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ABSTRACT
Extreme technology integration in the sub-micron regime comes with
a rapid rise in heat dissipation and power density for modernproces-
sors. Dynamic voltage scaling is a widely used technique to tackle
this problem when high performance is not needed. However, the
minimum achievable supply voltage is often bounded by SRAM cells
since they fail at a faster rate than logic cells. In this work, we
propose a novel fault-tolerant cache architecture, that byreconfig-
uring its internal organization can efficiently tolerate SRAM failures
that arise when operating in the ultra low voltage region. Using our
approach, the operational voltage of a processor can be reduced to
420mV , which translates to 80% dynamic and 73% leakage power
savings in 90nm.

Categories and Subject Descriptors
B.3.4 [Memory Structures]: Reliability, Testing, and Fault-Tolerance

General Terms
Design, Reliability

Keywords
Dynamic voltage scaling, Fault-tolerant cache, Low voltage opera-
tion

1. INTRODUCTION
Power consumption and heat dissipation have become key chal-

lenges in the design of high performance processors. Growing power
consumption reduces device lifetimes and also affects the cost of
thermal packaging, cooling, and electricity [6]. Dynamic voltage
scaling (DVS) is widely used to reduce the power consumptionof
microprocessors, exploiting the fact that the dynamic power quadrat-
ically scales with voltage and linearly with frequency. Consequently,
lowering the minimum operational voltage of a microprocessor, can
dramatically improve the energy consumption and battery life of med-
ical devices, laptops, and handheld products.

The motivation for our work comes from the observation that large
SRAM structures are limiting the extent to which operational volt-
ages can be reduced in modern processors. This is because SRAM
delay increases at a higher rate than CMOS logic delay as the supply
voltage is decreased [13]. With increasing systematic and random
process variation in deep sub-micron technologies, the failure rate of
SRAM structures rapidly increases in the ultra low voltage regime.
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Figure 1: Bit error rate for an SRAM cell with varyingVdd values in 90nm.
For this technology, the write-margin is the dominant factor and limits the
operational voltage of the SRAM structure. Here, the Y-axisis logarithmic,
highlighting the extremely fast growth in failure rate withdecreasingVdd.
The two horizontal dotted-lines mark the failure rates at which the mentioned
SRAM structures (64KB and 2MB) can operate with at least99% manufac-
turing yield.

Ultimately, the minimum sustainableVdd of the entire cache struc-
ture is determined by the one SRAM bit within the entire system
with the highest required operational voltage. This forcesdesigners
to utilize a large voltage margin in order to avoid on-chip cache fail-
ures. Figure 1 depicts the failure rate of an SRAM cell based on the
operational voltage in a 90nm technology node [9]. The minimum
operational voltage of L1 and L2 caches is selected to ensurea high
expected yield, 99% in Figure 1. As can be seen, the write margin
mostly dictates the minimumVdd and it is expected to operate with
Vdd > 651mV due to the dominating failure rate of the 2MB L2
cache. This number is consistent with predicted and measured val-
ues (∼ 0.7V ) reported in [2].

In the literature, several techniques have been proposed toimprove
dynamic and/or leakage power of on-chip caches [13]. The usage of
Vdd gating for leakage power reduction by turning off cache lines
is described in [4]. This approach reduces the leakage powerof the
cache by turning off the cache lines that are not likely to be accessed
in the near future. A simultaneous usage of DVS and adaptive body
biasing is presented in [7] for reducing power in high-performance
processors. They derived a closed-form method for finding the op-
timal supply voltage and body bias for a given frequency and dura-
tion of operation. Meng et.al. [8] proposed a method for minimiz-
ing the leakage overhead considering manufacturing variations. In
this scheme, they give an artificial priority to the cache ways with
smaller leakage and re-size the cache by avoiding sub-arrays that
have higher leakage factors. Instead of turning off blocks,drowsy
cache [3] is a state preserving approach that has two different sup-
ply voltage modes. Recently inactive cache blocks periodically fall
into the low power mode in which they cannot be read or written.
However, for lowVdd values (e.g.6 651mV ), the amount of power
saving for these methods is restricted due to the failures inSRAM
structures.



Figure 2: Basic structure of our proposed scheme with two cache banks and
eight lines each. Each line consists of 4 equally sized data chunks. Black
boxes in each cache line represent chunks that have at least have one faulty bit.
The memory and fault maps, which are essential components ofthe proposed
scheme, are also shown.

In contrast, the objective of our work is to enable DVS to push
the core/processor operating voltage down to the ultra low voltage
region (e.g. low power mode) while preserving correct functionality
of on-chip caches. This idea was initially proposed in [11] and later
Wilkerson et.al. [14] improved the architecture to enable operation at
even lower voltages. On the other hand, many variations of SRAM
cells such as 8T, 10T, 11T, and ST [5] have also been proposed which
allow the SRAM structures to operate at lower voltages than the con-
ventional 6T cell. Most of these cells have a large area overhead
which is significant shortcoming since the extra area does not trans-
late into any performance gains when operating in high powermode.
Consequently, we try to minimize the overhead of normal highpower
mode operation.

In this work, we propose a fault-tolerant cache which intertwines
a set ofn + 1 partially functional cache lines together to give the
appearance ofn functional lines. The overhead of the approach is a
small performance penalty (< 5%) and less than 15% area overhead
for the on-chip caches. We apply our scheme to L1-D, L1-I, andL2
caches to evaluate the achievable power reduction for a microproces-
sor.

2. ARCHITECTURE
In this section, we describe the architecture of our flexiblefault-

tolerant cache, one which allows our scheme to adaptively recon-
figure itself to absorb failing SRAMs. As we discussed earlier, de-
creasing the operationalVdd (i.e., entering low-power mode) causes
many cells within a cache to fail. For example, according to Figure 1,
for Vdd = 420mV , the number of faulty bits in just one L2 block
(128B) is as high as 5. Our scheme provides the appearance of a
fully functional cache by tolerating these failures.

To this end, we partition the set of all cache word-lines intolarge
groups, where one word-line (the sacrificial line) from eachgroup is
set aside to serve as the redundant word-line for the other word-lines
in the same group. In the remainder of this paper, we refer to every
cacheword-line, which may contain multiple blocks as a line. In our
approach, each line is divided into multiple data chunks. Each chunk
is labeled faulty if it has at least one faulty bit. Two lines have a
collision if they have at least one faulty chunk in the same position.
For example, if the second data chunk of the 3rd and 6th lines is
faulty, then lines 3 and 6 have a collision. Similarly, in Figure 2,
lines 10 and 15 are collision-free. The objective of our scheme is
to form groups such that there are no collisions between any two
lines within a group. In Figure 2, lines 4, 10, and 15 form the 3rd
group (G3) in the cache. Here, line 4 (labeled G3(S)) is the sacrificial
line that furnishes the redundancy needed to accommodate the faulty
chunks in lines 10 and 15. In order to minimize the access latency
overhead, the sacrificial line (4) and the data lines (10 or 15) should

Figure 3: An example of configuration algorithm for a given distribution of
faults in the cache banks. Here, each banks has only 8 lines and there are
21 faulty chunks in the cache. The configuration algorithm forms 5 groups
in the cache and disables only line 15. Furthermore, these groups and their
corresponding sacrificial and normal lines are also shown here.

be in different banks so that the sacrificial line can be accessed in
parallel to the original data line.

In our fault-tolerant cache architecture, each cache access first in-
dexes into a memory map, which supplies the location of the data
line and its corresponding sacrificial line. After these twolines have
been accessed from their respective banks, a MUXing layer isused
to compose a fault free block by selecting the appropriate chunks
from each line. This MUXing layer receives inputs indirectly from
the fault map. For a given data line, the fault map determines which
chunks are faulty and should be replaced with chunks from thesac-
rificial line.

To aid in the encoding and decoding of this information a unique
address is assigned to all lines within a group (group address). For
instance, in Figure 2, line 15 is the second line ofG3. For each data
chunk in the sacrificial line, the fault map stores the group address
of the line to which that data chunk is assigned. Here, the entry
which is assigned toG3 in the fault map contains (1,-,-,2), indicating
that the first chunk ofG3(S) is devoted toG3(1), the fourth chunk is
dedicated toG3(2), and the second and third chunks are not assigned
to any line. Finally, the MUXing layer gets its input from a set of
comparators that compare the group address of line 15 (e.g.,2, read
from memory map) withG3’s fault map entries.

Since every group requires a sacrificial line be dedicated solely
for redundancy, our scheme strives to minimize the total number of
groups that must be formed. Given that the number of lines is fixed
within a cache, achieving this objective implies that larger groups
are preferred over smaller ones. To maximize the number of func-
tional lines in the cache, we need to minimize the number of sac-
rificial lines required to enable fault-free operation. As previously
discussed, there is a single sacrificial line devoted to every group of
lines. This sacrificial line is not addressable as a data linesince it
does not store any independent data. In other words, sacrificial lines
do not contribute to the usable capacity of the cache. Depending
on the number of collision-free groups that are formed, the effective
capacity of the cache can vary dramatically.

Figure 3 shows the process of forming the groups given a fault
pattern for the cache. Group formation is an iterative process and
in each iteration of the algorithm, a new group is formed. Here,
each group consists of a sacrificial line from one bank and a set of
collision-free lines from the other bank which are still notassigned
to any other group. By assigning the largest possible set of collision-
free lines to each sacrificial line, our algorithm tries to minimize the
number of sacrificial lines required for fault-free operation. In order
to form the groups, our configuration algorithm starts from the top



line of the first bank and marks it as a sacrificial line for the first
group (i.e.,G1(S)). Next, it switches to the second bank to find the
largest set of collision-free lines which can potentially be assigned to
the first group. For this purpose, it keeps adding the lines from the
top of the second bank to this group and if a line causes a collision,
the algorithm simply skips it. As a result, line 9 is added to the first
group and marked asG1(1). However, since line 10 has a collision
with line 1, it cannot be added to this group and line 11 takes its place.
After the first group is formed, we switch to the bank which hasthe
most number of already assigned lines (i.e., second bank here) and
mark the first unassigned line of this bank as the sacrificial line for
the second group (i.e., line 10 (G2(S))). In addition, lines 2 and 3 are
assigned to this group from the first bank. This process continues
until all the lines in both banks get either disabled or assigned to
groups. A cache line gets disabled if: 1) it contains many faulty
chunks which makes its repair unjustified or 2) it cannot be assigned
to any of the existing groups with size greater than one due toits
particular fault pattern. It should be noted that the back and forth
switching between the banks allows our algorithm to minimize the
number of lines getting disabled. Figure 3 presents the 5 groups
formed by the configuration algorithm.

As depicted in Figure 3, line 15 is disabled (D) since it contains 3
faulty chunks and repairing it is not cost effective. Here, the number
of non-functional lines is the summation of the number of sacrificial
and disabled lines. The objective of the configuration algorithm is
to minimize the number of non-functional lines for a given fault pat-
tern in the cache. In Figure 3, there are 6 non-functional cache lines
which consist of 5 sacrificial lines and one disabled line. For each
cache instance, the number of lines in the fault map array is equal
to the number of sacrificial lines (i.e. 5 here). However, dueto the
presence of process variation in a large population of the fabricated
chips, different fault patterns should be expected. In our evaluation,
we employ a Monte Carlo simulation to generate a population of
1000 cache instances and the total number of fault map lines is de-
termined based on the maximum number of sacrificial lines while
achieving a 99% yield.

Low Power Mode Operation: The first time a processor switches
to low power mode, the built-in self test (BIST) module scansthe
cache for the potential faulty cells. After determining thefaulty
chunks of cache lines, the processor switches back to the high power
mode and forms the groups as described before. This providesthe
information that is required to be stored in the memory and the fault
maps. This configuration information can be stored on the hard-
drive, then is written to the memory map and fault map at system
boot-up time. In addition, the memory map, fault map and the tag ar-
rays are protected using the well studied 10T cell [2] which has about
66% area overhead for these relatively small structures. These 10T
cells are able to meet the target voltage in this work (420mV) without
failing. However, these cannot be used for the protection ofthe large
SRAM structures (e.g., L2 data array) since that will imposea much
higher overhead [14].

High Power Mode Operation: In high power mode, our scheme
is turned off in order to minimize the unwanted overheads:1) All the
cache lines are functional and there is no sacrifice of the cache capac-
ity. 2) There is a negligible overhead for the dynamic power due to
the switching in the bypass MUXes which consists of the MUXing
layer and an additional MUX which can bypass the memory map.3)
Leakage power overhead remains the same. However, power gating
techniques can be used for leakage mitigation.

3. EVALUATION
This section evaluates the effectiveness of our fault-tolerant cache

architecture in reducing the power of a processor while keeping the
overheads low.
3.1 Methodology

For performance evaluation, we use SimAlpha, a validated micro-
architectural simulator based on the SimpleScalar Out-of-Order sim-

Figure 4: Process of determining the minimum achievableVdd for L2 with
4-bit chunk size. The fraction of the non-functional cache lines and also the
area overhead of the fault map structure are limited to6 10%.

ulator [1]. The processor is configured as shown in Table 1 andis
modeled after the DEC EV-7. CACTI is leveraged to evaluate the
delay, power, and area of the SRAM structures [10]. Lastly, the Syn-
opsys standard tool-chain is used to evaluate the overheadsof the
remaining miscellaneous logic (i.e., bypass MUXes, comparators,
etc.).

For a given set of cache parameters (e.g.Vdd, chunk size, etc.),
Monte Carlo simulations (1000 iterations) are performed using the
configuration algorithm described in Section 2 to identify the portion
of the cache that should be disabled. Solutions generated byour
configuration algorithm target a 99% yield. In other words, only
1% of manufactured and configured on-chip caches are allowedto
exhibit failures when operating in low-power mode.

3.2 Results
Figure 4 shows the process of determining the minimum achiev-

ableVdd for a system. Since protecting the L2 is harder than the L1
(due to its longer lines and larger size [14]), L2 protectioncost dic-
tates the minimum operating voltage of a system. In order to evaluate
our scheme, we set chunk size to be 4bits for L2 and 8bits for L1
which is easier to protect.

In high-power mode, both fault and memory map arrays remain
idle and leak power. It is crucial to minimize the size of these struc-
tures. The size of the memory map is essentially fixed by the number
of lines in the cache. The fault map size, however, can vary signif-
icantly depending on configuration parameters, motivatinga closer
look at the size of the fault map as an important design factor. Con-
sequently, we limit the area overhead of the fault map to 10% of the
total cache area. Furthermore, since cache size has a strongcorre-
lation with system performance, we limit our scheme to disable at
most 10% of the cache lines.

As evident in Figure 4, decreasingVdd increases the non-functional
portion of the cache and also the area of the fault map array. How-
ever, beyond a certain point, the area overhead of the fault map starts
decreasing. This phenomena is due to the large fraction of the cache
lines that getdisabled as loweringVdd leads to increasing error rates
and a precipitous increase in faulty chunks. Here, the vertical line

Table 1: The target system configuration.
Parameters Value

Technology 90 nm
Clock frequency 1.9 GHz
V

dd
nominal 1.2 V

L1 Cache 2 banks 64KB data, 2 banks 64KB instruction,
split, 2-way set associative, 4 cycles hit latency, 1 port,
LRU, 64B block size, write-back

L2 Cache 2 banks 2MB Unified, 8-way set associative,
10 cycles hit latency, 1 port, LRU, 128B block size, write-back

Registers 80 integer, 72 floating point
ROB (re-ordering buffer) 128 entries
LSQ (load/store queue) 64 entries
Instruction fetch buffer 32 instructions
Integer/FP issue queue 32/32 entries
FU (functional unit) 4 int ALU, 4 int mult/div, 2 memory system ports
FPU (floating point unit) 4 FP ALU, 1 FP mult/div
Main memory 225 cycles (high power), 34 cycles (low power)
Branch predictor combined (bimodal and 2-level)
BHT (branch history table) 4096 entries
RAS (return address stack) 32 entries
BTB (branch target buffer) 2048 entries, 2-way associative



Figure 5: Overheads of our scheme for both L1 and L2 caches. Here, 10T
cell is used for protecting fault map, memory map, and tag arrays. Note the
area and leakage power overhead of the system are mostly determined based
on L2 overheads. This is due to the significantly larger size of L2 for which
our scheme has minimal overheads.

highlights the minimum achievableVdd based on the aforementioned
10% limit on disabled lines. As a result, we select 420mV as the
minimum Vdd (i.e., low-power mode operating voltage). All lower
voltages violate our 10% limits.

Figure 5 summarizes the overheads of our scheme for both L1 and
L2. Leakage overhead in high power mode corresponds to the fault
map, memory map, and miscellaneous logic. As mentioned before,
we also account for the overheads of using 10T SRAM cells [2] for
protecting the tag, fault map, and memory map arrays in low-power
mode. Note, the memory map is a far greater contributor to area and
leakage power overhead in the L1 than in the L2. The reason behind
this is that the L1 has only1

4
the lines of L2 while its overall size

is 1

32
. For L2, the fault map is the major component of overhead.

Due to its large size, and attendant leakage and area overheads, the
L2 dominates the processor overheads, warranting the closestudy
of the L2 fault map in Figure 4. Dynamic power overhead in high-
power mode can be mainly attributed to bypass MUXes since we
assume clock gating for the fault map and memory map arrays. In
our proposed scheme, when in low-power mode, the memory map
and MUXing layer are in the critical path of the cache access.Based
on our timing analysis, this translates to 1 additional cycle latency
for L1 and 2 additional cycles for L2 in low-power mode.

In order to evaluate the performance penalty of our scheme inlow-
power mode, we ran the SPEC2K benchmark suite on SimAlpha af-
ter fast-forwarding to an early SimPoint [12]. We assume oneextra
cycle latency for L1 and 2 extra cycles for L2. Cache size is also
reduced based on the fraction of the non-functional lines for L1/L2
caches. On average, a 4.7% performance penalty is seen in low-
power mode (Figure 6) from which 1.1% is due to the cache capacity
loss. However, one should note that low-power mode performance
is usually not a major concern. In high power mode, there is enough
slack on the access time of our L1 and L2 caches (CACTI results) to
fit the small bypass MUXes (additional 0.07ns delay) without adding
any extra cycles to the access time. In other words, there is no perfor-
mance loss in high-power mode. However, one might have a cache
design without any slack available. In that scenario, we addan addi-
tional cycle for L1 and L2 which translates into a 3.6% performance
drop off.

Figure 6: Amount of performance drop-off for our scheme in low power
mode using the SPEC-2K benchmarks.

Lastly, we evaluate the power savings that can be achieved using
our scheme for the microprocessor. Based on a similar assumption
in [14], we assume dynamic power scales quadratically with Vdd and
linearly with frequency. Furthermore, leakage power scales with the
cube of Vdd. As a result, our scheme allows DVS to potentiallysave
80% dynamic power and 73% leakage power for the microprocessor.

4. CONCLUSION
With aggressive CMOS scaling, dealing with power dissipation

has become a challenging design issue. Consequently, a large amount
of effort has been devoted to the development of dynamic voltage
scaling methods to tackle this problem. When decreasing theop-
erational voltage of a modern microprocessor, large on-chip cache
structures are the first components to fail. Tolerating these SRAM
failures, allows DVS to target lowerVdd values while preserving
the core frequency scaling trend. In this work, we proposed aflex-
ible fault-tolerant cache architecture which allows DVS toachieve
420mV in 90nm. This translates to 80% dynamic and 73% leakage
power savings for our target system. This significant amountof sav-
ing comes with 4.7% performance overhead for the microprocessor
and less than 15% area overhead for the on-chip caches.
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