
N-Version Temperature-Aware Scheduling and Binding

Yousra Alkabani
CS Department
Rice University
Houston, TX

yousra@rice.edu

Farinaz Koushanfar
ECE Department
Rice University
Houston, TX

farinaz@rice.edu

Miodrag Potkonjak
CS Department

UCLA
Los Angeles, CA

miodrag@cs.ucla.edu

ABSTRACT
Technology scaling to nanometer nodes causes growing in-
crease in power density and especially leakage that in turn
result in locally hot regions on the chip. In this paper, we
introduce a novel methodology for temperature-aware de-
sign. The methodology embeds N-versions of the scheduler
and binder such that the thermal profiles of the versions are
distant from each other. Next, instead of using only one
version of the scheduler and binder, a rotation of N-versions
of the scheduler and binder is constructed for balancing the
thermal profile of the chip. We propose a linear program-
ming framework that takes the multiple versions as the in-
put, and constructs the thermal-aware rotational scheduling
and binding by selecting the N most efficient versions and by
determining the duration of each version. Our experimental
evaluation shows a very low overhead and an average 5%
decrease in the steady-state peak temperature produced on
the benchmark designs compared to using a schedule that
balances the amount of usage of different modules.

Categories and Subject Descriptors
B.6.3 [Hardware]: Logic Design—Design Aids

General Terms
Algorithms and Design

Keywords
Themperature control, High-level synthesis, and N-variants

1. INTRODUCTION
The intense feature scaling of CMOS has been driven by

the growing application demands and pursuit of improved
performance, as envisioned by Moore’s law. Aggressive scal-
ing lowers the cost-per-function, but it simultaneously es-
calates the device density and computational speed. The
power density (i.e., power consumption per unit area) is
also growing. The increased power generates heat on the
chip. Since the heat propagation is slow compared with the
switching activity of the IC, the heat would be concentrated
at local regions, or so called hotspots [4, 8, 3]. The heat gra-
dient increase would result in thermal stress that can speed

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISLPED’09, August 19–21, 2009, San Francisco, California, USA.
Copyright 2009 ACM 978-1-60558-684-7/09/08 ...$10.00.

up chip aging due to negative bias temperature instability,
electromigration, or gradual dielectric breakdown. There-
fore, circuit reliability would degrade.

The excessive increase in design complexity, power den-
sity, heat gradient, and unreliability of the scaled CMOS
devices, has made thermal-aware design and optimization a
strong research focus. In the ASICs domain, several so-
lutions at different levels of design abstraction including
scheduling, resource allocation, binding, floorplanning, and
placement were developed [5, 16, 14, 11, 12, 10]. The com-
mon denominator for the existing work is that by assuming
a certain model, they perform optimization (often iterative
ones) that finds one optimized solution at the target level of
the design abstraction.

In this paper, we introduce a paradigm shift by devising
a flexible synthesis methodology that forms N-versions of
the scheduling and binding solution each with unique ther-
mal characteristics. The N-versions are simultaneously em-
bedded into one design. During the operation, the versions
would rotate such that each version would be used for a
predefined time duration.

Our contributions are (1) Introduction of the concept of
using rotational N-version scheduler and binder. (2) Design-
ing an algorithm for finding the N-versions. (3) Methodology
for construction and low-overhead implementation of the N-
versions. (4) Development of a linear program that uses the
thermal properties of each version to find the length and
duration of N-versions. (5) Evaluation of the new method
by comparison of the most balanced scheduler and binder.

2. RELATED WORK
In the past few years, a number of new approaches for

thermal effect modeling and thermal-aware design has emerged.
Banerjee et al. introduced a method for designing temper-
ature and reliability aware cost trade-off with respect to
power, performance and cooling [3]. Efficient modeling of
the chip level and architecture level thermal characteristics
have been proposed [4, 8]. The impact of thermal energy on
power consumption was also studied [9]. Energy minimiza-
tion has been addressed for a variety of systems including
real-time [7], and under impact of manufacturing variabil-
ity [2].

Chu and Wong proposed thermal-aware placement using
a matrix synthesis method [5]. Tsai and Kang devised a
standard cell placement tool for balancing the chip thermal
distribution [16]. HotFloorplan is a floorplanning tool that
manages the chip lateral heat propagation [14].

Mukherjee and Memik proposed a multistage integrated
temperature optimization at the architectural synthesis lev-

331

els [11]. They develop an iterative optimization method for
scheduling and binding that gets feedback the post-floorplan
thermal simulations. Ni and Memik studied thermal-induced
leakage power optimization by redundant resource allocation
[12]. Lim and Kim formulated the thermal-aware binding
problem into a problem of repeated utilization of network
flow method [10]. Shang et al. explain the challenges the
power and temperature optimization pose for high-level syn-
thesis researchers and summarizes the research progress in
the field [15]. Zhang and Chatha present approximation al-
gorithms for temperature-aware scheduling; for a set of peri-
odic tasks executing on a processor the latency is minimized
subject to thermal constraints [17]. Note that there is also a
vast body of literature for thermal-aware design for MPSoC
and programmable devices that are outside the scope of this
paper. To the best of our knowledge, this is the first work
that considers combining multiple schedules and allocation
for efficient thermal management at the high level synthesis.

3. FLOW Initial scheduling and bindingFloorplanningMany versions of scheduling/bindingN-versionsFind the best duration for each versionImproved thermal? The final rotating N-version scheduleIncrease N NoYes Linear Program
Figure 1: Flow of the rotational N-version thermal-

aware scheduling and binding.

Figure 1 presents the rotational N-version thermal-aware
scheduling and binding flow. The initial scheduling and
binding is performed by list scheduling with a fixed tim-
ing constraint that minimizes the number of resources. A
force-directed floorplanner is used after resource selection
such that the similar resources are placed far from each
other. This is to maximize the number of alternatives for
a resource such that the temperature increase is indepen-
dent among the alternatives. Finally, the maximally con-
strained minimally constraining rule is adopted for creation
of many versions of the scheduler and binder. Next, the lin-
ear programming method finds N out of the several available
scheduling and resource binding versions and their running
durations, such that the selected versions have the smallest
peak thermal energy dissipation.

4. N-VERSION SCHEDULING / BINDING
In this section, we describe how we generate the Multi-

version schedules. Algorithm 1 shows the main steps for
generating the N’-versions (N’ ≥ N). The inputs to the Al-
gorithm are G the CDFG of the circuit, and N’ the number
of generated versions. The output is the N’ versions of the
scheduling and binding method.

The first few steps generate a layout for different resources
on a grid. In Step 2, we find the lower bound on each re-
source type denoted by Rlb

t using list scheduling. We do
not change the critical path timing because in many of the
DSP applications that we target, the throughput must re-
main constant. Next we choose the number of resources to

be used for each module type (denoted by Rt in Step 3).
Rt must be greater than or equal Rlb

t to guarantee that we
do not alter the timing. In Step 4, we generate a force di-
rected layout that ensures that resources of the same type
are placed furthest away from each other. Finally, in Step 5,
for each resource we determine its coordinates on the grid.

The remainder of the steps of the Algorithm 1 form N’ ver-
sions of the scheduler and binder. For each version, we do
both scheduling and binding using a maximally constrained
minimally constraining heuristic described as follows. In
Step 8, we select a center resource for each module type
that is the most frequently used resource in the pertinent
version. In line 10, we compute a priority pair (pr, nr) for
each module. pr is proportional to the distance from the
center resource and nr is the number of neighbors on the
grid. The center resource of each type gets the highest pri-
ority (pr = 1) to be used in a control step (maximally con-
strained). Further resources with larger number of neighbors
have lower priority. We bind the operations to resources in
order of priority. To break the ties among the resources with
the same pr value, we use the number of neighbors of the
resource nr, where the resource with the smaller value of nr

has a higher priority (minimally constraining).

Alg. 1 Generation of N’-versions of the schedules.

Input: CDFG, N ′

Output: S′n
1begin
2 Compute Rlbt- using list scheduling;
3 Choose Rt such that Rt >= Rlbt;
4 Generate layout grid for Rt;
5 Compute co-ordinates (xt, yt) for Rt on the grid;
6 for k = 1 : N ′

7 for each resource type t;
8 Choose a center resource nct ;
9 for each resource r ∈ Rt;
10 compute the priority pair (pr, nr)
11 time = 1;
12 ready = operations without predecessors;
13 while There exists an unscheduled operation;
14 begin
15 Schedule a maximum subset of ready

Operations with least mobility are scheduled,
Resources with min (pi, ni) are bound;

16 time = time + 1;
17 Add operations whose predecessors

are done to ready;
18 end
19 end

5. ROTATIONAL N-VERSION METHOD
Thermal model. The compact thermal model that we use
to predict the temperature rise due to using a certain ver-
sion. The thermal energy of each module can be estimated
by considering three different parameters: the power con-
sumed at that module, the activity of the module in the
schedule, and the exchange of energy with each of its neigh-
boring modules.

We model the stationary state of the IC, where its pro-
duced thermal energy is equal to the energy that it transfers

332

to the environment. The two key assumptions are: (i) the
chip is small relative to the environment and therefore, the
environment does not change its temperature due to the heat
conducted by the IC; and (ii) the rate of thermal change is
much slower than the chip’s clock frequency fc and thus,
one can consider the usage rate of one module in a certain
scheduling round to be a good approximation of the cumu-
lative impact of that module on the temperature.

The compact model is based on the Fourier conduction
equations with constant thermal properties that is known to
be a linear elliptic boundary value problem. Elliptic bound-
ary value problems are a class of problems which do not
involve the time variable, and instead only depend on space
variables [6]. The thermal energy of the module at coor-
dinate (i,j) is denoted by Qi,j respectively. Based on the
Fourier conduction equations, the Thermal energy (Qi,j) of
the module (i,j) can be written as:

Qi,j = kSi/env ∗ASi/env ∗ (Ti,j − Tenv) (1)

+ kSi/Si ∗ASi/Si ∗ (Ti,j − Ti,j−1)

+ kSi/Si ∗ASi/Si ∗ (Ti,j − Ti,j+1)

+ kSi/Si ∗ASi/Si ∗ (Ti,j − Ti−1,j)

+ kSi/Si ∗ASi/Si ∗ (Ti,j − Ti+1,j).

Linear program for selection of the N-versions and
their durations. We describe how we generate the rota-
tional schedule using a linear program. The linear program
takes as input the N’-versions that are constructed in the
previous section. Next it selects the N-versions out of N’ for
embedding in the chip. The linear program also assigns a
duration to each of the N selected final schedules.

The linear program is shown in Algorithm 2. The objec-
tive function (shown in Step 1) is to minimize the maximum
temperature on the chip. This is followed by four types of
constraints. Step 2 shows the first constraint type that rep-
resents local Newton heat laws. Qi,j and Ti,j are variables
representing the thermal energy generated by and the tem-
perature of the resource at the coordinate (i,j) respectively.

The second type of constraints are shown in Step 3. This
constraint represents the local thermal energy generation
which is a function of the schedules. Pk,i,j is a constant
representing the average power generated by the resource at
(i,j) in version k. pk is a variable denoting the fraction of
time this schedule is to be used. Step 4 shows the global con-
straints for the maximum temperature on the grid, where
each resource temperature must not exceed the maximum
temperature. Finally step 5, shows the total activity con-
straint that sets the sum of all the fractions pk to 1. To have
a low-overhead implementation for the rotational N-version
method, we construct the FSM (Fr) of the rotational sched-
ule from the FSM (F1) of one of the versions. Fr has logN
extra inputs added to F1 that are used as the key to select
a version (Ikey). The number of outputs of Fr are the same
as the number of outputs of F1. The construction is done
similar to the method described in [1].

6. EXPERIMENTAL EVALUATIONS
We evaluate the rotational N-version method on different

benchmarks from HYPER extracted from [13]. The bench-
mark names are shown in the second column of Table 1.
The benchmarks lee, arai, and dir are 8 point fast discrete
cosine algorithms with sharply different structures. Specifi-
cally, lee is Lee’s recursive sparse matrix factorization algo-

Alg. 2 The linear program to generate the rotational schedule.

Input: grid, N ′-versions
Output: Sr

1 Objective function
min Tmax;

2 Constraint type 1
for each resource ri,j on grid

Satisfy equation 1;
3 Constraint type 2

for each resource ri,j on grid
Qi,j = p1P1,i,j + p2P2,i,j + ... + p′NPN′,i,j ;

4 Constraint type 3
for each resource ri,j on grid

Ti, j <= Tmax;
5 Constraint type 4

p1 + p2 + ... + p′N = 1;

rithm, arai is Arai-Agui-Nakajima algorithm, and dir is the
direct generic definition of DCT-I algorithm. feig is Feig’s
fast 2D 8x8 DCT with provably minimal number of mul-
tiplications. The benchmarks aircraft and honda are two
industrial strength mechanical controllers.

The CDFG of the benchmarks are extracted in graphviz
format. Matlab is used to read the CDFG, implement the
multiple-version scheduling and binding and for the LP prob-
lem formulation and solving. We also generate HotSpot
floorplan and power trace files of the schedules to evaluate
the temperatures. We use the default values in HotSpot.

Table 1 shows the improvement in the maximum temper-
ature when we use the minimum resources computed by the
list scheduler. The comparison is made to the scheduling
and binding method that most balances the usage of the
modules. This balanced version is found by giving equal
priorities to all the modules in Algorithm 1. The first col-
umn in the table represent the benchmark name. The sec-
ond and third columns show the number of ALU operations
(aop) Multiplication operations (mop) in the CDFG of the
benchmark. The fourth and fifth columns demonstrate the
lower bound on the number of ALUs (A#) and Multipli-
ers (M#). The number of schedules selected by the linear
program (N#) is shown in the sixth column. The maxi-
mum temperature for the balanced scheduling and binding
method (Tb), the maximum temperature in the rotational
N-version (Tr) method (both in ◦C), as well as percentage
improvement (I) in the Temperature are presented in the
last three columns respectively. Temperatures are computed
using HotSpot. The maximum improvement is above 11.7%
and on the average the improvement is 4.9%.

Table 1: Max temp. improvement (min resources).
Name aop mop A# M# N# Tb(C) Tr(C) I%

arai 39 5 8 1 2 69.52 61.41 11.7
lee 37 20 4 4 2 64.99 62.57 3.7

honda 70 34 12 8 2 67.56 66.22 2.0
dir 77 47 11 11 3 64.22 61.45 4.3

aircraft 147 127 15 16 4 65.67 60.73 7.5
feig dct 505 78 48 18 8 74.75 71.67 4.1

We next evaluate the performance of the rotational N-
version method compared with the balanced version by adding
resources. Table 2 shows the maximum temperature im-

333

provement when we use 10% extra resources. The first col-
umn shows the benchmark name. The second and third
columns show the number of ALUs and Multipliers used in
each benchmark. The fourth column shows the number of
schedules produced by the linear program. The last three
columns show the maximum temperatures in the balanced
schedule and the rotational schedule in degree Celsius and
the percentage improvement. The maximum improvement
is about 19%, while the average is 7.4%.

Table 2: Max temp. improvement (add resources).
Name A# M# N# Tb(C) Tr(C) I(%)

arai 9 2 2 69.61 61.4 11.8
lee 5 5 3 63.57 61.22 3.7

honda 14 9 3 67.73 61.62 9.0
dir 13 13 2 68.25 62.05 9.1

aircraft 17 18 6 71.48 57.9 19.0
feig dct 53 20 3 74.32 72.27 2.8

To study the overhead of embedding multiple schedules,
we use ABC synthesis tool to estimate the area overhead of
a single schedule and the rotational schedule. The area over-
head for Table 1 is shown in Table 3. The first column shows
the benchmark name. The second column shows the area in
terms of the number of literals for the chip using a single
schedule denoted by orig. The third column represents the
area for the new schedule denoted by new. The maximum
overhead is less than 5%. Note that benchmark 9 has zero
overhead because it uses only one schedule. On the average
the overhead is 1.3%. This shows the very low overhead of
rotating among the versions. Note that the power overhead
of the N-version method is proportional to its area overhead.
The timing overhead is zero since all of the versions satisfy
the timing constraint.

Table 3: Area overhead of the N-versions in Table 1.
Name Orig (lit) New (lit) %

arai 99738 99738 0.2
lee 83369 83519 0.2

honda 211627 213597 0.9
dir 229201 239662 0.6

aircraft 322173 338011 4.9
feig dct 712040 738329 3.7

7. CONCLUSION
We introduced a new temperature-aware scheduling and

resource allocation method that combines N different ver-
sions of scheduling and binding. The combination was done
by rotating between the N versions and by running each of
the versions for a certain duration of time. Maximally con-
strained minimally constraining scheduling method was used
for the efficient design and implementation of the multiple
versions. We presented a linear programming formulation of
the scheduling rotation that selects N out of many versions
and determines the duration of each version. Evaluation of
the method on standard benchmarks showed the low over-
head of implementing the multiple versions in one design,
and selection of the best value for N. Our experimental re-
sults shows that using the new method, an average of about
5% reduction in the peak temperature is obtained on the
benchmarks in comparison with the scheduling and binding
method where the usage of all resources are balanced.

8. REFERENCES
[1] Y. Alkabani and F. Koushanfar. N-variant IC design:

methodology and applications. In DAC, pages
546–551, 2008.

[2] Y. Alkabani, T. Massey, F. Koushanfar, and
M. Potkonjak. Input vector control for post-silicon
leakage current minimization in the presence of
manufacturing variability. In DAC, pages 606–609,
2008.

[3] K. Banerjee, S.-C. Lin, and V. Wason. Leakage and
variation aware thermal management of nanometer
scale ICs. In IMAPS-Workshop, 2004.

[4] Y. Cheng, P. Raha, C. Teng, E. Rosenbaum, and
S. Kang. ILLIADS-T: an electrothermal timing
simulator for temperature-sensitive reliability
diagnosis of CMOS VLSI chips. IEEE Trans. on
CAD, 17(8):668–681, 1998.

[5] C. Chu and D. Wong. A matrix synthesis approach to
thermal placement. In ISPD, pages 163–168, 1997.

[6] L. Evans. Partial Differential Equations. American
Mathematical Society, 1998.

[7] I. Hong, D. Kirovski, G. Qu, M. Potkonjak, and
M. Srivastava. Power optimization of variable-voltage
core-based systems. IEEE Trans. on of Integrated
Circuits and Systems, 18(12):1702–1714, 1999.

[8] W. Huang, S. Ghosh, S. Velusamy,
K. Sankaranarayanan, K. Skadron, and M. Stan.
HotSpot: a compact thermal modeling methodology
for early-stage VLSI design. IEEE Trans. on VLSI,
14(5):501–513, 2006.

[9] W. Liao, L. He, and K. Lepak. Temperature and
supply voltage aware performance and power modeling
at microarchitecture level. IEEE Trans. on CAD,
24(7):1042–1053, 2005.

[10] P. Lim and T. Kim. Thermal-aware high-level
synthesis based on network flow method. In
CODES+ISSS, pages 124–129, 2006.

[11] R. Mukherjee and S. Memik. An integrated approach
to thermal management in high-level synthesis. IEEE
Trans. on VLSI, 14(11):1165–1174, 2006.

[12] M. Ni and S. Memik. Thermal-induced leakage power
optimization by redundant resource allocation. In
ICCAD, pages 297–302, 2006.

[13] K. Rao and P. Yip. Discrete Cosine Transform.
Academic Press, 1990.

[14] K. Sankaranarayanan, S. Velusamy, M. Stan, and
K. Skadron. A case for thermal-aware floorplanning at
the microarchitectural level. Journal of
Instruction-Level Parallelism, (7), 2005.

[15] L. Shang, R. Dick, and N. Jha. High-Level Synthesis
Algorithms, chapter High-Level Synthesis Algorithms
for Power and Temperature Minimization, pages
285–297. Springer, 2008.

[16] C. Tsai and S. Kang. Standard cell placement for even
on-chip thermal distribution. In ISPD, pages 179–184,
1999.

[17] S. Zhang and K. Chatha. Approximation algorithm for
the temperature-aware scheduling problem. In
ICCAD, pages 281–288, 2007.

334

