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Recent work on adaptive functional programming (AFP) developed techniques for writing programs
that can respond to modifications to their data by performing change propagation. To achieve this,
executions of programs are represented with dynamic dependence graphs (DDGs) that record data
dependences and control dependences in a way that a change-propagation algorithm can update the
computation as if the program were from scratch, by re-executing only the parts of the computation
affected by the changes. Since change-propagation only re-executes parts of the computation, it
can respond to certain incremental modifications asymptotically faster than recomputing from
scratch, potentially offering significant speedups. Such asymptotic speedups, however, are rare:
for many computations and modifications, change propagation is no faster than recomputing from
scratch.

In this article, we realize a duality between dynamic dependence graphs and memoization, and
combine them to give a change-propagation algorithm that can dramatically increase computation
reuse. The key idea is to use DDGs to identify and re-execute the parts of the computation that
are affected by modifications, while using memoization to identify the parts of the computation
that remain unaffected by the changes. We refer to this approach as self-adjusting computation.
Since DDGs are imperative, but (traditional) memoization requires purely functional computation,
reusing computation correctly via memoization becomes a challenge. We overcome this challenge
with a technique for remembering and reusing not just the results of function calls (as in con-
ventional memoization), but their executions represented with DDGs. We show that the proposed
approach is realistic by describing a library for self-adjusting computation, presenting efficient
algorithms for realizing the library, and describing and evaluating an implementation. Our ex-
perimental evaluation with a variety of applications, ranging from simple list primitives to more
sophisticated computational geometry algorithms, shows that the approach is effective in practice:
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compared to recomputing from-scratch; self-adjusting programs respond to small modifications to
their data orders of magnitude faster.
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1. INTRODUCTION

Many applications must interact and respond to data that incrementally
changes over time: Applications that interact with or model the physical world
(e.g., robots, traffic control systems, scheduling systems) observe the world
evolve slowly over time and must respond to those changes efficiently. Ap-
plications that interact with the user observe their application data change
incrementally as a result of user issued modifications (e.g., in software devel-
opment, programmers make many small changes to the source code, typically
recompiling the program after each revision). Applications that perform motion
simulation, where objects move continuously over time, causing incremental,
continuous modifications to the property being computed, must respond to such
modifications correctly and efficiently. All these applications naturally arise in
a number of domains, including software systems, graphics, robotics, databases,
and scientific computing.

In these applications, it has been observed that incremental modifications
to data often require only small modifications to the output. Therefore, if we
have techniques for quickly identifying the parts of the output that are affected
by the modifications and updating them while reusing the rest of the output,
we will be able to respond to these changes significantly faster than recom-
puting the output entirely from scratch. Devising such techniques has been a
subject of active research in the algorithms and the programming-languages
communities.

In the algorithms community, researchers design algorithms that efficiently
maintain the output for a specific problem as the input undergoes small mod-
ifications. These algorithms, known as dynamic data structures or dynamic
algorithms, have been studied extensively over the course of the last several
decades. A closely related class of data structures, called kinetic data struc-
tures, aims to efficiently compute properties of continuously moving objects.
Dynamic and kinetic data structures are designed on a per-problem basis, by
taking advantage of the particular structure of that problem. Thus, they are
usually highly efficient, even optimal. They can, however, be difficult to design
and implement, even for problems that are trivial in the conventional setting.
For a history of work on dynamic and kinetic algorithms, and for some examples
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of dynamic problems whose conventional versions are straightforward, we refer
the readers to Section 10.2.

In the programming-languages community, researchers have made signif-
icant progress on run-time and compile-time approaches for automatically
dynamizing or incrementalizing conventional, static algorithms. These ap-
proaches, broadly called incremental computation, record and maintain certain
information during an execution of a static algorithm so that the output can be
updated efficiently as the input undergoes small changes. When incremental
computation is made to work, it has some important advantages over dynamic
and kinetic algorithms: for example, there is no need to design, implement, de-
bug, document, and maintain separate static and dynamic algorithms for every
problem—dynamic problems can simply be reduced to a static problem by using
the proposed language-based techniques.

Most effective approaches to incremental computation are based on depen-
dence graphs and memoization (see Section 10.1 for a more detailed discussion).
The idea behind dependence-graph-based approaches is to record the data and
control dependences in a computation so that a change-propagation algorithm
can update the computation by identifying the parts that are affected by the
modifications and rebuilding only those parts. Previous work on dependence
graphs include the work of Demers et al. [1981] on static dependence graphs,
which can be used to incrementalize certain computations only, and the work
of Acar et al. [2006] on dynamic dependence graphs, which can be used to incre-
mentalize any purely functional program. The idea behind memoization (also
called function caching), a classic technique that dates back to the 60’s [Bellman
1957; McCarthy 1963; Michie 1968], is to remember the results of function calls
and reuse them when possible, instead of re-evaluating the functions. Pugh and
Teitelbaum [1989] were the first to apply memoization to incremental compu-
tation, making it the only general-purpose technique that can incrementalize
any purely functional program at that time.

Dynamic dependence graphs and memoization offer two different ways to
incrementalize purely functional programs. Neither approach on its own, how-
ever, is effective in general. For example, consider the simple list-map primitive,
which applies an operation to each list’s element to generate a new list. Both
approaches take linear time on average to update the output list after a new
element is inserted at a random position; this update time is asymptotically
the same as re-executing the whole list-map computation from scratch.

The primary reason that dynamic dependence graphs and memoization re-
main ineffective in general has to do with the granularity at which they operate
on computations: both techniques reuse or re-execute computations at the gran-
ularity of function-call trees. More precisely, with memoization, we reuse the
result of a function call in place of another identical call, effectively reusing the
work of that function and all the function calls that it transitively performs,
which collectively form a function-call tree. With dynamic dependence graphs,
change propagation repeatedly identifies a function call that is affected by mod-
ifications and re-executes it until no such functions remain. When a function
call is re-executed, all the calls that it transitively invokes are removed and
replaced. Thus, for both approaches to be effective, a computation must yield
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similar function-call trees on similar input. This, however, is not what typically
happens. For instance, in the list-map example we just discussed, two execu-
tions of the list primitive on lists that differ by one element in the middle can
have a linear (in the input size) number of function call trees that differ. For
this reason, neither approach on its own performs well with such examples. In
summary, except in computations that are carefully structured to yield similar
function-call trees, many data modifications can cause both approaches to per-
form poorly.

In this article, we propose techniques for developing self-adjusting programs
that can efficiently respond to incremental modifications to their data, via
a combination of dynamic dependence graphs and memoization (Section 2
presents an overview). To enable efficient response to incremental modifica-
tion, we observe and exploit an interesting duality between memoization and
dynamic dependence graphs: through the combination of the two approaches,
we can identify function calls to reuse using memoization, and we can identify
function calls to re-execute using dynamic dependence graphs an re-execute
them using change propagation.

We describe the self-adjusting-computation model of programming and
present language primitives for translating purely functional programs into
self-adjusting programs (Sections 3 and 4). These primitives enable the pro-
grammer to specify which computation data is changeable (i.e., time-varying),
enabling the system to selectively track only dependences on changeable data.
As examples, we describe how to implement self-adjusting versions of several
list primitives in Section 5. Like a conventional program, a self-adjusting pro-
gram can be executed with an input from-scratch, called initial execution, which
yields an output and constructs the structures needed to update the output: a
DDG and memo tables. After the initial run, the user, or more generally a muta-
tor program, can change the input and update the output by performing change
propagation, which, as before, re-executes the parts of the computation affected
by the change, but reuses previous computations at the level of function-call
invocations.

We present algorithms and data structures for supporting self-adjusting
computations efficiently (Section 6) and provide an implementation of the pro-
posed library based on these algorithms (Section 7). We evaluate the effec-
tiveness of the approach by considering a number of benchmarks (Section 8).
The benchmarks include various list primitives (filter, fold, map, reverse,
split), two sorting algorithms (merge-sort, quick-sort), and some more in-
volved computational-geometry algorithms, including several convex-hull al-
gorithms (quick-hull [Barber et al. 1996], an output-sensitive convex hull
algorithm [Chan 1996; Bhattacharya and Sen 1997]), and an algorithm for
maintaining the diameter of a point set [Shamos 1978]. These benchmarks are
chosen to span a number of computing paradigms, including simple iteration
(filter, map, split), accumulator passing (reverse, quick-sort), incremental re-
sult construction (diameter), random sampling (fold), and divide-and-conquer
(quick-sort, merge-sort, quick-hull).

We perform an experimental evaluation (Section 9) by comparing self-
adjusting versions of our benchmarks to their standard, uninstrumented
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versions. Experiments show that the performance of from-scratch runs of self-
adjusting programs are within a constant factor (ranging between 2 and 30) of
standard, uninstrumented programs. In general, we observe that the simpler
the benchmark, the higher the overheads: for computational geometry bench-
marks, the overheads are about a factor of 2, whereas for simple lists primitives
they are higher. Since self-adjusting programs construct a graph representation
of the execution, we expect the overheads to be moderate for simple programs
like list primitives. We measure the effectiveness of change propagation by per-
forming one insertion/deletion into/from the input and updating the output.
The results demonstrate performance that greatly improves over rerunning
the uninstrumented programs from scratch. Change propagation starts per-
forming better than from-scratch execution (of the uninstrumented code) at
relatively small input sizes (often less than 100). For the basic routines, on in-
puts of size 1,000,000, the time for change propagation is over four orders of
magnitude faster than running the uninstrumented routine from scratch. For
the computational-geometry benchmarks with inputs of size 100,000, the time
for change propagation is more than three orders of magnitude faster than run-
ning the uninstrumented code from scratch. We also present an experimental
study of the GC times as the size of the available memory changes with respect
to the resident-memory size (Section 9.9).

This article combines two preliminary papers, one on an SML library for
self-adjusting computation [Acar et al. 2006a] and the other on an efficient
implementation of this library [Acar et al. 2006b]. Both of these papers are
based on the first author’s thesis [Acar 2005]. The results reported here differ
slightly from those in the previous papers, because we used a different computer
for these experiments and changed the measurements to exclude the time for
initializations and input generation, which can constitute a reasonably large
fraction of the computation in some cases. This measurement technique gives
more accurate results by measuring the property of interest in isolation. The
approach and the library described in this article have been applied to a number
of applications, including simple and more sophisticated problems in invariant
checking, motion simulation, high-dimensional computational geometry, and
machine learning. Recent work extends the approach described here to support
imperative memory updates [Acar et al. 2008a] and proposes direct language
support and compilers for self-adjusting computation [Ley-Wild et al. 2008,
2009]. Section 10 contains more details on these developments and other related
work.

2. OVERVIEW

We give an overview of dynamic dependence graphs [Acar et al. 2002] and
memoization [Pugh and Teitelbaum 1989], describe their limitations and how
they can be combined to make up for each others’ limitations.

2.1 Dynamic Dependence Graphs

At a high level, dynamic dependence graphs or DDGs can be viewed as a rep-
resentation of the data and control dependences. We can build the DDG of a
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program as it executes by tracking the executed operations, and use it to update
the computation and the output when the inputs are modified.

Structure of a DDG. The DDG of an execution or computation can be rep-
resented as a dynamic (function) call tree augmented with edges between com-
putation data and function calls that depend on them. The nodes of the call
tree represent function calls performed in an execution. The edges of the call
tree represent caller-callee relationships between function calls. The call tree
captures the control dependences at the granularity of a function call. A func-
tion call may have a control dependence on any of its ancestors in the call
tree: if the ancestor takes a different control branch, then the descendant may
cease to exist—the control path taken by a function call determines the descen-
dants. Edges between computation data (e.g., inputs, intermediate results) and
function calls represent data dependences: if a function call reads a piece of
computation data, then there is an edge from the data to that call.

For a given program, we can build its DDG by tracking memory operations
and function calls if the program conforms to the following requirements: (1) all
memory locations are written at most once; (2) functions return no values; and
(3) functions access nonlocal computation data before performing any function
call. Apart from the write-once assumptions, these requirements cause no loss
of generality (e.g., the approach applies to all purely functional programs).

In this overview, we will not describe how to enforce these restrictions, but
assume that the computations conform to them.

Change Propagation. Given a purely functional program, we can run it with
some input, construct its DDG as it executes, modify the input or data gener-
ated during the computation, and update the computation and the output by
performing change propagation. Such a program is called a self-adjusting pro-
gram. Wrapping around self-adjusting programs is an “outer-loop” program,
called the “mutator,” which is responsible for inspecting the output, modifying
the input, and calling the change-propagation process. The mutator does not
have to be purely function and is not subject to the write-once restriction.

At a high level, change propagation mimics a complete re-execution of the
program with the modified data, but only re-executes the function calls that
depend on the modification. To achieve this, change propagation maintains a
work queue of function calls to be re-executed. The work queue initially contains
the function calls that directly depend on the modified data. When re-executed, a
function call can modify other computation data (by writing to memory), whose
dependents are then added to the work queue. To ensure correctness, change
propagation must re-execute function calls in the work queue in the same order
as they were originally executed. This is important because there can be data
and control dependences between a function call and other calls that come
after it: a later function call can depend on some data updated by an earlier
call; similarly, a later function call can have a control dependence on an earlier
call. Since it is impossible to know a priori what control flow a function call will
take when re-executed with the modified data, change propagation deletes all
the descendants of the call from the DDG along with their dependences. This
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Fig. 1. The DDGs for the simple example.

conservative approach ensures correctness: the resulting DDG is isomorphic
to the DDG that would be obtained by re-executing the program from scratch
with the modified data.

A Simple Example. Consider a program consisting of the functions f and g
(left unspecified) written as follows:

fun f (x,y,b) = if b then g(x*x) else y

fun g (z) = . . .

The function f reads a flag b and calls the function g with x squared if the
flag is true; otherwise, it returns y. If f is executed with x=2,y=1,b=true, then
it calls g(z) with z=4. Thus, the DDG of this computation, shown in Figure 1
(left), consists of f and g with a call edge from f to g and edges from x and b
to f, and from z to g. The control dependence between the call to g and the
conditional inside f is represented by the parent-child relationship between f
and g. Suppose that after this execution with x=2,y=1,b=true, we modify y to 0
and run change propagation. Since y is not read, it has no dependences, and thus
change propagation terminates immediately, causing no modifications to the
computation or output. Suppose now we modify b=false. Since f reads b, change
propagation re-executes f after throwing away g (because g is a descendant of f
in the call tree). When re-executed, f returns y. Since there are no more function
calls that depend on b, change propagation completes. Figure 1 (right) shows
the DDG for this example.

Effectiveness of DDGs and Change Propagation. In certain applications,
DDGs and change propagation can support incremental updates in near opti-
mal time (e.g., Acar et al. [2002, 2004]). In general, however, change propagation
can take as much time as recomputing from scratch. Intuitively, this is be-
cause change propagation re-executes function calls from-scratch while throw-
ing away all the work performed by their descendants—in other words, change
propagation reuses computations at the granularity of function-call trees. In
particular, if the modification being performed affects a function call that is
shallow in the call tree (i.e., has low depth) that has many descendants, then
change propagation will likely take a long time, because such a call is likely to
perform significant work. If, however, the modifications affect only deep calls
that have few descendants, then change propagation will be fast, because when
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fun qs(nil,r)  = r
  | qs(h::t,r) = let (l,g) = sp(h,t)
      in qs(l,h::qs(g,r))
and sp(p,nil)  = (nil,nil)
  | sp(p,h::t) = let (l,g) = sp(p,t)
      in if h<p then (h::l,g) else (l,h::g)

Not found by memoization Woken up by change propagation

Required updatesControl dependences Data dependences
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qs(8)

Fig. 2. Memoization versus change propagation for quick-sort (qs). The number in parenthesis is
the first element of the argument list for the corresponding function call.

re-executed such function calls will likely perform little work. The performance
of DDGs thus critically depends on the nature of the data modifications.

As an example, consider the quick-sort algorithm. Figure 2 shows the
function-call trees of quick-sort with the inputs I = [11, 7, 4, 17, 5, 19, 9] (top)
and I ′ = [11, 7, 4, 17, 8, 5, 19, 9] (bottom). Suppose that we start with the DDG
of the computation with I , modify the input to I ′ by side-effecting memory and
inserting the new key 8, and perform change propagation. Change propagation
will re-execute the function calls that depend on the new key. In the bottom
part of Figure 2, we show the function calls executed by change propagation in
dotted boxes. By reasoning with call trees as illustrated, we can show that if an
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element is inserted into the input list at the end (after the last element), then
change propagation takes O(log n) time in expectation. If, however, the element
is inserted in the middle, then change propagation will take O(n) expected time.
If the new element is inserted at the beginning (before the first element), then
change propagation will require a from-scratch execution.

In summary, even though DDGs can be used to represent executions of any
write-once program and to perform change propagation after modifications to
data, their performance is highly sensitive to the nature of modifications. In
this section, we illustrated this by the quick-sort example. It is not difficult to
find other examples that have the same limitation. For example, with standard
implementations of various list primitives such as map and reduce, change prop-
agation requires (asymptotically) linear time for an insertion/deletion into/from
the middle of the input list.

2.2 Memoization

Another approach to incremental computation is based on the classic idea of
memoization. To see how memoization can help in efficiently updating compu-
tations, imagine executing a program with some input and later with a slightly
different input. Since the inputs are similar, we may expect function calls from
the first execution to be repeated in the second execution (with slightly different
input). By memoizing function calls, we can reuse the results of the function
calls from the first execution while performing the second execution.

Although it may seem that memoization alone can help reuse a significant
portion of the previously computed results, its effectiveness also critically de-
pends on the nature of the input modification. In some cases, it is possible to
perform incremental updates optimally. In general, however, memoization can
take as much time as recomputing from scratch. Intuitively, this is because
with memoization, the ancestors of a function call that operates on modified
data (including the call itself) cannot be reused. This is because the ancestors
need to be re-executed to pass the modified data to the function call that uses
it. Thus, if the modified data is used only by the function calls that are shallow
in the call tree, then we may reuse their descendants via memoization. If, how-
ever, the modified data is used by deep calls in the call tree, then only few calls
may be reused via memoization: we have to perform all the function calls from
the root to affected calls.

As an example, consider, again, the executions of quick-sort shown in
Figure 2. Even though the second input differs from the first by only one key,
many function calls performed with the second input cannot be reused from
the first execution. In particular, the calls whose input contain the new key
(8) cannot be reused (Figure 2 highlights such calls). Thus, updating the out-
put of quick-sort after one insertion can take asymptotically the same time as
re-executing from scratch.

In general, there are many such examples which show that the performance
of memoization critically depends on the nature of the input modification. For
example, with the standard list primitives such as map and fold, incremental
updates with memoization can require (asymptotically) linear time.
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2.3 Combining DDGs and Memoization

In the previous two sections, we argued why neither change propagation nor
memoization alone are effective in adjusting computations to modifications in
the general case. Interestingly, they provide reuse of results in complemen-
tary ways: with memoization, we can reuse the parts of a computation that
remain unaffected by the modification, while with change propagation, we find
and re-execute the parts of the computation that are affected by the modifi-
cation. This duality can be seen concretely in Figure 2: the function calls not
reused by memoization and the function calls executed during change propa-
gation intersect only at the modifications that are essential to update to correct
the output. This duality suggests that we can hope to execute only the es-
sential function calls (marked in black in the figure) by combining these two
techniques.

In this article, we present a technique that combines change propagation and
memoization. When executing a program, we still construct its DDG as usual
and additionally we remember function calls and their DDGs in memo tables.
Change propagation proceeds as in the DDG case. Given some modifications to
computation data, we identify the function calls that depend on the modified
data and insert them into a work queue. We then re-execute the function calls in
the work queue in their original execution order. When re-executed, a function
call can modify other computation data by writing into memory, causing other
function calls to be inserted into the work queue. Propagation stops when all
function calls that depend on modified data are re-executed. This process is so
far identical to the change propagation process for DDGs.

The key difference is how we treat function calls during change propagation:
if we perform a function call with the same arguments as before, then we reuse
the DDG for that function call instead of executing the call from scratch. It is
not possible, however, to reuse the DDG as is, since during change propagation,
computation data may have been modified (because executed function calls may
write to memory). Therefore, before a reuse, we update the DDG recovered from
the memo table by performing a local change propagation through it. We then
reuse the updated DDG by incorporating it into the computation. This mech-
anism of adapting a DDG to side-effected memory can be extended to enable
the reuse of DDGs of a function call even when the arguments do not exactly
match. We achieve this by allowing the programmer to specify which arguments
to match and force the rest of the arguments to match via change propagation,
that is, by updating the computation with respect to the unmatched arguments.

Realizing this high-level description efficiently requires addressing a num-
ber of challenges. One challenge is in efficiently storing DDGs of function calls
in memo tables. Since a DDG is a graph, storing it can be expensive. We address
this challenge by allowing reuse of only the subgraphs, or sub-DDGs, of the DDG
currently being considered for change propagation. This allows us to use time
intervals to represent the sub-DDGs as subgraphs of the current DDG. Another
challenge is maintaining various invariants of DDGs while allowing their sub-
DDGs to be reused. One such DDG invariant requires uniquely representing all
executed data and control dependences. To ensure that reuse does not violate
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Fig. 3. The self-adjusting computation model.

this invariant, we permit the DDG of a function call to be reused only if it is
disjoint from the DDG of the current computation. In general, checking that
two DDGs are disjoint is expensive. We address this challenge by allowing the
reuse of only the function calls that are descendants of the function call cur-
rently being re-executed by change propagation.

To illustrate how this approach takes advantage of the duality of change
propagation and memoization, let us revisit the quick-sort example (Figure 2).
Inserting the new key 8 into the input affects the first read containing the
leftmost sp function (drawn as a dark solid circle). The change-propagation
algorithm therefore re-executes that function. When re-executed, the function
immediately calls sp(5), which is part of the current DDG and is a descendant
of the call being re-executed and thus can be reused. This process is repeated
until all affected read’s are re-executed (the re-executed reads and all new func-
tion calls are shown as dark circles). The amount of work performed is expected
O(log n), matching up to constants the work necessary to update the computa-
tion. Here n is the number of input elements, and the expectation is taken over
internal randomization. The key difference between this approach and conven-
tional memoization is the recording and reuse of computations (represented as
DDGs) instead of just their results. Reusing DDGs is critical for correctness
because it allows us to reuse computations in an imperative setting where com-
putation data is updated via side-effects—conventional memoization requires
purely functional programming.

3. THE MODEL

We present a brief overview of the self-adjusting computation model, describe
the language primitives for writing self-adjusting programs, and sketch the
underlying algorithms.

3.1 Self-Adjusting Program and the Mutator

In self-adjusting computation, programs are divided in two classes according
to their roles: a self-adjusting program (core) and a top-level mutator.

A self-adjusting program is written much like a conventional program: it
takes some input and produces an output; it may additionally perform some
effects (i.e., writing to the screen). Like a conventional program, we can ex-
ecute the self-adjusting program with some input. We call such an execution
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a from-scratch or initial run. A self-adjusting program is typically executed
from-scratch only once, hence the name initial run.

After an initial run, the input data1 can be modified and the program can be
asked to update its output by performing change propagation. This process of
modifying data and propagating modifications can be repeated as many times
as desired. Change propagation updates the computation by identifying the
parts of the program that are affected by the modifications and re-executing
them while reusing the parts that are unaffected by the modifications. Although
change propagation re-executes only some parts of the program, it is semanti-
cally equivalent to a from-scratch run: it is guaranteed to yield the same result
as running the program from scratch with the modified input. Asymptotically,
change propagation is never slower than a from-scratch run and can be dra-
matically faster. In a typical use, an initial run is followed by iterations of input
data changes and change-propagation steps. For this reason, change propaga-
tion must be highly efficient even at the expense of slowing down the initial
run.

The interaction between a self-adjusting program’s initial output and its
subsequent inputs may be complex. We therefore embed a self-adjusting core
program in a meta-level mutator program to drive this feedback loop. One kind
of a mutator that is common in various applications is a program that interacts
with a user to obtain the initial input for the self-adjusting core, runs the core
with that input, and continues interacting with the user, modifying the data as
directed and performing change propagation as necessary. We use such a muta-
tor in our experiments in this article. Another kind of mutator that is common
in motion simulation is a program that combines user-interaction with event
scheduling (e.g., [Acar et al. 2008b]). While interacting with the user, such a
mutator also maintains an event queue consisting of objects that indicate the
comparisons whose outcomes need to be modified and at which time. This mu-
tator perform the motion simulation by changing the outcomes of comparisons
and performing change propagation. Change propagation updates the event
queue and the output. In general, mutators can modify computation data in
arbitrarily complex ways as required by the application.

3.2 The Primitives

We provide two kinds of primitives for writing self-adjusting programs and the
mutator: (1) the core primitives and (2) the impure, meta primitives. A self-
adjusting program employs the core primitives. A mutator employs the meta
primitives.

The interface between a self-adjusting program and the mutator is estab-
lished by changeable data (i.e., data that is modified over time). To mark data
as changeable, we provide the notion of modifiable references or modifiables for
short: a modifiable is a memory location with a fixed address and modifiable
contents.

1In fact, not only the input data but also the data generated during the initial run can be modified.
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Core Primitives. Self-adjusting programs operate on changeable data
through a set of core primitives: the mod operation creates a modifiable, and
the read and write operations provide access to the modifiables. The read oper-
ation takes a modifiable and a function, called the reader, and applies the reader
to the contents of the modifiable. A read operation cannot return a value but it
can write to other modifiables.

To support memoization, we provide a family of lift operations. The program-
mer can memoize any expression (block of code) by specifying each free variable
of the expression as strict or nonstrict and using the appropriate lift operation.
During memo matching, the change-propagation algorithm looks for existing
computation that matches the strict variables. In this way, the lift operations
generalize conventional memoization by allowing computation reuse by only
matching some of the free variables (i.e., the strict part). As we will explain in
detail later in this section, the nonstrict variables are considered if the lookup
succeeds: the retrieved computation is then “adapted” to take into account these
variables.

The core primitive may be arranged in a type-safe interface that ensures that
modifiable references are used in a way that is consistent with purely functional
programming. Section 4 describes such an interface in Standard ML.

Meta Primitives. To enable the mutator to modify the data to a self-
adjusting computation, inspect its output and run change propagation, we pro-
vide a set of meta-primitives. These primitives create modifiables (new), deref-
erence them (deref), and write into them (update). The new operation returns
an empty modifiable, the deref operation returns the contents of the modi-
fiable, and the update operation updates the value stored inside a modifiable
with a new value. Note that the meta-primitives treat modifiables imperatively.
In fact modifiables and conventional references are isomorphic as far as the
meta-primitives are concerned. In addition, we include a propagate operation
to enable the mutator to perform change propagation.

Alternative Interfaces. It is possible to design a simpler interface for self-
adjusting computation by treating all computation data as changeable. It is,
however, difficult to provide an implementation for such an interface that per-
forms well in practice, since treating all data as changeable requires tracking
all memory operations and all dependences between data and computation. In
reality, this would be prohibitively expensive. Such a model can, however, be
interesting from a theoretical perspective, as it provides a more direct way to
analyze the asymptotic complexity of self-adjusting programs; this subject is
discussed in more details in the first authors thesis [Acar 2005].

3.3 Traces and Change Propagation

In self-adjusting computation, we represent computations as execution traces,
which record the data dependences between the computations and the control
dependences in the executed code. These traces are constructed during the
initial run and updated by the change-propagation algorithm.
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One key idea behind our approach is selective dependence tracking: we only
track data and control dependences that pertain to modifiable references. This
suffices because the interface to modifiables ensures that all changeable data
is placed in modifiables, and all computations that operate on changeable data
take place inside the read operations. To see this, first note that the mutator can
perform modifications only by side-effecting the contents of modifiables. Thus,
all other changeable data must be computed using modifiables. Since the only
way to access the contents of a modifiable is to read it, other changeable data
is computed by the read operations. Furthermore, since the read operations
cannot return a value, the only way they can affect other data is by writing
into other modifiables. Thus, all changeable data, except for those operated
inside the read operations, is written into modifiables. This property allows
us to track all data dependences between changeable values by tracking mod-
ifiables and the read operations. Similarly, we track all control dependences
between computations that operate on changeable data by tracking the dy-
namic containment relationships between read operations. We say that a read
r is contained within the dynamic scope of another read r ′ if the execution of r
takes place during the execution of r ′ (the execution-time frame of r ′ is within
that of r).

More concretely, we represent a trace as a tuple consisting of a DDG and
a memo table. A DDG consists of a set of modifiables V , a set of reads R,
a set of data dependences D ⊆ V × R, and a containment hierarchy C ⊆
R × R. The data dependences represent the dependences between modifiables
and reads: (v, r) ∈ D if r reads v. The containment hierarchy C represents the
control dependences: (r1, r2) ∈ C if r2 is contained within the dynamic scope of
r1. We note that a containment hierarchy naturally corresponds to a function
call tree, mentioned in earlier sections. A memo table � maps tuples consisting
of the function and the strict argument to tuples consisting of a modifiable
(allocated for the nonstrict argument) and a DDG (of the executed function
call).

We construct DDGs by tracking the mod, read, and write operations. A mod
operation inserts a new modifiable into V, a read operation inserts a new read
operation into R, and a write operation sets the value of the given modifiable.

The lift operations populate the memo table and reuse existing DDGs. Con-
sider executing a lift operation with a function f and strict and nonstrict vari-
ables s and n, respectively (multiple strict and nonstrict variables are handled
similarly). We first perform a memo lookup, seeking for a call to f with the strict
argument s. If the lookup fails, then we allocate a modifiable m for the nonstrict
argument n and write n into m. We then execute the function call and store its
tuple, consisting of m and the DDG in the memo table indexed by the function
and the strict arguments. If the lookup succeeds, then we check if the set of
reads of the DDG found and the DDG of the current computation remain dis-
joint. If so, then we perform change propagation on the found DDG and insert
it into that of the current computation. Otherwise, we execute the function as if
the lookup had failed. When reusing a DDG, we need to make sure that its read
set is disjoint from the current DDG because we require that each executed
read is represented uniquely in the DDG of the computation.
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When a self-adjusting program is executed with an input, we construct its
DDGs by tracking the operations on modifiables, as described before. After
the initial run is performed, the mutator can modify the contents of modifi-
ables by using the update operation and perform change propagation by calling
propagate. The change-propagation algorithm maintains a queue of affected
reads that initially contains the reads of the updated modifiables (a read is
represented as a closure consisting of a reader and an environment). The al-
gorithm repeatedly removes the earliest read r from the queue, that is, the
read that was executed earliest, and re-executes its reader. Before re-executing
the reader, the algorithm removes all the reads contained in r (found using the
containment hierarchy). Note that even though they may be removed from the
DDG of the current computation, the removed reads may still remain live be-
cause they may be stored in the memo tables. This makes it possible to later
reuse the parts of the previous execution of the read. When the change prop-
agation algorithm terminates, the result and the DDG of the computation are
identical to the result and the DDG obtained from a from-scratch execution.

4. THE SML LIBRARY

We present an SML library that organizes the primitives in a type-safe in-
terface. The interface (Section 4.1) enforces proper usage of modifiables, but
still requires additional correct usage rules to ensure the correctness of change
propagation. The library facilitates transforming conventional, purely func-
tional SML programs into self-adjusting programs (Section 4.2). Based on this
interface, recent work proposes direct language support and compilers for self-
adjusting computation [Ley-Wild et al. 2008, 2009] that can statically ensure
correctness.

4.1 The Interface

Figure 4 shows the interface for our library. The signature COMBINATORS specifies
the core library functions. These functions rely on a BOXED VALUE module that
supplies functions for operating on boxed values.

A boxed value is equipped with a constant-time index function that returns a
unique integer, called an index, and a constant-time equality function. We use
boxed values to determine when to stop change propagation (using equality test)
and when a computation may be reused (using the indices as a lookup key).
Boxed values are implemented as a pair consisting of a value and a unique
integer index. The function new creates a boxed value by creating a unique
index for that value. The eq function compares two boxed values by comparing
their indices. The valueOf and indexOf functions return the value and the
index of a boxed value, respectively. The BOXED_VALUE module may be extended
with functions for creating boxed values for a type. Such type-specific functions
must be consistent with the equality of the underlying types. For example, the
function fromInt may assign the index i to the integer i.

The COMBINATORS module defines the primitives for modifiable references
and for memoization. It consists of two parts: core operations on modifiables
for writing self-adjusting programs and meta operations (impure operations)
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Fig. 4. Signature for boxed values and combinators.

for inspecting modifiables, changing the contents of modifiables via side effects,
and for performing change propagation. A mutator uses the meta-operations to
control self-adjusting programs.

The Core Interface. The core primitives ensure that well-typed self-
adjusting programs have the following properties:

—all modifiables are written exactly once, and
—no modifiable is read before it is written.

These properties can be ensured statically. To do so, we distinguish between
changeable and stable computations. A changeable computation of type α cc is
a function that ends by writing its result of type α into a destination, a modifiable
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reference, of type α modref. The destination of a changeable computation is
implicit.2

A write primitive introduces a changeable computation: it creates a trivial
changeable computation which writes the given value. The write primitive
takes a comparison function to detect when the value written is equal to the
value already stored in the destination modifiable—this avoids unnecessary
propagation of changes. Any nontrivial changeable computation reads some
modifiables and performs calculations on the values read.

The read primitive, which we render as �→ in infix notation, takes an existing
modifiable reference together with a reader—a changeable computation—for
the value read. It returns a changeable computation that encompasses the pro-
cess of reading from the modifiable and performing the computation specified
by the reader with the value read.

The elimination form for changeable computations is the modref function;
modref allocates a fresh modifiable, executes the given changeable computation
with that modifiable as the destination (the result is written to the allocated
modifiable) and returns the modifiable. A modifiable that holds values of type α

has type α modref. Thus, every execution of a changeable computation of type
α cc starts with the creation of a fresh modifiable of type α modref and ends
by writing to that modifiable. For the duration of the execution, the reference
never becomes explicit. Instead, it is carried implicitly in a way that is strongly
reminiscent of monadic computation. This approach to enforcing the invariants
on modifiable references is similar to that proposed by Carlsson in the context
of the Haskell language [Carlsson 2002].

To support computation memoization, we define a notion of lifting with strict
and nonstrict arguments. Given a function (e.g., fn x => e), a strict argument
is a free variable of the function body (e.g., e) that is required to match for
computation reuse, whereas a nonstrict argument is a free variable that is not
required to match for computation reuse. Informally, we use the strict argu-
ments as the lookup key for retrieving the appropriate computation and adapt
the computation to match the remaining (i.e., nonstrict) arguments.

We distinguish between several kinds of lift operations. The simplest lift
operation memoizes nonchangeable computations; it takes the indices of the
strict arguments as a list of type Box.index list, a nonstrict variable of type
α and a function of type α modref → β and returns a value of type β. There
is also a similar lift operation for changeable computation, where the lift op-
eration takes the indices of the strict arguments as a list of type Box.index
list, a nonstrict variable of type α and a function of type α modref → β cc
and returns a value of type β cc. For the purposes of memo matching, strict
arguments must be boxed values. The mkLift and mkLiftCC functions create
lift operations from supplied equality tests for the nonstrict argument (of type
α), and in the case of mkLiftCC equality tests for the result of the changeable
computation (of type β cc). These functions allow one nonstrict argument. Not
shown here, our library also contains mkLift2, mkLiftCC2, mkLift3, mkLiftCC3,
and so on to support more than one nonstrict argument.

2In the implementation a changeable computation takes the destination to write as an argument.
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A lift operation performs memo lookups based only on strict arguments by
using the index list for strict variables as a key—it ignores the nonstrict argu-
ments. If there is no memo match, then it places the nonstrict arguments into
modifiables and then applies the function to these modifiables to compute the
returned result. If the strict arguments match, then a memo lookup succeeds
and returns a computation. By construction, this computation wraps the non-
strict variables inside modifiables. The operation modifies the contents of these
modifiables by storing the values of nonstrict arguments inside them and by
performing change propagation on the matched computation. The memo table,
indexed by just the strict arguments, remembers the modifiables that hold the
nonstrict arguments as well as the memoized computation.

Meta-Operations. The meta-(impure) operations consist of the init func-
tion for initializing the system, and propagate function for performing change
propagation, the new function for creating (empty) modifiables, the update func-
tion for destructively updating modifiables, and the deref function for derefer-
encing modifiables. The propagate function runs the change-propagation algo-
rithm. Note that while these operations can update or access modifiables, they
will not be tracked in the DDG because they take place at the meta-operation
level.

Correct Usage. We require that a self-adjusting program written with the
core primitives satisfy a number of correct-usage rules to ensure correctness,
that is, that change propagation updates the computation and its output cor-
rectly after a modification.

Correct usage requires that the side-effecting meta-operations, that is, all
except for deref are not used by the self-adjusting program—meta-operations
can be used only by the mutator.

The other correct-usage rules concern the lift operations. We require that
the programmer declare all free variables of the function being lifted either as
a strict or a nonstrict argument. Whether an argument is strict or nonstrict
does not impact correctness; what matters is that all arguments are declared.
Similarly, we require that no two functions share the same lift operation. Each
function needs its own lift operation, which can be generated by an appropriate
mkLift function.

Violation of correct usage can prevent change propagation from correctly up-
dating a computation, as it may generate incorrect memo matches. For example,
omitting a free variable from a lifted function can generate an incorrect memo
match. Similarly, lifting multiple functions with the same lift operation can
cause the one function call to match another, ultimately causing computations
to be reused incorrectly.

Although it is possible to eliminate the correct usage rules by designing
a richer type system, it seems difficult to embed such a type system within
the type system of SML [Acar et al. 2006a]. It is possible, however, to ensure
correctness statically by providing direct languages support [Ley-Wild et al.
2008, 2009].
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4.2 Transformation

Using our SML library, the programmer can transform a normal, purely func-
tional SML program into a self-adjusting program by annotating the code with
the core primitives supplied by the library. This transformation requires only
syntactic changes to the code. It consists of two steps.

First, the programmer determines what parts of the input data will be modi-
fied over time and places such changeable data into modifiables. This makes the
program sensitive to updates to places in the input marked by the modifiables.
The programmer then annotates the original program by making the reads of
modifiables explicit. Since the reads are changeable computation, this requires
creating new modifiables that hold all the changeable data in the computation.

Second, the programmer memoizes selected functions by creating lift oper-
ations and applying them to the functions chosen to be memoized. In general,
all functions can be memoized, but performance concerns imply that functions
that perform nonconstant work should be memoized. To apply a lift operation to
a function, the programmer must partition the arguments into strict and non-
strict arguments. The particular partitioning chosen does not affect correctness,
but can effect performance of change propagation because only strict arguments
are matched during a memo lookup. Therefore, making many arguments strict
can decrease reuse via memoization; making many arguments nonstrict would
increase memo matches but can also increase change-propagation cost to adapt
the computation for reuse.

As guidance for determining the partition, we suggest the following strictness
principle: make nonstrict those free variables that are only passed as arguments
to other memoized functions, make strict all other variables. This ensures that
when a memo match takes place, the results computed by the invocation of
the memoized function are reused without any need for change propagation
and the results computed by other memoized calls will be updated via change
propagation. Since a function call invocation takes at least constant time, the
principle ensures that the cost of memoization (a constant) can be amortized
against the cost of performing the invocation itself.

All the applications that we use in this article are written using this two-step
process. We describe several examples of how to write self-adjusting programs
in the next two sections. In Section 8, we discuss several applications and show
that the transformation process requires reasonably small changes to the ex-
isting code.

5. AN EXAMPLE: MODIFIABLE LISTS

As an example of how we can write self-adjusting programs using the presented
library, we consider modifiable lists, a data structure for lists whose contents
can change over time. We describe a representation for modifiable lists and
discuss some list operations analogous to ordinary functional lists.

5.1 The Interface

Figure 5 shows the interface (signature) and the implementation (structure)
for a module implementing modifiable lists. We define a modifiable list as a
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Fig. 5. The signature for modifiable lists and an implementation.

modifiable reference to a cell, which is either a cons cell or a nil. A cons cell
consists of an element and a tail which is a modifiable list. Modifiable lists are
defined similarly to conventional lists; the difference is that the tail of a cell is
a modifiable itself.

By placing the tail of a cons cell into a modifiable, we enable the mutator to
modify the contents of the list by appropriately updating the tail modifiables.
For example, the mutator can splice in new elements into a list and splice out
existing elements from the list. Thus modifiable lists may be used to represent
a set of elements that change over time. Additionally, a mutator can read a
list of items from the user (e.g., list of objects to process, list of keystrokes to
match against some string) and represent the list as a modifiable list. It can
then perform some self-adjusting computation with this list (e.g., compute some
property of the objects, perform a string-match on the keystrokes) and return
its output to the user. As it continues to interact with the user, the mutator can
modify the list as directed by the user (using the meta-operations), and update
the output by performing change propagation.

Our modifiable-list library provides the functions eq, write, lengthLessThan,
map, and fold. These functions all require the elements in the lists to be boxed
(Section 5.1). Boxing the elements facilitates testing for equality and reusing
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Fig. 6. The self-adjusting map function.

computations via memoization. The eq function tests for shallow-equality of the
two lists. The write function specializes the write function of the COMBINATOR
module for modifiable lists. The lengthLessThan function tests if the list is
shorter than the given value. This function is straightforward to implement;
we therefore omit the code. As example list operations, we discuss the map
and the fold functions. The modifiable-list versions of other conventional list
operations can be obtained similarly.

When translating conventional programs into self-adjusting programs, we
apply the two-step process described in Section 4.2. Many self-adjusting pro-
grams obtained via this translation perform well under change propagation.
As an example of such a program, we consider the map example. Not all self-
adjusting programs obtained via such a simple translation, however, perform
well with change propagation. To be efficient under change propagation, the
translated programs must be stable, that is, their execution should be relatively
insensitive to changes to their data. By performing a stability or a sensitivity
analysis, we can determine how stable or sensitive a program is for some kind
of change. We describe this analysis technique informally (Section 5.3). As an
example program whose typical implementation is not stable, we consider the
fold function and describe a stable implementation for it (Section 5.4).

5.2 The map Function

Figure 6 shows the code for a standard implementation of map (left) and its
self-adjusting version (right). Both functions take a function f and a list l and
return a list obtained by applying f to each element of l.

We obtain the self-adjusting version of map from the conventional version by
applying the two-step transformation process (Section 4.2). We start by chang-
ing the input list to a modifiable list. In a modifiable list, we need to read the
modifiable to access the contents. Since a read operation is a changeable com-
putation, it can only take place in the context of a modref, which is also used to
store the result.

Then, we memoize map. We do not need to memoize the NIL branch, as it
performs trivial work. We memoize the CONS branch by treating h as strict and
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the contents of t (bound to ct) as nonstrict by applying the strictness principle.
Finally, we create the lift function for the CONS branch by using the mkLiftCC
function by supplying the list equality function. This completes the translation.

5.3 Stability

By applying the translation process, we can derive self-adjusting versions of
other conventional list functions such as reverse, filter, fold. How effective
are these self-adjusting functions under small changes to their input, for exam-
ple, an insertion or deletion into or from the input list? As with conventional
complexity analysis of run-time, reasoning about the run-time of change prop-
agation under some change often requires rigorous analysis. Developing an
intuitive bound, however, is simpler. The idea is to compare the operations per-
formed in from-scratch executions of the program with the inputs before and
after a change. If the difference in the set of executed operations is large, then
we say that the program is not stable. If the difference is small, then we say
that the program is stable.3

To analyze the stability of map, consider executing it with two input lists that
differ by one key. The performed operations consist of the traversal of the lists
and the application of the supplied function to the elements. Since the two lists
differ by one key, the difference will be constant. Thus, map will take constant
time to respond to an insertion/deletion into/from the input.

Many programs are naturally stable or can be made stable with relatively
small changes. All the examples we consider in this article, except for one,
are either naturally stable or made stable with small modifications. Some pro-
grams, however, are not stable. Consider, for example, the list primitive fold,
which takes a list and an associative binary operator, and applies the operator
to the elements of the list to produce a single value (e.g., applying fold to the
list [1,2,3,4] with the integer plus operation yields 10).

The fold function is typically implemented by traversing the list from left
to right while maintaining the partial results for the visited prefix in an accu-
mulator. This implementation of fold, however, is unstable. To see this, let’s
consider the operations performed with inputs that differ by one key. More pre-
cisely, consider the case when one list has one element at the beginning that
the other lacks, for example, [1,2,3,4,. . . ] and [2,3,4,. . . ]. Suppose now we
sum the elements in the list by applying the addition operator to the elements
from left to right, keeping the prefix sum in an accumulator and summing each
element with the accumulator. The prefix sums with the lists are 1,3,6,10,. . .
and 2,5,9,. . . . The prefixes differ by 1 in every position. Thus, no two prefix
sums are the same, so a linear number of operations (in the length of the input)
will need to be updated. Consequently, change propagation will take at least
linear time. In the section that follows, we describe how we can implement a
stable fold for lists.

3A precise treatment of stability is out of the scope of this article but can be found in the first
author’s thesis [Acar 2005].
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Fig. 7. Self-adjusting list fold.

5.4 A Stable fold Function

Figure 7 shows a stable version of fold. This implementation uses the clas-
sic technique of random-sampling to compute the result. The idea is to shrink
the input list into smaller and smaller lists until only one element remains. To
shrink the list, we choose a randomly selected subset of the list and combine the
chosen elements to their closest element to the right. Note that a deterministic
approach, where, for example, every other element is deleted is not stable, since
deleting/inserting an element can cause a large change by shifting the positions
of many elements by one. Note that we do not require commutativity—only asso-
ciativity suffices. For randomization, we use a random hash function [Wegman
and Carter 1979] that returns 0 or 1 with probability 1/2.

In the implementation in Figure 7, the fold function takes two arguments:
an associative binary operator binOp and a modifiable list l. When fold is
called, it runs the helper function halfList, which shrinks the list by calling the
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Fig. 8. The lists at each round before and after inserting the key f with value 7.

sumRun function and then recursively calls itself. The recursion terminates when
only one element remains in the list. As the name suggests, each application
of halfList shrinks the list approximately by half; this is done by applying
the sumRun function multiple times. The behavior of the sumRun function is of
particular note: as it recursively traverses the list, the function “flips” a coin for
each element visited until a tails is found. During the traversal, the function
stores in the argument v the running sum of the values it has seen so far. When
a tails is found, the function returns a changeable computation that writes to
the designated modifiable the combined value and the remaining list. In this
case, the target modifiable is the variable p, to which C.modref that calls the
sumRun function is bound: val p = C.modref (sumRun (h,t)).

For stability, we memoize the half function by applying the same reasoning
as in the map function: The NIL branch is not memoized because it performs
trivial work. We apply the strictness principle when memoizing the CONS branch,
treating h as strict and the contents of t (bound to ct) as nonstrict.

The algorithm requires expected linear time because each application of half
reduces the size of the input by a factor of two (in expectation). Thus, we per-
form a logarithmic number of calls to halve with inputs whose size decreases
exponentially. How stable is the approach? As an example, Figure 8 shows an
execution of fold that computes the sum of the integers in the lists [(a,0), (b,8),
(c,5), (d,3), (e,2), (g,9), (h,6), (i,4), (j,1)] and [(a,0), (b,8), (c,5), (d,3), (e,2), (f,7),
(g,9), (h,6), (i,4), (j,1)]. The two lists differ in one position (the box indexed by
f with payload 7). Comparing two executions, only the elements in the high-
lighted cells differ. It is not difficult to show that we have a constant number of
such cells in each level and, based on this, prove that the approach is O(log n)
stable in expectation. Thus, after inserting/deleting the box f, we can update
the output in logarithmic time.
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Fig. 9. An illustration of the operations on time stamps.

6. ALGORITHMS FOR SELF-ADJUSTING COMPUTATION

In this section, we describe efficient algorithms for implementing the self-
adjusting computation model. These algorithms form the basis for our imple-
mentation described in Section 7. In our description, we assume the primitives
as described in Section 3.2. We start with the crucial notion of time stamps and
time intervals that we use to efficiently enforce various invariants.

6.1 Time Stamps and Intervals

We use time stamps and time intervals to efficiently support self-adjusting
computation primitives.

We define a time (stamp) to be an element of a totally ordered, dense universe
(U, <) that can be viewed as a (virtual) time line. We denote a time stamp by t
(and variants) and assume all time stamps are drawn from U .

We define an interval δ to be either empty, written ∅, or half-open, which is
represented by two time stamps. We say that the interval δ is half-open if its stop
time, written te(δ), is included in δ while its start time, written ts(δ), is not. For
t1, t2 ∈ U and t1 ≤ t2, the half-open interval (t1, t2] is the set {t ∈ U : t1 < t ≤ t2}.
We use lower-case Greek letters μ, δ, π , and variants to denote intervals. It may
be helpful to think of U as the real line and the intervals as the standard half-
open real intervals.

We define the following relations between intervals.

—Containment. We say that an interval δ′ is contained in another interval δ,
written δ′ ⊆ δ, if ts(δ′) ≤ ts(δ) ≤ te(δ) ≤ te(δ′).

—Tail. We say that a nonempty interval δ′ is a tail of δ, denoted by δ′ 
 δ, if
ts(δ) ≤ ts(δ′) < te(δ′) = te(δ). That is, δ′ is a tail of δ if δ′ is completely contained
in δ and shares the end time with δ. If δ′ 
 δ and δ′ �= δ, then δ′ is a proper
tail of δ, denoted δ′ � δ.

—Slice. For a given set X of nonempty intervals, we say that the interval μ′ is
an X -slice of μ if μ′ is a proper tail of μ, and μ \ μ′ does not contain any start
or stop time stamps of the intervals in X .

We define operations for coalescing and splitting intervals and for taking a
slice of an interval. Figure 9 illustrates these operations.

ACM Transactions on Programming Languages and Systems, Vol. 32, No. 1, Article 3, Pub. date: October 2009.



3:26 • U. A Acar et al.

—Coalesce. This operation, denoted by δ ⊕ δ′ where δ and δ′ are arbitrary inter-
vals, returns the smallest interval that contains both intervals, that is, the
interval (min{ts(δ), ts(δ′)}, max{te(δ), te(δ′)}].

—Split μ at δ. If μ �= ∅, δ ⊆ μ, and δ �
 μ, splitting μ and δ yields a pair of
intervals (π, μ′) such that π , δ, and μ′ are mutually disjoint and π ∪δ∪μ′ = μ.
Moreover, we have μ′ 
 μ and (δ ∪ μ′) 
 μ. If δ = ∅, then π = ∅ and μ′ = μ.

—SliceX(μ) returns an X -slice of μ. The definition does not uniquely describe
the result, but any X -slice will suffice for our purposes.

6.2 The Algorithms

We present precise algorithms that realize the high-level description previously
presented in Section 3.3.

To realize the high-level description efficiently, we need to

(1) maintain the execution order of all reads in the DDG;
(2) represent the containment hierarchy such that all reads contained in a

given read can be found efficiently;
(3) store DDGs in memo tables efficiently; and
(4) test whether a DDG is available for reuse (i.e., if the read sets of that DDG

is disjoint from the current DDG).

To maintain the execution order of all reads and to represent the containment
hierarchy, we use time stamps and intervals. The idea is to maintain, during an
execution, a virtual execution time line and assign a time interval to each read,
which is the time interval in which the read executes; the time interval of a read
is represented with two time stamps, one for the start and one for the end. Using
these intervals, we realize goals (1) and (2) as follows. We order reads by their
start times. We can check for containment by performing interval containment
tests—a read is contained within another if its time interval is contained within
the other. Thus, the ordering and containment tests are simple checks on the
time intervals.

For performance, we store in our memo tables only the DDGs that belong
to the current computation. With this restriction, we can represent a sub-DDG
of the current DDG with a time interval—the interval in which that DDG was
created. This restriction also helps us avoid testing for disjointness. The idea is
to restrict the lift operation to reuse DDGs only during change propagation—
no reuse takes place in a from-scratch run. To support reuse during change
propagation, we maintain an interval that we call the current interval and
allow only DDGs that are contained within this interval to be reused. Before
re-executing a read, change propagation sets the current interval to be the
interval of that read. As reuse takes place, this interval is adjusted by deleting
the part of the interval up to the end of the reused interval. This ensures that the
current interval remains a single, connected interval, and the reused intervals
are nonoverlapping and can be given a total order.

We represent a DDG by the triplet (V , R, D), where V is the set of modifi-
ables, R is the set of reads, and D ⊆ V × R is the set of data dependences. We

ACM Transactions on Programming Languages and Systems, Vol. 32, No. 1, Article 3, Pub. date: October 2009.



An Experimental Analysis of Self-Adjusting Computation • 3:27

associate each read r with its interval, denoted �(r), with the source modifiable,
denoted Src(r), and the reader function, denoted Rd(r). We define � on a set of
reads point-wise as �(R) = {�(r) | r ∈ R}. We say that a read r1 is contained in
another read r2 if and only if the time interval of r1 lies within the time interval
of r2.

We represent a memo table as a mapping from function names and strict
arguments to a triple consisting of the interval of the call, the modifiable for
the nonstrict variable, and the result of the call.

Our algorithms are “interval-passing”—we evaluate all expressions except
for meta-operations in the context of an interval, called the current interval,
denoted by μ (and its variants). Executing an expression e in the context of μ,
written e μ, returns an updated current interval μ′ 
 μ, a fresh interval δ, and
a result a, that is,

(δ, μ′, a) ← e μ, where
μ′ 
 μ and δ ∩ μ′ = ∅ and δ ∪ μ′ is a �(R)-slice of μ.

Intuitively, the reader may find it helpful to think of evaluating an expression
as creating a fresh interval for its execution and consuming some of the current
interval (by returning a tail).

The expressions that correspond to mod, read, write, lift primitives treat
intervals specially. All other expressions coalesce intervals while propagating
the current interval forward, for example, e1 and e2 are sequentially executed
as follows

(δ1 ⊕ δ2, μ′′, a) ← (e1; e2) μ, where,
(δ1, μ′, ) ← e1 μ and (δ2, μ′′, a) = e2 μ′.

Figure 10 shows the pseudo-code for the mod, read, write, propagate, and lift
operations. Of the remaining meta primitives—new, deref, and update—the
new primitive is identical to the core primitive mod. The deref primitive simply
returns the value of a modifiable, and update destructively updates the value
stored in a modifiable. These primitives are straightforward to support and will
not be discussed in further detail.

The implementation maintains the following global structures: a DDG =
(V , R, D), a memo table �, and a priority queue Q of affected reads.

The mod operation extends the set of modifiables with a fresh modifiable m
(that is not contained in the domain of V , i.e., m �∈ dom(V )) and returns m.

The read operation starts by creating a time interval. The first slice ensures
that each read has its own unique start time. The second slice guarantees
that the interval �(r) is nonempty. Since μ3 is a tail of μ1, the read’s interval
�(r) = δ = μ1 \ μ3 will be half-open.

The write operation checks if the value being written is different from the
value stored in the modifiable. If they differ, the readers of the modifiable are
inserted into the priority queue Q . The write operation returns an empty in-
terval, the current interval without modifications, and the modifiable that was
written to.

Change propagation (propagate) updates the given interval δ by repeat-
edly extracting the earliest affected read in δ from the priority queue and
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Fig. 10. An interval-passing semantics of the interface.

re-executing its reader. The re-execution takes place in the original interval
of the read to ensure the following invariant: only the part of the virtual time
line that belongs to the re-executed read is modified by the re-execution. When
the re-execution is completed, the elements of R, D, and Q that do not belong to
the new interval are trimmed by restricting R, D, and Q to the new interval μ.
We write X �R to denote the restriction of X to elements that do not have reads
outside R. Change propagation for an interval δ stops when the queue contains
no read operations that are contained within δ.

The lift operation takes a function f along with a strict argument s and
a nonstrict argument n. A memo lookup seeks for a call to f within the time
interval μ whose strict argument is equal to s. When checking for the equality of
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the strict arguments, the lookup operation uses shallow equality: two locations
are considered equal if they have the same address (or identity). If the lookup
succeeds, it returns a result a, an interval δ, and a modifiable m that contains
the values of the nonstrict argument. The algorithm extracts the interval δ

from μ using split, writes the new nonstrict argument into m, and change-
propagates into δ, thereby adjusting the reused computation to all changes.
The algorithm then expunges the elements that belong to the interval π and
returns. This step ensures that all elements of the DDG that do not belong
to the current computation are removed. If the memo lookup cannot find an
appropriate entry, then the algorithm creates a new modifiable m, writes the
nonstrict argument into m, and applies f to s and m. Finally, the algorithm
stores a, m, and δ in the memo table �.

7. IMPLEMENTATION

We describe an implementation of the library interface presented in Section 4.
The implementation is based on the algorithms described in Section 6 and relies
on several efficient data structures (Section 7.1). The implementation enforces
an important property we call space-integrity, which enables us to bound the
memory usage (Section 7.2). Following that, we discuss some optimizations
that help reduce constant factors involved in the implementation (Section 7.3).
Finally, we speculate why applications of our library seem to constitute chal-
lenging benchmarks for current garbage collectors (Section 7.4).

7.1 Data Structures

Intervals. Since our algorithms operate on the time line extensively, main-
taining it efficiently is critical for performance. We therefore use the (amortized)
constant-time order maintenance data structure of Dietz and Sleator [1987]
(our implementation, however, follows the simplified description of Bender
et al. [2002]).

We maintain a global (virtual) time line that consists of a totally ordered set
of time stamps. An interval is represented as a pair of time stamps, for example,
the interval (t1, t2] is represented with the the pair (t1, t2). Three operations are
used to maintain the time line: the insert operation inserts a new time stamp
immediately after a given time stamp on the time line; the delete operation
removes a given time stamp from the time line; and the compare operation
compares the ordering of time stamps on the time line. In addition to the time
line, the implementation maintains two time stamps, called the current time
and the finger. Together these define the current interval.

The insert, delete, and compare operations suffice to support all operations
on intervals (Section 6.2). The slice operation is implemented by inserting
a new time stamp t after the current time and setting the current time to t.
The split operation is implemented by deleting all time stamps between the
current time and the desired interval. Since the implementation of the slice
operation advances the current time, an explicit use of the coalesce operation
never arises.
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Dynamic Dependence Graphs. The implementation globally maintains the
current dynamic dependence graph (DDG). Each read consists of a closure and
a pair of time stamps representing its interval. Each modifiable reference is
implemented as a reference to a tuple consisting of a value and a read list. A
read list is maintained as a doubly-linked list of reads.

Memo Tables. Memo tables are implemented as standard hash tables with
chaining (see e.g., Knuth [1998]). Each entry represents (1) a function call,
whose data is the result; (2) the time interval (two time stamps); and (3) the
nonstrict arguments of the call. Memo lookups are performed by hashing the
strict arguments of the call. A lookup succeeds if there is a memo entry within
the current interval that has the same strict arguments. Insertion and dele-
tion operations are supported as usual. The implementation ensures that the
load factor of the hash tables does not exceed 0.5 by doubling the tables as
necessary.

For fast equality checks and hashing, the implementation relies on boxing
(a.k.a. tagging). Every strict argument to a lift function is required to be tagged
with a unique identity (an integer). Since ML is type-safe, values of different
types can use the same tag value. These tags are used both for computing the
hashes and for resolving collisions.

7.2 Space Integrity

Consider running a program P with some input and then performing a se-
quence of change-and-propagate steps, where each step makes some changes
and runs change propagation. Space integrity means that after performing all
the changes, the total space usage is guaranteed to be the same as the space
used by a from-scratch execution of P with the final input. The property implies
that the space usage is independent of the past operations (i.e., history).

The implementation ensures space integrity by eagerly releasing all refer-
ences to trace elements (modifiables, reads, memo entries, and time stamps)
that do not belong to the current computation. This makes the trace elements
available for garbage collection as soon as possible. Since modifiable references
are only referenced by reads and memo entries; and since reads, memo en-
tries and time stamps are not referenced by any other library data structures,
releasing the reads, memo entries, and time stamps suffices to ensure space
integrity.

To enforce eager releasing, the implementation ensures that all live reads
and memo entries have an associated time stamp. Since all live reads have
their own time intervals, their start time stamps can be associated with the
read operations. Similarly, if a memoized computation has a nonempty interval,
then we associate its last time stamp with the corresponding memo entry. If
the memoized computation has an empty interval, then the library creates a
time stamp and associates the entry with that time stamp.

The idea behind eager releasing is to maintain back pointers from each time
stamp to the reads and memo entries that it is associated with. Thus, when the
time stamp is deleted, the library can actively delete the corresponding reads
and memo entries. More specifically, consider a time stamps t being deleted.
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First, t is removed from the order maintenance data structure. Second, the
back pointers of t are used to find the read or the memo entries associated with
t. Third, depending on what was found in the second step, either the read is
removed from the read list that contains it, or all associated memo entries are
removed from the memo tables that they are contained in.

We have found that the space-integrity property is critical for the effective-
ness of the library. Our earlier implementations suffered from space explosion
because they lazily released reads and memo entries (by flagging deleted reads
and memo entries and releasing flagged objects when next encountered).

To verify that our implementation ensures space integrity, we implemented
a space-profiling version of our library. Using the library, we experimentally
verified that the numbers of all live library-allocated objects (modifiables,
reads, time stamps, memo entries, and memo tables) after various sequences
of change-and-propagate steps are equal to the numbers obtained by a from-
scratch execution.

7.3 Optimizations

Self-adjusting computation offers opportunities for new optimization tech-
niques. In this section, we describe two such optimizations that proved to be
particularly useful.

Single Reads. In many applications, most modifiables are read only once.
For example, for all the applications considered in this article, the average num-
ber of reads per modifiable is less than 1.5 (cf., Section 9). To take advantage of
this property, we implemented a version of the read lists data structure de-
scribed in Section 7.1 that is specialized to contain no extra pointers when the
list consists of only one read. When the list contains multiple reads, the data
structures separate one of the reads as special and place all other reads in a
doubly-linked list. The first element of the doubly-linked list points to the spe-
cial list and the second element. This data structure can be thought of as a
doubly-linked list that has two base cases: an empty and a single-read case.

This optimization makes the operations on read lists slightly more com-
plicated than a standard doubly-linked lists, and also complicates the eager
deletion of reads—when a read becomes the only read, then its release closure
may need to be updated to account for this change. Since many modifiables are
read only once, we found that this optimization can improve running times and
reduce memory consumption. We also experimented with read lists optimized
for both single and double reads, but observed no significant improvement over
the single-read optimization.

Inlining lift Operations. This optimization eliminates modifiables and
reads that are created by the lift operations due to nonstrict arguments when
the nonstrict arguments are only passed to a tail call. The idea is to store the
value of the nonstrict arguments directly in the memo table. When a memo
match takes place, the recursive tail call is performed explicitly. This optimiza-
tion can be viewed as inlining the lift operation; it saves a modifiable, a read,
and two time stamps.
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As an example, consider the call f(s,n) to a lift function f with a strict ar-
gument s and a nonstrict argument n. When called, the function first performs
a memo lookup using s. If there is a memo match, then the match yields a
result r and a modifiable m that stores the value of the nonstrict argument
for the reused call. Before returning the result, the function writes n into m
and performs change propagation. This change propagation adjusts the com-
putation according to the value the nonstrict argument n. If n was just passed
as argument to a tail call, then change propagation simply executes that call.
With the optimization, the tail call is executed explicitly instead of relying on
change-propagation.

To support this optimization, the library provides a version of the mkLift
primitive that takes the function to be tail-called as a separate argument. To
use the optimization, the programmer specifies the tail call explicitly. The oppor-
tunity for this optimization arises often. In our benchmarks, we have observed
that the optimization can reduce the running time for both change propagation
and from-scratch execution up to 40%, depending on the application.

7.4 Garbage Collection

Self-adjusting computation poses a number of challenging garbage-collection
problems, particularly for tracing garbage collectors—perhaps the most com-
monly used collectors—which include copying, generational, and mark-and-
sweep collectors. Tracing collectors identify the live and dead memory objects
by performing a memory traversal to determine reachable objects starting from
a set of roots, and reclaim the dead, unreachable objects. Since they traverse all
of live memory, a tracing garbage collector remains efficient only when the size
of the live data is small relative to the size of available heap. When the size of
the live memory is large, a tracing garbage collector can slow down a program
and even change its asymptotic complexity.

As a simple example, consider an execution where the heap space is available
only for one more memory object, while the total amount of live space is linear
in the input size. Now, every time we attempt to allocate an object, the run-time
system will need to perform GC, which takes linear time. Thus, every memory
allocation will effectively require linear time, and the asymptotic complexity
of the program will increase by a linear factor. We can provide a more careful
analysis by generalizing this example. It is known that with tracing garbage
collectors, if f is the fraction of live memory, the cost for each reclaimed memory
cell is O(1/(1− f )) (e.g., Jones [1996]), which grows very quickly as the fraction
of live memory increases, approaching infinity in the limit (as f becomes 1).
In particular, note that if f = (n − 1)/n, where n is the input size, then the
cost of GC for each reclaimed memory location is O(n). Since self-adjusting
programs record and maintain an execution trace, they tend to have large live
data, potentially causing tracing collectors to slow down change propagation
significantly.

Generational garbage collectors can somewhat alleviate this critical de-
pendence on the size of the live data by dividing the heap into generations
and garbage-collecting the younger generations first. They aim to reduce the
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amount of tracing required by giving higher priority to those object that are
more likely to become unreachable. For the approach to be effective, programs
must conform to the so-called generational hypothesis, which postulates that
the younger objects are more likely to become unreachable than the older ones.
Unfortunately, self-adjusting programs do not conform to the generational hy-
pothesis. In particular, a significant portion of the memory, that is, trace objects
(modifiables, reads, memo table entries, and time stamps), are expected to have
long lifespans, even if they are young. Furthermore, due to the side-effecting
nature of write operations, it is common for old data to point to new data,
making it more difficult to divide the memory into generations.

For these reasons, we expect tracing collectors to perform poorly with self-
adjusting programs, except when the total live data is relatively small compared
to the size of the available heap. Indeed, our experiments confirm these predic-
tions (Section 9.9). A recent paper further discusses these challenges and offers
a proposal for overcoming them [Hammer and Acar 2008].

8. BENCHMARKS

We evaluate the effectiveness of the approach using the following set of bench-
marks.

—Filter. Takes a list � and a boolean predicate p and returns the list of elements
of � that satisfy the predicate p.

—Fold. Takes a list � and an associative binary operator and applies the oper-
ator to the elements of � to produce a single value.

—Map. Takes a list � and a function f and constructs a new list by applying f
to each element of �.

—Quick-sort. The quick-sort algorithm for list sorting.
—Merge-sort. The randomized merge-sort for list sorting.
—Quick-hull. The quick-hull algorithm for convex hulls [Barber et al. 1996].
—Ultimate. A randomized version of Chan’s ultimate convex-hull algo-

rithm [Chan 1996; Bhattacharya and Sen 1997].
—Diameter. Shamos’s algorithm for finding the diameter of a set of

points [Shamos 1978].

These benchmarks are chosen to span a number of computing paradigms, in-
cluding simple iteration (filter, map, split); accumulator passing (reverse,
quick-sort); incremental result construction (graham-scan); random sampling
(fold); and divide-and-conquer (merge-sort, quick-sort, ultimate).

The graham-scan algorithm combines a convex-hull algorithm with a linear
scan. The diameter algorithm combines a convex-hull algorithm with a linear
scan. For some of the problems in this list, asymptotic bounds achieved by our
apporach are shown to closely match the best bounds achievable by special-
purpose algorithms developed in the algorithms community [Acar 2005].

Throughout our discussion of these benchmarks, we let n denote the input
size.

ACM Transactions on Programming Languages and Systems, Vol. 32, No. 1, Article 3, Pub. date: October 2009.



3:34 • U. A Acar et al.

List primitives (filter, fold, map, reverse, and split): Except for fold, all
of these benchmarks perform a traversal of the list as they iteratively con-
struct the output. As we have seen already (Section 5.3), a straightforward
list-traversal implementation of fold is unstable. Instead, we implemented
fold using a random-sampling technique. All list primitives, except for fold,
have constant stability, and hence have constant update time for small changes
(e.g., an insertion or deletion); fold is O(log n) stable and has O(log n) update
time.

Sorting algorithms (quick-sort and merge-sort): Both the quick-sort and the
randomized merge-sort algorithms are standard. The quick-sort algorithm
uses the first element of the input as the pivot for partitioning the input list.
The algorithm avoids concatenating the results by passing the sorted half in
an accumulator. The randomized merge-sort algorithm divides its input into
two sublists by randomly assigning each element in the input to a destination
sublist. The sublists are then sorted recursively and merged as usual. We could
also use the deterministic version of merge-sort, but it is not as stable as the
randomized algorithm. Both algorithms require O(n log n) time for a complete
run and are O(log n) stable (in expectation) under insertions and deletions [Acar
2005] (this is optimal). In our implementation, both algorithms use the split
primitive to partition the input.

Computational-geometry algorithms (quick-hull, ultimate, and diameter): This
group of algorithms consists of a number of convex-hull algorithms and an
algorithm for computing the diameter of a point set (diameter). The convex
hull of a set of points is the smallest polygon that encloses the point set. The
static convex hull problem is to compute the convex hull of a static (unchanging)
set of points. The dynamic convex hull problem is to maintain the convex hull
of a set of points as the users are allowed to add and remove points. Both the
static [Graham 1972; Kirkpatrick and Seidel 1986; Chan 1996; Barber et al.
1996; Wenger 1997] and the dynamic [Overmars and van Leeuwen 1981; Chan
1999; Brodal and Jacob 2002] settings have been studied extensively for over
two decades.

Of the convex hull algorithms we consider, the randomized ultimate hull
algorithm is the most sophisticated. The algorithm is optimal in the size of
the output (not just the input). This divide-and-conquer algorithm performs
a special elimination step before each recursive call. The elimination step is
guaranteed to remove a constant fraction of points from the input of a recursive
call; this is crucial to the optimality of the algorithm. Figure 11 illustrates how
a randomized version of the algorithm works. Because of symmetry, we describe
only how the upper half of the hull is constructed. Given the leftmost (L) and
the rightmost (R) points, the algorithm picks a random pair of points (A, B) and
finds the farthest point (M) from the line (A, B). The algorithm then pairs the
points randomly and eliminates a constant fraction of the points in expectation
by applying a constant time test to each point. The algorithm then computes
the left and right halves of the problem defined by the extreme points (L, M) and
(M, R), respectively.

The diameter of a set of points is the maximum distance between any pairs
of points. It is straightforward from the definition that such a pair is on the
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Fig. 11. Chan’s ultimate hull algorithm for computing convex hulls.

convex hull of the point set. We use Shamos’s algorithm [Shamos 1978] to com-
pute the diameter. This algorithm first computes the convex hull and traverses
it while computing the maximum distance between anti-podal points. In our im-
plementation, diameter uses the quick-hull algorithm to compute the convex
hull.

All our computational geometry benchmarks rely on the list primitives. For
example, the ultimate and quick-hull benchmarks use fold to find the point
furthest away from a given line.

9. EXPERIMENTS

We describe an experimental evaluation of the self-adjusting-computation
framework by using the benchmarks described in Section 8. We report detailed
results for three benchmarks and a summary of results for the remaining bench-
marks. In these benchmarks, input changes involve inserting into and deleting
from the input. We also investigate the effects of heap size on the performance
of self-adjusting programs (Section 9.9).

9.1 The Test Suite

Our test suite consists of static (non-self-adjusting) and self-adjusting versions
of our benchmarks (Section 8). The filter benchmark selects all odd elements
from an integer list. The map benchmark takes an integer list as an argument
and outputs a new list by adding a fixed constant to each element of the input
list. We derive two benchmarks from fold: the minimum benchmark computes
the minimum of a list of integers, and the sum benchmark computes the sum
of floating-point numbers in a list. Each of our list benchmarks—filter, map,
minimum, sum—performs 5 additional arithmetic operations each time an ele-
ment is accessed. Our sorting benchmarks (quick-sort and merge-sort) sort
strings. All convex-hull and the diameter benchmarks compute the convex hull
and the diameter, respectively, of a set of points in two dimensions.

To give a sense of how much the standard and self-adjusting versions of our
applications differ, Table I shows the number of lines and the number of tokens
for both versions of our sorting and convex-hull benchmarks (as counted by the
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Table I. Number of Lines and Tokens for Some Applications

Static Self-Adj. Static Self-Adj.
Application # Lines # Lines # Tokens # Tokens
merge-sort 94 109 262 335
quick-sort 47 62 152 215
quick-hull 117 126 405 425
ultimate 207 208 630 697
diameter 177 199 558 660

wc utility).4 The self-adjusting versions contain about 10% more lines and 20%
more tokens than their static versions (on average). Much of this effectiveness
is because we can compose self-adjusting functions, just as in conventional
programming.

9.2 Inputs, Input Changes, and Measurements

In our evaluation, we use randomly generated datasets. To generate a list of
n integers, we choose a random permutation of the integers from 1 to n. To
generate a list of strings, we first generate a list of integers and then map
the integers to their string representation (in decimal). For the computational
geometry benchmarks, we generate an input of n points by picking floating-
point numbers uniformly at random from the square [0, 10n] × [0, 10n].

When measuring the running time of our benchmarks, we exclude the time
for input generation, and we measure the following quantities.

—Time for from-scratch execution. The time for executing the ordinary or the
self-adjusting versions from scratch.

—Average time for an insertion/deletion. This is measured by applying a delete-
propagate-insert-propagate step to each element. In each step, we delete an
element, run change propagation, insert the element back, and run change
propagation. The average is over all insertions and deletions performed (i.e.,
2n operations, where n is the input size.)

—Time for batch insertions/deletions. This is measured by performing the fol-
lowing: for each element in the list, we delete the next k elements, run change
propagation, reinsert these elements back, and run change propagation. We
report the time taken to complete the experiment. Note that such an experi-
ment involves a total of 2(n − k + 1) change-propagation operations.

—Overhead. This is the ratio of the time for the from-scratch execution of the
self-adjusting version to the time for the from-scratch execution of the ordi-
nary version with the same input.

—Speedup. This is the ratio of the time for the from-scratch run of the ordinary
version to the average time for insertion/deletion.

—Trace size. We measure the trace size (the internal data structures main-
tained by self-adjusting computation to support efficient change propagation)
by counting the numbers of (1) modifiables created, (2) reads performed, and
(3) memo entries created in an initial execution.

4We do not report numbers for the list primitives because they simply call SML basis library for
the corresponding function. A “token” is a string of characters delimited by white spaces.
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We conducted our experiments on a 3.40Ghz Intel Xeon machine, with 32 GB of
memory, running Fedora Core 7. We compiled our benchmarks with the MLton
compiler version 20070806 using “-runtime fixed-heap 30G gc-summary” op-
tions unless otherwise stated. The “fixed-heap 30G” option directs the run-time
system to use 30GB of memory on the system. More specifically, with this option,
MLton allocates 30 GB of heap space divided into a to-space and a from-space
(each 15 GB) and uses the copying collector until the live data exceeds 2 GB,
at which point it switches to mark-and-compact collection, making all of the
30 GB available for allocation. Consequently, if the total allocations performed
by an application is less than 30 GB, the GC time is likely to be negligible.
The “gc-summary” option directs the run-time system to collect summary in-
formation about garbage collection (GC). In particular, the system reports the
percentage of the total time spent garbage collecting.

In our experiments, we measure two types of timings that we call application
time and total time. The application time is the user time spent for perform-
ing the experiment excluding GC time. The total time is the application time
together with the GC time.

When measuring time, we carefully isolate the time from initialization by
starting the timer after the initialization phase and stopping it after the comple-
tion of the experiment being measured. The initialization phase involves start-
ing up the system and generating the input. In the case of the experiments for
measuring the average time for an insertion/deletion, the initialization phase
also requires the initial run. Since the initialization phase typically performs
nontrivial computation, we force the run-time system to perform a garbage col-
lection after the initialization and before starting the timer for the experiment.
We do not force a garbage collection before terminating the experiments. Thus,
if the space needed by the experiment is less than the heap size at the beginning
of the experiment, then there will be no garbage collections and GC time will
be zero.

The results that we report here differ somewhat from our preliminary re-
sults presented in the conference version of this article [Acar et al. 2006b]. The
primary difference is that the conference version includes the time for the ini-
tialization phase in all timings (thus taking end-to-end timings) whereas here
we exclude the time for the initialization phase. For reasons we describe next,
we believe that the timings reported here provide a more accurate account of
the actual performance than those shown in the conference version. When the
actual computation is relatively inexpensive compared to the initialization, for
example, in the list primitives, such as filter and map, including initialization
penalizes the static version. In more complex benchmarks (such as sorting and
computational geometry), initialization constitutes a small percentage of the
total running time, causing no significant difference in the result.

9.3 Overview of Results

In the next three sections, we present detailed results for the applications
map, merge-sort, and ultimate. These benchmarks are representative of the
three classes of applications that we consider: list primitives, sorting, and
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computational geometry. When discussing these benchmarks, we consider the
application time, which excludes GC time. As we describe later, the GC time
is negligible. We then present a summary of results for all our bechmarks
(Section 9.7) at fixed input sizes that include timings both with and without
GC.

One measure of the effectiveness of self-adjusting computation is the small-
est input size at which a self-adjusting program becomes more efficient than
its static, conventional counterpart. In Section 9.8, we measure this quantity,
which we call the crossover size.

For all our benchmarks, we experimentally verify the space integrity prop-
erty (Section 7.2) by checking that the size of the meta data stored by self-
adjusting computation, measured by counting the numbers of active modifi-
ables, reads, and memo entries, depends only on the current input and not
on the history of changes (insertions/deletions) performed to reach that in-
put. Our measurements show that the number of reads performed in our
self-adjusting benchmarks is only slightly larger than the number of modifi-
ables created—the number of reads per modifiable is slightly more than one
on average. This finding motivates and justifies the single-read optimization
(Section 7.3).

By running our experiments with a 30 GB of heap, we are able to mini-
mize the GC cost by supplying significantly more memory than needed by our
benchmarks. As we observe in the conference version of this article and else-
where [Hammer and Acar 2008], GC can constitute a reasonably large fraction
of a self-adjusting benchmark’s running time. In Section 9.9, we discuss how
the performance of our self-adjusting benchmarks is affected by the size of the
heap.

9.4 Map

Figure 12 shows the results for map. The initial run graph (top left), which com-
pares the application time for from-scratch runs of the static and self-adjusting
versions, shows that the running time grows linearly in the input size. This
indicates that the overhead of self-adjusting computation is constant, which
in this case is about 25. The top right figure shows the average time for an
insertion/deletion, which appears to be constant. The bottom left figure shows
speedup, which grows linearly in the input size. As can be seen from this graph,
when the input size is 1 million, change propagation is four orders of magni-
tude faster than recomputing from scratch. The bottom right figure shows the
the number of modifiables, reads, and memo entries, which quantify the size
of the trace. As the figure shows, all of these grow linearly with the input
size.

9.5 Merge Sort

Figure 13 shows our experimental results for merge-sort. The initial-run graph
(top left) indicates that self-adjusting version is a constant factor, 5 in this case,
slower than the static version and that both are consistent with the O(n log n)
asymptotic bound. The graph for insertions and deletions (top right) shows
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Fig. 12. Experimental results for map.

that the average change-propagation time grows logarithmically in the size of
the input, which is consistent with the best possible (lower bounds). As can be
seen from the speedup graph (bottom left), the speedup increases linearly with
the input size, quickly reaching three orders of magnitude. The bottom right
figure shows the number of modifiables, number of reads, and number of memo
entries, which fit O(n log n) time-bound for from-scratch runs.

9.6 Ultimate

Figure 14 shows our experimental results for the ultimate convex-hull algo-
rithm (ultimate). The initial run graph (top left) shows that the running time
of self-adjusting version is constant factor, less than 2 in this case, slower than
the static version. The graph for insertions and deletions (top right) shows that
change-propagation time grows somewhat unevenly but still slowly, as with
the input size. We believe that the sharp increases or decreases in the running
time with differing input sizes is primarily because the ultimate algorithms is
input/output-sensitive, that is, that its running time depends on the particular
input/output and not just the size of the input. The speedup graph (bottom left)
shows that change propagation can be more than three orders of magnitude
faster than recomputing from scratch. The bottom right figure shows the the
number of modifiables, number of reads, and number of memo entries to be
slightly superlinear.
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Fig. 13. Experimental results for merge-sort.

9.7 Summary for All Benchmarks

Tables II and III show the measurements for all our benchmarks at fixed in-
put sizes, excluding and including GC time, respectively. In both tables, the
column titled “n” specifies the input size; the “Static Run” column shows the
time for a from-scratch execution of the static version; the “Self-Adj. Run” col-
umn shows the time for a from-scratch execution of the self-adjusting version;
and the “Self-Adj. Avg. Propagate” column shows the average time for change
propagation after a modification (an insertion or a deletion). The “Overhead”
and the “Speedup” columns show the corresponding quantities, as defined in
Section 9.2. For example, we run the filter benchmark with input size n = 106

and obtain the following measurements: the ordinary version takes 0.12 and
1.89 seconds without and with the GC time, respectively; change propagation
takes 3.8 × 10−6 seconds for both without and with the GC time; the overhead
is a factor of 16.5 when the time for GC is excluded and 17.2 when the time for
GC is included; and the speedup is a factor of 3.0 × 104 for both without and
with GC time.

As can be seen from the tables, the differences between the measurements
when excluding and including the GC time are negligible (less than 10%). This
is because the heap size for these experiments, fixed at 30 GB, is significantly
larger than the total live data needed (the live data peaks at 2.2 GB with
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Fig. 14. Experimental results for ultimate.

Table II. Summary of Benchmark Timings (without GC)

Static Self-Adj. Self-Adj.
Application Input size Run (s) Run (s) Avg. Propagate (s) Overhead Speedup
filter 1 × 106 0.12 1.89 3.8 × 10−6 16.5 3.0 × 104

map 1 × 106 0.10 2.24 2.6 × 10−6 21.8 4.0 × 104

minimum 1 × 106 0.09 2.50 1.5 × 10−5 26.4 6.1 × 103

sum 1 × 106 0.09 2.49 1.1 × 10−4 29.0 769.72
merge-sort 1 × 105 1.09 5.34 3.3 × 10−4 4.9 3.3 × 103

quick-sort 1 × 105 0.24 2.52 3.7 × 10−4 10.4 654.06
quick-hull 1 × 105 1.64 3.19 2.7 × 10−4 1.9 6.2 × 103

ultimate 1 × 105 1.98 3.50 1.2 × 10−3 1.8 1.6 × 103

diameter 1 × 105 1.63 3.53 3.0 × 10−4 2.2 5.5 × 103

merge-sort). The heap size is also reasonably large for the total allocated data,
which peaks at 80 GB with ultimate (the maximum is reached when computing
the time for an average insertion/deletion).

The tables show that overhead is moderately high for list benchmarks,
filter, map, minimum, sum, but drop to reasonably small factors (less than 3)
for more sophisticated applications such as the computational geometry appli-
cations, which perform more work for each call to a self-adjusting-computation
primitive. We therefore expect the overheads to become smaller as the compu-
tational complexity of the application increases. As the tables show, change
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Table III. Summary of Benchmark Timings (with GC)

Static Self-Adj. Self-Adj.
Application Input size Run (s) Run (s) Avg. Propagate (s) Overhead Speedup
filter 1 × 106 0.12 1.98 3.8 × 10−6 17.2 3.0 × 104

map 1 × 106 0.10 2.40 2.6 × 10−6 23.4 4.0 × 104

minimum 1 × 106 0.09 2.52 2.3 × 10−5 26.6 4.1 × 103

sum 1 × 106 0.09 2.51 1.5 × 10−4 29.2 587.6
merge-sort 1 × 105 1.09 5.35 3.3 × 10−4 4.9 3.3 × 103

quick-sort 1 × 105 0.24 2.53 4.8 × 10−4 10.4 503.0
quick-hull 1 × 105 1.64 3.22 3.2 × 10−4 2.0 5.1 × 103

ultimate 1 × 105 1.98 3.51 1.5 × 10−3 1.8 1.3 × 103

diameter 1 × 105 1.63 3.54 3.5 × 10−4 2.2 4.7 × 103

propagation leads to orders of magnitude speedup over recomputing from
scratch. Except for two benchmarks, quick-sort and sum, the speedups exceed
three orders of magnitude. For list benchmarks, which are run with inputs
of 1,000,000 elements, the speedups can be as high as four orders of magni-
tude. With quick-sort and sum, the speedups are more than a factor of 500.
The primary reason that sum does not obtain speedups that are as high is that
it uses a different, more complicated algorithm than the static version. The
static version simply traverses the input list and sums the elements, whereas
the self-adjusting version performs random sampling (Section 5.4). As noted
earlier, this random sampling is necessary for stability. The quick-sort bench-
mark does not yield speedups as high as merge-sort because quick-sort is
less stable (e.g., inserting a new element at the head of the list requires linear
work in quick-sort, whereas it only requires logarithmic work in merge-sort).
The underlying reason for such high speedup numbers is the near-linear time
asymptotic gap between recomputing from scratch and performing change prop-
agation (Section 8)—as the input size increases, this asymptotic gap leads to
large speedups.

9.8 Crossover Points

The results show that self-adjusting-computation benchmarks can incur mod-
erate overheads compared to their static counterparts, but can respond to
small changes to their data orders of magnitude faster than recomputing from
scratch. Furthermore, the speedups obtained by change propagation tend to
grow quickly (often linearly) with the input size. This motivates the question:
when does change propagation become more effective than recomputing from
scratch? More precisely, define an input size m to be the crossover if for all
inputs size at least m, change propagation is faster than recomputing from
scratch in the static version. Table IV shows the crossover sizes for our bench-
marks (whether we include or exclude the GC time does not change the results).
For all benchmarks except for quick-sort and sum, the crossover sizes are quite
small, less than 100. For quick-sort and sum, they are somewhat higher, but
still remain under 1000 elements. These results suggest that self-adjusting pro-
grams are faster than their static counterparts for all but some of the smallest
inputs considered.
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Table IV. Crossover Points

Application Crossover
filter 39
map 70
minimum 100
sum 270
merge-sort 10
quick-sort 400
quick-hull 22
ultimate 17
diameter 22
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Fig. 15. Average update time for merge-sort as heap size is varied.

9.9 Garbage Collection vs. Available Memory

Since we allocated a relatively large heap for our experiments, our results sug-
gest that the GC time is negligible. Unfortunately, as we discussed in Section 7.4
and observe elsewhere [Acar et al. 2006b; Hammer and Acar 2008], this is not
the case in general: GC can cause the performance of self-adjusting program
to degrade significantly when the heap size is not large compared to the size of
the total live data. To verify this claim, we perform an experiment at different
heap sizes. The experiment measures the average time for an insertion/deletion
(we delete and insert each element and apply change propagation after each
modification, as described in Section 9.2), the maximum size of the live mem-
ory, and total number of allocated bytes. For these experiments, we compile our
benchmarks with the “-runtime fixed-heap NG gc-summary” options, where
N denotes the size of the heap. Figures 15 and 16 show the average change-
propagation time for an insertion/deletion with merge-sort and ultimate (re-
spectively) with heap sizes of 4GB, 15GB, and 30GB, as well as the application
time (computed with 30GB of fixed heap), which excludes the GC time.

With merge-sort, the experiment requires less than 2.2 GB of live memory
and allocates about 18 GB of memory. Thus, when given 30 GB of heap space,
the GC time is not significant. Indeed, as the figure shows, when the heap size
is 30 GB, the time for change propagation overlaps with the application-time
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Fig. 16. Average update time for ultimate as heap size is varied.

line. With small heap sizes, however, GC time is more significant. With a 4 GB
heap, the time for change propagation overlaps with the application-time line
for smaller inputs, but starts increasing linearly when the input size exceeds
about 20,000 (20K). The case for when the heap size is 15GB is similar: change-
propagation time follows the application-time line up to about 90K and then
starts diverging.

The case for ultimate is similar, except that reducing the heap size has a
more pronounced impact. For these input sizes, the size of the live memory
is less than 1 GB but ultimate allocates about 80 GB of memory throughout
the experiments. With a 4 GB heap, the time for change propagation increases
nearly linearly with the input size when it exceeds 20K. With larger heap sizes,
garbage collection time largely follows the application-time line but is not neg-
ligible, since ultimate performs significantly more allocation and thus requires
at least some garbage collection.

These measurements indicate the prediction that GC can change the asymp-
totic run-time behavior of change propagation when the heap size is small com-
pared to the size of the maximum live data (Section 7.4). The measurements
also indicate that merge-sort, which has twice as much live data as ultimate,
slows down more significantly with a small heap (4 GB), even though ultimate
allocates more than a factor of 4 more memory. This is consistent with the stan-
dard analysis of garbage collection (Section 7.4) that shows that it is the fraction
of the live memory to that of the total memory that matters, not the amount of
memory allocation.

10. RELATED WORK

The problem of adapting computations to small changes to their data has been
studied extensively in several communities. In this section we review some of
the previous work in the programming-languages community, broadly known
as incremental computation, in the algorithms community, and other related
work on self-adjusting computation.
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10.1 Incremental Computation

The goal of the research on incremental computation in the programming-
languages community is to devise general-purpose, language-centric tech-
niques that enable programs to automatically respond to modifications to their
data. The most effective techniques are based on dependence graphs, memo-
ization, and partial memoization.

Dependence-graph techniques record the dependences among data in a com-
putation, so that a change-propagation algorithm can update the computation
when the input is changed. Demers et al. [1981] and Reps [1982] introduced
the idea of static dependence graphs and presented a change-propagation al-
gorithm for them. Hoover [1987] generalized the approach outside the domain
of attribute grammars. Yellin and Strom [1991] used the dependence graph
ideas within the INC language, and extended it by having incremental com-
putations within each of its array primitives. The key limitation of static de-
pendence graphs is that they are not general purpose: they do not permit the
change-propagation algorithm to update the dependence structure. This lim-
itation restricts the types of computations to which static-dependence graphs
can be applied. For example, the INC language, which uses static dependence
graphs for incremental updates, does not permit recursion.

The limitations of static dependence graphs motivated researchers to look
into alternatives. Pugh and Teitelbaum [1989] applied memoization (also called
function caching) to incremental computation. Memoization is a classic idea
that dates back to the late 1950s [Bellman 1957; McCarthy 1963; Michie 1968].
It is general purpose, that is, applies to any purely functional program. Since the
work of Pugh and Teitelbaum, others have investigated applications of various
forms of memoization to incremental computation [Abadi et al. 1996; Liu et al.
1998; Heydon et al. 2000; Acar et al. 2003]. The idea behind memoization is to
remember function calls and their results, and reuse them whenever possible.
In the context of incremental computation, memoization can improve efficiency
when re-executions of a program with similar inputs perform similar function
calls. Although the reader may expect this to be intuitively true, it often is not.
In fact, the effectiveness of memoization critically depends on the structure
of the program and the kind of the input change being considered. For many
computations, it is often possible to find an input change that prevents a large
part of the computation from being reused (Section 2.2). Intuitively, the problem
is that with memoization, all function calls that consume modified data and all
their ancestors in the function call tree need to be re-executed (because these
functions will notice that their arguments have been modified).

Other approaches to incremental computation are based on partial evalua-
tion. Sundaresh and Hudak’s approach [Sundaresh and Hudak 1991] requires
the user to fix the partition of the input that the program will be specialized on.
The program is then partially evaluated with respect to this partition, and the
input outside of the partition can be changed incrementally. The main limita-
tion of this approach is that it allows input changes only within a predetermined
partition. Field [1991], and Field and Teitelbaum [1990] present techniques for
incremental computation in the context of lambda calculus. Their approach is
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similar to Hudak and Sundaresh’s, but present formal reduction systems that
optimally use partially evaluated results.

For a more complete list of references on incremental computation, we refer
the reader to the bibliography of Ramalingam and Reps [1993].

General-purpose techniques for incremental computation have also been in-
vestigated in the artificial-intelligence and logic-programming communities. In
particular, the so-called “Truth Maintenance Systems” maintain relationships
between proposition symbols as the values of these symbols and relationship
between them change incrementally (e.g., [Stallman and Sussman 1977; Doyle
1987; Mcallester 1990]). These systems typically track dependences between
proposition symbols and the relationships that they affect and use these de-
pendences to perform efficient updates.

10.2 Dynamic Algorithms

The problem of devising efficient programs that can respond to incremental
changes is typically approached from a diferent perspective in the algorithms
community. In contrast to the programming-languages community, which fo-
cuses on general-purpose techniques, the algorithms community initiated the
study of dynamic algorithms or dynamic data structures (e.g., [Sleator and
Tarjan 1985, Chiang and Tamassia 1992; Eppstein et al. 1999]), where the
main goal is to develop efficient solutions for individual problems. In a nutshell,
dynamic data structures are a class of data structures capable of efficiently an-
swering specific kinds of queries while allowing the user to modify the input
(e.g., inserting/deleting elements). As an example, a dynamic data structure for
computing the diameter (the distance between the farthest pair of points) al-
lows the user to insert/delete points into/from a set of points, while on request,
it is capable of efficiently reporting the diameter. Since dynamic algorithms are
designed to carefully take advantage of the structural properties of the specific
problems considered, they are often very efficient: we often see a linear-time (or
more) gap between the update time of a dynamic algorithm and the run-time
of its optimal static version.

Practical experience suggests that it is sometimes possible to devise simple
algorithms that are not asymptotically efficient (in an easily quantifiable way),
but nevertheless work reasonably well in practice. The reader may feel that
dynamic or incremental problems may be of this nature. Unfortunately, this is
not the case even for problems whose static versions are simple. Consider, as an
example, the problem of computing the convex hull of a set of points as the point
set changes (a convex hull is the smallest polygon enclosing the points). When
a new point is inserted, we can compute the updated hull by traversing the hull
and inserting the point as necessary. Performing this update efficiently requires
designing and implementing the so-called point-location data structure that
can locate the part of the hull that is visible by the point being inserted; this
is a relatively difficult task. When a new point is deleted, we can compute the
updated convex hull by finding the set of points that now become a member of
the hull. Devising an efficient mechanism to perform this update is even more
complicated than the insertion case. Indeed, this problem has been studied
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extensively. Overmars and van Leeuwen’s algorithm was the first to support
insertions and deletions efficiently, in O(log2 n) time. Reducing the update time
to O(log n) took nearly two more decades [Brodal and Jacob 2002].

The convex-hull algorithm is not an anomaly. The dynamic version of static
problems often appear to be significantly more difficult. For example, giving an
algorithm for the minimum spanning tree (MST) problem is relatively straight-
forward in the static case. The dynamic MST problem, however, is much more
difficult: providing an efficient solution to this problem is still an active topic
after decades of research (see e.g., [Frederickson 1985; Eppstein et al. 1997;
Henzinger and King 1997, 1999; Holm et al. 2001]). The MST problem is not an
exception. Other examples include the problem of dynamic trees [Sleator and
Tarjan 1983] (which is trivial in the static case), whose various flavors have
been studied extensively [Sleator and Tarjan 1983, 1985; Cohen and Tamassia
1991; Radzik 1998; Henzinger and King 1999; Tarjan 1997; Alstrup et al. 1997;
Frederickson 1997; Alstrup et al. 2003; Tarjan and Werneck 2005b, 20005a].

There have been proposals for more general algorithmic techniques that can
be used to dynamize static algorithms. Bentley and Saxe’s approach can be
used to dynamize a certain class of divide-and-conquer algorithms, the so-
called decomposable search problems [Saxe and Bentley 1979; Bentley and
Saxe 1980]. Another approach based on the so-called influence and conflict
graphs can be used to dynamize certain randomized algorithms (e.g., [Mulmuley
1994; Boissonnat and Yvinec 1998]). Although somewhat more general than
the ad hoc approach, these approaches are still far from automatic: they re-
quire problem-specific algorithm design, for example, the data structures to be
used.

Since, for efficiency, dynamic algorithms need to exploit the structure of the
specific problems and the types of modifications they support, they are usually
highly specialized (an algorithm may be efficient for some modifications to data
but not others), naturally more complex than their static versions, and not
composable. By composability, we refer to the ability to send the output of one
function to another as input, that is, the composition of f(·) and g(·) is f(g(·)).
Combined with the increased complexity, these properties make them difficult
to adapt to different problems, implement, and use in practice.

Algorithms researchers also study a closely related class of data struc-
tures, called kinetic data structures, for efficiently performing motion simu-
lations [Basch et al. 1999]. These data structures take advantage of the in-
cremental nature of continuous motion (i.e., the computed properties seldom
change combinatorially) by efficiently updating computed properties. Many
kinetic data structures have been proposed and some have also been imple-
mented (see e.g. [Agarwal et al. 2002; Guibas 2004] for surveys). These data
structures share many characteristics of dynamic data structures. For example,
there is no known efficient algorithm for performing motion simulation of con-
vex hulls in three dimensions, even though the static version of the problem is
very well understood (the kinetic 3D convex-hull problem has been open for one
decade now [Guibas 1998]). In general, kinetic problems are as hard as dynamic
problems, because when composed, kinetic problems often require handling
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dynamic modifications to data such as insertions/deletions (e.g. [Alexandron
et al. 2005]). They also pose additional implementation challenges [Agarwal
et al. 2002; Guibas and Russel 2004; Russel et al. 2007; Russel 2007], due to
the difficulties in motion modeling and handling of numerical errors.

10.3 Self-Adjusting Computation

The first work on self-adjusting computation [Acar et al. 2002], called adap-
tive functional programming (AFP), generalized dependence-graph approaches
by introducing dynamic dependence graphs (DDGs) and providing a change-
propagation algorithm for them. AFP can be applied to any purely functional
program. This is made possible by a change-propagation algorithm that can
update the dependence structure of the DDG by inserting and deleting depen-
dences as necessary. Adaptive functional programs can be written by using
type-safe linguistic facilities that guarantee safety and correctness of change
propagation.

Although DDGs and AFP are general purpose, the effectiveness of change
propagation is limited: certain modifications can require as much time as re-
computing from scratch. This article proposed techniques for combining DDGs
with memoization to dramatically improve the effectiveness of change propaga-
tion. In follow-up work, we present a semantics for the approach proposed here
and prove correctness with mechanically checked proofs [Acar et al. 2007a].

Both in AFP and in the approaches proposed here, the key linguistic notion
is that of a modifiable (reference), which holds the data that can change over
time. Although modifiables are closely related to references, and the mutator
program or the user can update their contents arbitrarily, all the aforemen-
tioned work requires that they be written no more than once within the self-
adjusting program. Consequently, by using the techniques proposed here, we
can make self-adjusting purely functional programs only. Recent work [Acar
et al. 2008a] extended self-adjusting computation techniques proposed here to
imperative programs that update modifiables (memory) destructively.

The aforementioned approaches to self-adjusting computation rely on spe-
cialized linguistic primitives that require a programming style closely related
to monadic primitives. The reason for this is the desire to track dependences
selectively, so that only dependences on data that can change over time are
tracked. If selective dependence tracking is not desired, then it is possible to
track all dependences without requiring programmer annotations [Acar 2005].
Earlier implementations of self-adjusting computation, which include the SML
library [Acar et al. 2002] and its Haskell implementation by Carlsson [2002],
and the proposed implementation here use this monadic interface, which can
make it cumbersome to write self-adjusting programs by requiring substan-
tial restructuring of existing code. More recent work proposed compilation
techniques for self-adjusting computation that significantly reduce the burden
of annotation overheads. The idea is to extend existing languages with sev-
eral, simple-to-use, self-adjusting-computation primitives and generate self-
adjusting code from code annotated with these primitives by using various
static and dynamic analysis. Existing approaches include the SML-based Delta
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ML language and its compiler [Ley-Wild et al. 2008, 2009], and the C-based,
CEAL language and its compiler [Hammer et al. 2009; Hammer and Acar 2008].
An important advantage of the compilation-based approach is that it enables
giving a precise cost semantics for analyzing the asymptotic complexity of self-
adjusting programs [Ley-Wild et al. 2009].

Self-adjusting computation has been applied, in various incarnations, to a
number of problems from a reasonably broad set of application domains, includ-
ing dynamic algorithms, motion simulations, machine learning, incremental
invariant checking [Shankar and Bodik 2007]. These applications confirm that
the approach can be effective for a broad range of applications, often matching
best-known asymptotic bounds, and performing efficiently in practice. For some
problems, the approach even proved instrumental in solving problems that re-
sist ad hoc approaches, for example, motion simulation of three-dimensional
convex hulls [Acar et al. 2008b], and statistical inference on graphical mod-
els [Acar et al. 2007b]. For a discussion of these applications and a broader set
of references, we refer the reader to a recent survey [Acar 2009].

Broadly speaking, self-adjusting computation aims to bridge the gap between
programming-language-centric techniques, which tend to be general-purpose
but suboptimal, and algorithmic approaches, which tend to be efficient but com-
plex and problem-specific, by enabling the programmer to write self-adjusting
programs much like ordinary programs, while facilitating such programs to
efficiently respond to small modifications to their data.

11. CONCLUSION

This article describes and evaluates an approach, called self-adjusting compu-
tation, to the problem of enabling computations to respond to modifications to
their data efficiently by using a combination dynamic dependence graphs and
memoization. Due to interesting interactions between DDGs and memoization
(e.g., memoization requires purely functional code, DDGs use side effects), com-
bining them requires care. This article describes algorithms for combining them
efficiently. We implemented the proposed approach as a Standard ML library,
which offers an interface that enables the programmer to translate an ordinary
program into a self-adjusting program by instrumenting the code. For efficiency,
the library relies on several optimizations and satisfies a space-integrity prop-
erty which ensures that the total space consumption can be bounded in terms of
the most recent input size and does not depend on history. Using the library, we
implemented a reasonably broad range of benchmarks and performed an exten-
sive experimental evaluation. Our experiments demonstrate that the proposed
approach often yields orders of magnitude speedups over recomputing from
scratch.
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