&msg; #format" />
<owl:hasValue
rdf :resource="&nist-ansi-n4242xsd;#" />
</owl:Restriction>
</owl:intersection0f>
</owl:Class>

Figure 2: OWL query for reports of suspicious nuclides in N42.42
format from a particular organization.

membership in orgs :NEAir, and infer a value for the msg: format
property via explicit membership in cbr2:N4242Spectrometry.
Such inference and deduction of implicit information promotes in-
teroperability, system evolution, and byte savings. It also differ-
entiates the ontological, knowledge based approach from relational
database, XML, and other data oriented techniques.

5. MESSAGE MODELS

Taken as given in Section 4 is a core assumption of message meta-
data being a description—instance data about an object—which is
matched against queries specified by destinations. That such an as-
sumption is being made is often overlooked in such middleware and
is frequently implicit in the matching approach employed. How-
ever, the chosen directionality of the matching has large implica-
tions for the extensibility and interoperability of applications con-
structed on the middleware. This is particularly important for sen-
sor systems such as in Section 2, where many heterogenous com-
ponents from a variety of vendors are fielded by multiple organiza-
tions, potentially alongside legacy components.

OntoNet’s matching model as presented in Section 4 has three com-
ponents: Messages, destinations, and ontologies. Each message m
is associated with a message object m’ and description d in relation
M. Each destination process p is associated with at least one query
q in the relation D. There is also a set of known or retrievable back-
ground ontologies B. For a multicast message to be delivered to all
matching processes, denoted by dest, the matching model is then:

Y (m,m’,d) € M, (p,q) €D

|:d /\ b = q(m')] = (m,p) € dest

beB

<owl:Class rdf:about="&cbr2;#N4242Spectrometry">
<owl:intersectionOf rdf:parseType="Collection">
<owl:Class rdf:about="&msg;#Message" />

<owl:Restriction>
<owl:onProperty rdf:resource="&msg;#format" />
<owl:hasValue
rdf :resource="&nist-ansi-n4242xsd;#" />
</owl:Restriction>
</owl:intersectionOf>
<rdfs:subclass0f rdf:resource="">
</owl:Class>

<orgs:NEAir rdf:about="&orgs;#NEAir-Haz" />

<owl:Class rdf:about="&cbr2;#Am-241">
<rdfs:subclassOf
rdf :resource="&cbr;#SuspiciousNuclide" />
</owl:Class>

Figure 3: Excerpts of ontologies required to match the description
in Figure 1 against the query in Figure 2.

Entailment in that model is defined by the semantics of the logic
used, in this case description logic.

Alternatively, each message could be associated with a query, and
each destination with a description:

Y (m,q) €M, (p,p'.d) €D

[d /\ b = q(p/):| = (m, p) € dest

beB

The former specifies receiver querying, in which destinations pub-
lish queries that are matched against message descriptions. Its con-
verse is message querying, in which message metadata is a query
matched against destination descriptions. Complicating middle-
ware for these rich sensor systems, there are clear roles for both ap-
proaches. Distinguishing uses for each are largely centered around
publishing notifications versus issuing requests.

Among the background statements in Figure 3 is a very small part
of a taxonomy of nuclides used in the example scenario. It asserts
that a particular Americium nuclide, cbr2:Am-241, is one of a
class of nuclides of particular interest, cbr : SuspiciousNuclide.
Using receiver querying, this knowledge can be used to connect,
for example, an alert system watching for messages reporting sus-
picious nuclides, and a sensor generating reports about Americium
detections. This is exactly the example of Figures 1 and 2: The re-
ceiving alert system queries for cbr:SuspiciousNuclide while
the sensor generates messages annotated to report cbr2:Am-241,
which are correctly inferred to match the query.

Under a similar message querying arrangement, the correct infer-
ence is not possible. A description for the alert system listing it
as interested in cbr:SuspiciousNuclide will not match a more
specific query attached to a message for cbr2: Am-241. This could
be addressed by the alert system advertising every nuclide it under-
stands or the message being annotated with less specific metadata,
but those present clear negative ramifications for future extensibil-
ity and interoperability of the system. The primary attraction of
the ontology driven, knowledge based approach taken in OntoNet



is precisely not requiring such enumeration or loss of specificity.

Unfortunately, there are similar cases with the opposite behavior.
For example, a user or automated system may issue a request for
a mobile sensor (human carried or unmanned) that can specifi-
cally detect Americium to sample an area and confirm a reading.
On the same network, a sensor may post that it can detect sus-
picious nuclides, but not necessarily Americium. Under a mes-
sage querying approach, the sensor would be correctly skipped as
it does not necessarily provide the required more specific function-
ality. Conversely, under receiver querying, the request would be
incorrectly delivered to the sensor as cbr2:Am-241 implies cbr:
SuspiciousNuclide, for which the sensor has a general capabil-
ity but may not necessarily be able to support that particular re-
quest. A human user may be able to sort out the mismatch and not
select that sensor service, but it impairs efficiency and would be
challenging for automated systems to resolve.

In this case it may be reasonable to resolve the issue by requir-
ing the sensor to post a more specific query, but that is not a gen-
eral solution. On one hand, that requires services to be accurately
modeled by their associated metadata or incur problems and ineffi-
ciences, while under the query modeling approach the sensor would
simply not match. On the other hand, it is simple to shift the ex-
ample and reintroduce the problem, e.g., by the sensor advertising
capability to detect Americium but the user requesting a specific
Americium nuclide (e.g., 241 Am versus 2*2Am).

Further, there are many easily conceived scenarios in which rich
sensor systems may require middleware support for both messaging
models. Another example is publishing infrared imagery—which
can likely be utilized by a number of generic imagery consumers—
versus requesting infrared imagery—which cannot necessarily be
provided by just any imagery provider such as a standard camera.

As demonstrated by these examples, the distinction between the
two paradigms is largely that between publishing and requesting:

e Receiver querying is not suitable when more specific desti-
nations can and should process the message, e.g., an infrared
camera answering a general request for imagery. It is most
suitable if the receiver cares about precisely what class of
messages it receives, e.g., requiring a specific format or mes-
sage type, but the sender does not. This aligns with publish-
ing information to be consumed by any interested entity.

e Message querying is not suitable when more general destina-
tions can and should process the message. It is most suitable
if the sender cares about precisely what class of destination
receives the message. This aligns with issuing a request that
may only be filled via services with certain capabilities.

These notions do not apply where message and destination meta-
data must match exactly, as in topic based publish/subscribe, but
hold up when applied to many existing middleware systems. For
example, intentional naming [1, 4] applies message querying to en-
able dispatching requests to services capable of fulfilling specific
criteria. Conversely, publish/subscribe systems based on hierarchi-
cal topics or XML and other content filters [10, 9] provide receiver
querying to deliver published items to any relevant subscriber.

6. DISSEMINATION AND AGGREGATION

Messaging middleware comprises three closely entwined elements:

e Reasoning and matchmaking to determine proper destina-
tions for generated messages, as discussed in Sections 4 and 5.

e Transportation of messages about the network and delivery
to end destinations, providing reliability, QoS, or other traits.

e Mechanisms for disseminating and maintaining destination
advertisements and/or queries throughout the network to match
against message metadata and guide transport.

Trivial approaches to disseminating destination metadata are re-
lying on centralized registrars or broadcasting to all nodes. Cen-
tralized registrars are problematic for many reasons, including per-
formance bottlenecks and critical failure points. Distributed ap-
proaches are clearly warranted for wireless, mobile, ad hoc systems
such as that in Section 2 in order to manage in such dynamic net-
working environments prone to faults and partitions. But even in-
frastructure and Internet based sensor webs may require distributed
approaches to meet performance and robustness requirements as
well as to operate across organizational and physical boundaries.
Although perhaps not to every node, destination metadata must be
disseminated throughout the network in some fashion in order to
properly guide messages to their correct destinations.

Given their close logical relationship, ideally both receiver and
message querying may be supported by the same mechanisms for
propagating metadata and matching messages. This is not feasible
for some middleware. There is no easy way to convert most XML
publish/subscribe systems [9] to a message querying paradigm be-
cause the destinations subscribe via queries directly over published
data, messages are not associated with metadata. In other cases this
shift is possible. Intentional naming in the INS [1] could likely be
readily extended to also support receiver querying as the query and
description languages are (nearly) equivalent, and all destination
metadata is disseminated to and stored at all nodes. Which match-
ing paradigm to use would be a relatively simple matter of extend-
ing the API, effectively marking destinations as either subscribers
or services and messages as either publications or requests.

Similarly, OntoNet’s RDF/OWL based metadata language and match-
ing logic is easily applicable to either message or receiver query-
ing. This is complicated, however, in trying to reduce the amount
of state propagated through the network and stored at each node,
an important aspect of improving system scalability. Aggregating
or otherwise condensing destination metadata typically entails a re-
duction in specificity in the form of more permissive queries or lost
details, resulting in either false positives or false negatives.

Figure 4 depicts this problem for the two message models. Two
nodes are publishing available services while a third is generating
messages. An intermediary node on the network aggregates the
destinations’ metadata to conserve network or memory resources
before forwarding on to the sending node. For receiver querying,
as in Figure 4a, this potentially produces false positives. Unwanted
messages are incorrectly forwarded through the network because
the combined query is overly permissive. In this case the message
may be dropped at the intermediary node provided it has kept full
queries, but unnecessary traffic will still have been generated along
the link, path, or region between it and the originator.

Of more concern, applying similar aggregation in a message query-
ing approach may produce false negatives, incorrectly dropping
messages as in Figure 4b. In the rich sensor systems of interest
here, the possibility of erroneously halting potentially critical re-



(a) Receiver querying: Message m is incorrectly forwarded.

A(?x) A B(?x)

(b) Message querying: Message m is incorrectly dropped.

Figure 4: Demonstration of false positives and negatives produced by aggregating destination metadata under the two message models. In
both cases nodes 3 and 4 are potential destinations whose metadata is aggregated at node 2 and advertised to the sender at node 1.

quests or updates is a clear problem. This relationship between in-
formation loss and opposing behavior of the two message models—
false positives versus false negatives—also implies that it may be
difficult or even impossible to apply the same machinery for prac-
tical, scalable matching and forwarding to support both paradigms.

Toward addressing these issues and scalably supporting both re-
ceiver and message querying in rich sensor systems, two sepa-
rate aggregation approaches are being investigated for OntoNet.
One, presented in the following subsection, applies an existing non-
standard description logic inference to optimize receiver queries.
The other, outlined in Section 6.2, introduces a new mechanism for
aggregating ontology based data in support of message querying.

6.1 Least Common Subsumer

One approach being investigated in OntoNet for receiver query-
ing aggregates destination metadata via inferring the least common
subsumer (LCS) [3] of their advertised queries. LCS inference ap-
plies description logic semantics to rewrite a set of class definitions
into a single class definition of which each input is a subclass, and
for which no other such class up to equivalence may exist in the
given logic. It is closely related to relational query optimization.

For example, the destination query in Figure 2 may be written in
description logic notation as:
Queryl = Imsg:source. [Imsg:org . orgs:NEAir| M
JebrinuclideDetected . cbr:SuspiciousNuclide 1
Imsg:format. {nist-ansi-n4242xsd}

A similar but different query used on another nearby host may be:

Query2 = Imsg:source . [Imsg:org. {orgs:NEAir-Haz}] M
JebrinuclideDetected . cbr:IndustrialNuclide 1
Jmsg:authentication. msg:X509Certificate

The LCS of those two queries would be:

Query3 = Imsg:source . [Imsg:org . orgs:NEAir| M
Jcbr:nuclideDetected . cbr:Nuclide

LCS inference may be used to summarize multiple destination queries
into a single less discriminatory but smaller query disseminated to
remote parts of the network, reducing propagation and state costs.

Actual LCS reasoning itself is well understood for several descrip-
ion logics of limited expressiveness, such as €L, which are used in
OntoNet due to theoretical and practical complexity concerns.

Challenges. The challenge in this aggregation approach is bal-
ancing false positives and consequent unnecessary traffic against
bandwidth and memory consumption. Effectively applying this
technique requires both efficient protocols for propagating perfor-
mance data such as false positive rate upstream, as well as algo-
rithms to use that feedback in controlling the aggregation. Such
feedback protocols may create large amounts of network traffic
overhead. Evaluating the tradeoff between the resources consumed
by the metadata propagation versus the consequent false positive
rate may also be computationally expensive, as it may require gen-
erating and storing aggregations of varying combinations of subsets
of metadata known to the propagating host.

6.2 Bloom Filter Encoding

The second approach being developed for aggregation in OntoNet
supports message querying. Destination descriptions are summa-
rized in Bloom filters [6], constant length bit strings, encoding the
set of tuples implied by the description logic semantics. This is a
novel application of Bloom filters to ontologies, though it is similar
to uses in relational databases as well as P2P applications [7].

Table 1 outlines the algorithm for encoding a description. Once en-
coded, filters may then be propagated through the network to pro-
vide a constant length description of available services. Querying
to match messages with services proceeds similarly to encoding,
but checking bits instead of setting them. Notably, the encoding
makes aggregations of multiple services, either on a host or across
a network region, straightforward to compute and of finite length
as they are simply the logical disjunction of the bit strings.

Challenges. Of course, this approach discards much information
and suffers several significant limitations. Among these are:

e There is no way to both aggregate the filters and apply them
as queries, so only message querying is supported.

e Only homed, connected objects [16] may be connected and
queried—there must be a given starting object where encod-
ing and matching begins. However, this aligns well with the
task at hand of describing and matching against destinations.

e Only relatively inexpressive query logics may be used. For
example, it is not possible to apply description logic all-
values restrictions. Simpler logics such as EL that work



CreateFilter(OWL ontologies, OWL description, URI root)
begin
tuples kb «+— DLForwardFixpoint(ontologies, description);
filter «— new bit[];
HashObject(kb, filter, root, 0);

return filter
end

HashObject(tuples kb, bit[] filter, URI root, integer offset)
begin
foreach 1 € Habject( Gpredicqte:”rdf‘t}pe” A sulzject:root(kb) ) do
hash t and mark appropriate bits 1n filter;
end
foreach (p, o) €
Hpredicate, object(o-predicate%"rdfl'type" A subject:roor(kb) ) do
offset = hash p;
HashObject(kb, filter, o, offset);
end
end

Table 1: Algorithm sketch for constructing Bloom filter given back-
ground ontologies, destination description, and identifier.

within this approach may however be more than sufficient
for many applications.

e New inferences cannot be drawn from the received filters.
The originating node must have and apply all background
ontologies that might be used by receiving nodes querying
the filter. This is a notable limitation on system extension
and interoperability, but may be acceptable in many settings
if global ontology sharing is feasible.

Despite these limitations, this approach shows potential for a con-
strained, easily aggregated representation of message query desti-
nations suitable for efficient propagation and storage throughout the
network. Importantly, it also eliminates false negatives potentially
associated with message querying as discussed above. Instead, as
with all practical Bloom filter applications, encoding and aggrega-
tion may introduce false positives, a much less critical shortcoming.

Determining the feasibility of this approach is ongoing work in
OntoNet, in particular estimating filter sizes required for realistic
settings. Protocols and mechanisms for propagating filters and per-
forming forwarding decisions are also in development.

7. CONCLUSION

This paper has described messaging models required to support
rich, mobile sensor systems. Although simple, the distinction be-
tween announcements and requests and their correlation to message
matching models is overlooked in most middleware systems, with
typically only one or the other supported. Also presented were ap-
proaches to aggregating metadata in support of both message mod-
els, including introduction of a novel application of Bloom filters
to approximate encoding and querying of ontology based data. Fu-
ture work in OntoNet is focused on implementing these aggregation
procedures and applying them on extremely simple, robust network
structures that trade additional state and memory consumption for
reduced network traffic and improved disruption tolerance. An im-
portant related line of work is development of realistic ontologies
and workloads to enable live trial demonstration use as well as eval-
uation of both aggregation and network procedures.
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