
Safe Functional Reactive Programming
through Dependent Types

(Corrected Version, 14th December 2011)

Neil Sculthorpe Henrik Nilsson

School of Computer Science
University of Nottingham

United Kingdom

{nas,nhn}@cs.nott.ac.uk

Abstract

Functional Reactive Programming (FRP) is an approach to reactive
programming where systems are structured as networks of func-
tions operating on signals. FRP is based on the synchronous data-
flow paradigm and supports both continuous-time and discrete-time
signals (hybrid systems). What sets FRP apart from most other lan-
guages for similar applications is its support for systems with dy-
namic structure and for higher-order reactive constructs.

Statically guaranteeing correctness properties of programs is an
attractive proposition. This is true in particular for typical applica-
tion domains for reactive programming such as embedded systems.
To that end, many existing reactive languages have type systems or
other static checks that guarantee domain-specific properties, such
as feedback loops always being well-formed. However, they are
limited in their capabilities to support dynamism and higher-order
data-flow compared with FRP. Thus, the onus of ensuring such
properties of FRP programs has so far been on the programmer
as established static techniques do not suffice.

In this paper, we show how dependent types allow this concern
to be addressed. We present an implementation of FRP embedded
in the dependently-typed language Agda, leveraging the type sys-
tem of the host language to craft a domain-specific (dependent)
type system for FRP. The implementation constitutes a discrete,
operational semantics of FRP, and as it passes the Agda type, cov-
erage, and termination checks, we know the operational semantics
is total, which means our type system is safe.

Categories and Subject Descriptors D.3.2 [Programming Lan-
guages]: Language Classifications—applicative (functional) lan-
guages, data-flow languages, specialized application languages

General Terms Languages

Keywords dependent types, domain-specific languages, DSELs,
FRP, functional programming, reactive programming, synchronous
data-flow

This is the author’s version of the work. It is posted here by permission of

ACM for your personal use. Not for redistribution. The definitive version was

published in ICFP’09, August 31–September 2, 2009, Edinburgh, Scotland, UK.

http://dx.doi.org/10.1145/1596550.1596558.

1. Introduction

Functional Reactive Programming (FRP) grew out of Conal El-
liott’s and Paul Hudak’s work on Functional Reactive Animation
[Elliott and Hudak 1997]. The idea of FRP is to allow the full
power of modern Functional Programming to be used for imple-
menting reactive systems: systems that interact with their environ-
ment in a timely manner. This is achieved by describing systems
in terms of functions mapping signals (time-varying values) to sig-
nals, and combining such signal functions into signal processing
networks. The nature of the signals depends on the application do-
main. Examples include input from sensors in robotics applications
[Peterson et al. 1999], video streams in the context of graphical user
interfaces [Courtney and Elliott 2001] and games [Courtney et al.
2003, Cheong 2005], and synthesised sound signals [Giorgidze and
Nilsson 2008].

A number of FRP variants exist. However, the synchronous
data-flow principle, and support for both continuous and discrete
time (hybrid systems), are common to most of them. There are thus
close connections to synchronous data-flow languages such as Es-
terel [Berry and Gonthier 1992], Lustre [Halbwachs et al. 1991],
and Lucid Synchrone [Caspi and Pouzet 1996, Pouzet 2006]; hy-
brid automata [Henzinger 1996]; and languages for hybrid mod-
elling and simulation, such as Simulink [sim 2010]. However, FRP
goes beyond most of these approaches by supporting dynamism
(highly-dynamic system structure), and first-class signal functions
(also known as higher-order data-flow).

Dynamism and higher-order data-flow are becoming important
aspects of reactive programming as they are essential for imple-
menting reconfigurable systems, including systems that receive
software updates whilst running, which are increasingly preva-
lent [Colaço et al. 2004]. Statically guaranteeing central domain-
specific correctness properties is consequently also becoming much
more important, as dynamism and higher-order data-flow add levels
of system complexity which make it correspondingly harder to test
systems sufficiently thoroughly. Moreover, in many reactive appli-
cation scenarios, the cost of failure is very high (for example, man-
ual intervention may not be feasible: consider updating the software
of a robot on Mars), thereby making it imperative to statically guar-
antee that the system will not fail.

Yampa [Nilsson et al. 2002] is an embedding of FRP in Haskell
that supports dynamism (more so than previous Haskell-based FRP
implementations) and first-class signal functions. However, from
the perspective of reactive programming, the Haskell-based type
system of Yampa is arguably not safe, as it does not enforce impor-
tant domain-specific correctness properties. For example, there is
nothing that prevents ill-formed feedback loops, which, if present,

can cause deadlock. Furthermore, even if a Yampa program is ini-
tially well-formed, there are no guarantees that it will remain so
after dynamic reconfiguration. Conversely, there are reactive lan-
guages that statically do enforce such domain-specific properties
(Lustre and Lucid Synchrone, for example), but their support for
dynamism or higher-order data-flow is limited.

To address this problem, we develop a domain-specific type
system for FRP that guarantees two central domain-specific cor-
rectness properties, well-formed feedback loops and proper initial-
isation, while still allowing for dynamism and first-class reactive
entities. The type system is safe in that it guarantees that reactive
programs are productive (guaranteed to deliver output at all points
in time), under the assumption that the pure functional code em-
bedded in the signal-processing network is total and terminating.
This is accomplished through the domain-specific type system be-
ing dependent [Thompson 1991, Pierce 2002]: the types of signal
functions are indexed on specific properties that they satisfy, al-
lowing the corresponding properties of composite networks to be
established compositionally through type-level computations.

The type system has been realised in the context of a pro-
totype FRP implementation embedded in Agda [Norell 2007], a
dependently-typed functional language. Agda bears many similari-
ties to Haskell, but requires all functions to be total and terminating.
The central part of the implementation is a function that constitutes
a discretised operational semantics: given the time passed since the
previous step and the current input, this semantic function maps a
well-typed term representing the current configuration of (part of) a
signal function network to the current output and a new, well-typed
term representing the updated configuration. Because the seman-
tic function is total and terminating, it constitutes a proof that the
embedded type system guarantees the productivity of well-typed
signal-function networks, which is the safety property with which
we are concerned here.

A further benefit of making domain-specific properties manifest
in the types of signal functions is that this clarifies their semantics,
which, in turn, offers strong guidance as to their proper use. This is
in stark contrast to Yampa, where subtle but crucial properties are
often implicit, possibly leading to confusion about the exact rela-
tion between differently named combinators with the same type.

There are a couple of other innovative aspects to the FRP ver-
sion developed in this paper. Firstly, there is a clear type-level
distinction between continuous-time and discrete-time signals. In
Yampa, the latter are just continuous-time signals carrying an op-
tion type. As a result, certain signal functions, such as the various
delays, that in order to guarantee desirable semantical properties
would have to treat continuous-time and discrete-time signals dif-
ferently, actually treat them uniformly. This is another source of
subtle bugs that can be eliminated by the more precise type system
presented in this paper. Secondly, our development is structured
around n-ary signal functions, through the notion of signal vectors.
This enables a number of important optimisations, such as change
propagation, to an extent that is not possible in Yampa [Sculthorpe
and Nilsson 2009].

Note that our FRP type-system is, in principle, independent of
the Agda-based FRP implementation presented here: it could be
used with other realisations of FRP.

In summary, the main contributions of this paper are:

• A type system for FRP that

enforces well-formed feedback loops and proper initialisa-
tion;

guarantees productivity if all pure functions embedded in a
network are total and terminating;

makes a clear type-level separation between continuous-
time and discrete-time signals, ruling out additional kinds
of ill-formed programs.

• A discrete, operational semantics for the version of FRP used
in this paper.

• A machine-checked proof of the safety of the type system
carried out through an embedding of the type system and the
operational semantics in the dependently-typed language Agda.
We outline the proof in the present paper; the full code is

available from the first author’s website1.

The rest of the paper is structured as follows. Section 2 explains the
fundamental concepts of FRP. Section 3 describes a new conceptual
model that addresses some of the limitations in previous FRP mod-
els. Sections 4 and 5 demonstrate how the new conceptual model
allows us to include feedback loops and uninitialised signals in an
FRP program, whilst guaranteeing productivity at the type level.
Finally, Section 6 describes a prototype FRP implementation using
this type system, and gives its operational semantics.

2. FRP Fundamentals

FRP programs can be considered to have two levels to them: a func-
tional level and a reactive level. The functional level is a pure, func-
tional language. FRP implementations are usually embedded in a
host language, and in these cases the functional level is provided
entirely by the host. In the case of Yampa, the host language is
Haskell. The reactive level is concerned with time-varying values,
which we call signals. At this level, combinators are used to con-
struct synchronous data-flow networks by combining signal func-
tions. The levels are, however, interdependent: the reactive level re-
lies on the functional level for carrying out arbitrary pointwise com-
putations on signals, while reactive entities, such as signal func-
tions, are first class entities at the functional level.

2.1 Continuous-Time Signals

The core conceptual idea of FRP is that time is continuous. Signals
are modelled as functions from time to value, where we take time
to be the set of non-negative real numbers:

Time = {t ∈ R | t > 0 }

Signal a ≈ Time → a

This conceptual model provides the foundation for an ideal FRP se-
mantics. Of course, any digital implementation of FRP will have to
execute over a discrete series of time steps and will consequently
only approximate the ideal semantics. The advantage of the con-
ceptual model is that it abstracts away from such implementation
details. It makes no assumptions as to the rate of sampling, whether
this sampling rate is fixed, nor how this sampling is performed. It
also avoids many of the problems of composing subsystems that
have different sampling rates. The ideal semantics is helpful for
understanding FRP programs, at least to a first approximation. It is
also abstract enough to leave FRP implementers considerable free-
dom.

That said, implementing FRP completely faithfully to the ideal
semantics is challenging. At the very least, a faithful implementa-
tion should, for “reasonable programs”, converge to the ideal se-
mantics in the limit as the sampling interval tends to zero [Wan and
Hudak 2000]. But even then it is hard to know how densely one
needs to sample before an answer is acceptably close to the ideal.

However, the focus of this paper is not directly the faithfulness
of FRP implementations to any ideal semantics. Instead, our inter-
est is to statically rule out programs that are bad; either because

1 http://www.cs.nott.ac.uk/∼nas/icfp09.html

they lack meaning, or because they would be hard to run faithfully.
This, in turn, is one step towards making it easier to implement FRP
faithfully and allowing programmers to reason in terms of the ideal
semantics with greater confidence. Thus, in this paper, we only pro-
vide a discrete operational FRP semantics as this is what we need
for our purposes. But we will continue to refer to the ideal, concep-
tual model when it is expedient for providing the right intuitions.

2.2 Signal Functions

Signal functions are conceptually functions from signal to signal:

SF a b ≈ Signal a → Signal b

In Yampa, signal functions, rather than signals, are first class enti-
ties. Signals have no independent existence of their own; they exist
only indirectly through the signal functions.

To make it possible to implement signal functions in such a way
that output is produced in lock-step with the input arriving, as is
required for a system to be reactive, we insist that signal functions
are causal.

Causal Signal Function. A signal function is causal if, at any
given time, its output can depend upon its past and present inputs,
but not its future inputs:

SF a b = {sf : Signal a → Signal b

| ∀ (t : Time) (s1 s2 : Signal a) .
(∀ t ′ 6 t . s1 t ′ ≡ s2 t ′) ⇒ (sf s1 t ≡ sf s2 t)}

In an implementation, signal functions that depend upon past inputs
need to record past information in an internal state. For this reason,
they are often called stateful signal functions.

Some signal functions are such that their output only depends
on their input at the current point in time. We refer to these as
stateless signal functions, as they require no internal state to be
implemented:

SF stateless a b = {sf : Signal a → Signal b

| ∀ (t : Time) (s1 s2 : Signal a) .
(s1 t ≡ s2 t) ⇒ (sf s1 t ≡ sf s2 t)}

The terms sequential and combinatorial are also used for the same
notions as stateful and stateless, respectively.

2.3 Why Not First Class Signals?

In Classic FRP (CFRP) [Elliott and Hudak 1997, Wan and Hudak
2000], the first class entities are behaviours, which are time-varying
values corresponding to signals:

Behaviour a ≈ Time → a

CFRP programs are constructed by applying functions to be-
haviours, making CFRP programs look more like conventional
functional programs than Yampa programs do. This is appealing
in many ways. However, unless great care is exercised, first-class
behaviours can lead to a number of performance problems. There
are also thorny semantic problems related to composing behaviours
temporally by switching from one to another [Nilsson et al. 2002].

In part to avoid these issues, the notion of signal function was
adopted as the core concept for Yampa. The absence of first class
signals makes it simple to process input as it arrives, which is
the norm for synchronous data-flow languages. The semantics of
switching also becomes obvious, paving the way for supporting
structural dynamism [Nilsson et al. 2002].

This is not to say that first-class behaviours cannot be a viable
approach in many cases: Elliott’s recent work on the Reactive
library has clearly shown this is not so [Elliott 2009]. However,
we have chosen to stay with signal functions as the core concept
because of its simplicity, robustness, and demonstrated flexibility.

3. The New Conceptual Model

In this section, we introduce a new conceptual FRP model that ad-
dresses some limitations of the Yampa design. We have discussed
these problems in earlier work [Sculthorpe and Nilsson 2009],
along with an initial version of this new model. In the following,
we briefly review the problems of the Yampa design, and then in-
troduce a refined version of the new model adapted to the setting
of the present paper. With the new model as a basis, we then con-
tinue to develop a type system guaranteeing safety in the following
sections.

3.1 Limitations of the Yampa Design

In Yampa, multiple signals are combined by tupling them together.
There is no distinction between a pair of signals and a signal
carrying a pair. For example, a signal function that conceptually
maps a pair of signals carrying doubles to another pair of signals
carrying doubles has the type:

SF (Double, Double) (Double, Double)

This is exactly the same type as a signal function that maps a
signal carrying pairs of doubles to another signal carrying pairs
of doubles. Routing of signals between signal functions is mostly
carried out at the functional level by lifting pure routing functions
to the reactive level.

Unfortunately, this approach hides the routing from the reac-
tive level, making it difficult to implement Yampa in a way that
scales well (such as through direct point-to-point communication or
change propagation [Sculthorpe and Nilsson 2009]). To overcome
this, routing needs to be internalised at the reactive level, and the
signal function notion needs to be refined so that a signal function
truly maps multiple individual input signals to multiple individual
output signals.

Another characteristic aspect of the Yampa design is that
discrete-time signals are realised by continuous-time signals carry-
ing an option type (Signal (Maybe A)). This is very convenient, as
continuous-time and discrete-time signals can be freely mixed, but
alas not sufficiently abstract: the ideal semantics of discrete-time
signals cannot really be enforced, nor can it be exploited for opti-
mising the implementation. It is thus desirous to make a clear type-
level distinction between continuous-time signals and discrete-time
signals, while retaining the convenience of the Yampa approach.

3.2 Signal Descriptors and Signal Vectors

To address the limitations of Yampa, we introduce the notion of a
signal vector, a heterogeneous vector of signals, and redefine the
conceptual notion of signal function to be a function on signal vec-
tors. We also introduce two distinct kinds of signals: continuous-
time signals, defined as before; and discrete-time, or event, signals,
which are only defined at countably many points in time. Each point
at which an event signal is defined is known as an event occurrence.

The crucial point is that we define these notions of different
kinds of signals, and vectors of such signals, only as an integral
part of the signal function abstraction: they have no independent
existence of their own and are thus completely internalised at the
reactive level. This means that the FRP implementer has great
freedom in choosing representations and exploiting those choices.

We proceed as follows. First we define signal descriptors. A
signal descriptor is a type that describes key characteristics of a
signal. Signal descriptors only exist at the type-level: there are no
values having such types; in particular, a signal descriptor is not the
(abstract) type of any signal.

Initially, we are interested in the time domain and the type (of
the values carried by) the signal. Thus we introduce one descriptor
for each kind of signal, each parametrised on the signal type:

∗∗∗

sfr

sfl>>>

sfl sfr

Figure 1. The Sequential (≫) and Parallel (∗∗∗) Composition
Combinators

data SigDesc : Set where

E : Set → SigDesc -- discrete-time signals (events)

C : Set → SigDesc -- continuous-time signals

Note that Set is the “type of types” in Agda (similar to kind ∗ in

Haskell)2.
Next we introduce signal vector descriptors. A signal vector

descriptor is simply a (type level) list of signal descriptors:

SVDesc : Set
SVDesc = List SigDesc

For the purpose of stating the new conceptual definition of signal
functions, and for use in semantic definitions later, we postulate
a function (SVRep) that maps a signal vector descriptor to some
suitable type for representing a sample of signal vectors of that
description, and use this to define signal vectors:

SVRep : SVDesc → Set

SigVec : SVDesc → Set

SigVec as ≈ Time → SVRep as

However, we do not require the existence of such a function: an
implementation may opt to not represent signal vectors explicitly
at all.

Finally, we refine the conceptual definition of signal functions:

SF : SVDesc → SVDesc → Set

SF as bs ≈ SigVec as → SigVec bs

3.3 Example Combinators and Primitives

To demonstrate the new conceptual model, we define some com-
mon primitive signal functions and combinators from Yampa.
These primitives either operate at the reactive level, or mediate
between the functional and reactive levels.

3.3.1 Sequential and Parallel Composition

Signal functions can be composed sequentially (≫) or in parallel
(∗∗∗) (see Figure 1):

≫ : {as bs cs : SVDesc} →
SF as bs → SF bs cs → SF as cs

∗∗∗ : {as bs cs ds : SVDesc} →
SF as cs → SF bs ds → SF (as ++ bs) (cs ++ ds)

(In Agda, is used to indicate the argument positions for infix
and mixfix operators, while the curly braces are used to enclose
implicit arguments: arguments that only have to be provided at an
application site if they cannot be inferred from the context.) Note
that ∗∗∗ composes two signal functions that take different inputs.
For parallel composition where both signal functions take the same
input, there is the &&& combinator:

2 Strictly speaking, SigDesc should have type Set1 (the type of Set).
However, for clarity, we use the Agda option that accepts Set as the type
of Set . We have successfully implemented the type system without this
option, but, because Agda does not support universe polymorphism, the
result is very repetitive code and loss of conceptual clarity.

sff

sfs

loop

Figure 2. The Feedback Combinator (loop)

&&& : {as bs cs : SVDesc} →
SF as bs → SF as cs → SF as (bs ++ cs)

3.3.2 Switches

Signal function networks are made dynamic through the use of
switches. Basic switches have the following type:

switch : ∀ {as bs } → {e : Set } →
SF as (E e :: bs) → (e → SF as bs) → SF as bs

dswitch : ∀ {as bs } → {e : Set } →
SF as (E e :: bs) → (e → SF as bs) → SF as bs

(Agda allows the type of an implicit argument to be omitted when
it is clear from the context. In the definitions above, both as and
bs are clearly of type SVDesc as they are used as arguments to
the type constructor SF .) The behaviour of a switch is to run the
subordinate signal function (the first explicit argument), emitting
all but the head (the event) of the output vector as the overall output.
When there is an event occurrence in the event signal, the value of
that signal is fed into the function (the second explicit argument)
to generate a residual signal function. The entire switch is then
removed from the network and replaced with this residual signal
function.

The difference between a switch and a dswitch (decoupled
switch) is whether, at the moment of switching, the overall output is
the output from the residual signal function (switch), or the output

from the subordinate signal function (dswitch).3

A key point regarding switches is that the residual signal func-
tion does not start “running” until it is applied to the input signal at
the moment of switching. Consequently, rather than having a single
global Time , each signal function has its own local time.

Local Time. The time since this signal function was applied to
its input signal. This will have been either when the entire system
started, or when the sub-network containing the signal function in
question was switched in.

3.3.3 Loops

The loop primitive provides the means for introducing feedback
loops into signal function networks. A loop consists of two signal
functions: a subordinate signal function (the first explicit argument)
and a feedback signal function (the second explicit argument). The
input of the feedback signal function is a suffix of the output of the
subordinate signal function, and the output of the feedback signal
function is a suffix of the input to the subordinate signal function:

loop : ∀ {as bs cs ds } →
SF (as ++ cs) (bs ++ ds) → SF ds cs → SF as bs

Intuitively, we use the feedback signal function to connect some of
the output signals of the subordinate signal function to some of its
input signals, forming a feedback loop (see Figure 2).

3 In Yampa, dswitch also decouples part of its input from part of its output,
but we do not assume any such behaviour here.

3.3.4 Primitive Signal Functions

We can lift pure functions to the reactive level using the primitives

pure and pureE 4. Such lifted signal functions are always stateless:

pure : {a b : Set } → (a → b) → SF [C a] [C b]

pureE : {a b : Set } → (a → b) → SF [E a] [E b]

Note that we are using [s] as a synonym for (s :: []).
We can lift values to the reactive level using the primitive

constant . This creates a signal function with a constant, continuous-
time, output:

constant : ∀ {as } → {b : Set } → b → SF as [C b]

Events can only be generated and accessed by event processing
primitives. Examples include

• edge , which produces an event whenever the boolean input
signal changes from false to true;

• hold , which emits as a continuous-time signal the value carried
by its most recent input event;

• never , which outputs an event signal containing no event oc-
currences;

• now , which immediately outputs one event, but never does so
again.

edge : SF [C Bool] [E Unit]

hold : {a : Set } → a → SF [E a] [C a]

never : ∀ {as } → {b : Set } → SF as [E b]

now : ∀ {as } → SF as [E Unit]

The primitive pre conceptually introduces an infinitesimal delay:

pre : ∀ {a } → SF [C a] [C a]

To make this precise, the ideal semantics of pre is that it outputs
whatever its input was immediately prior to the current time; that
is, the left limit of the input signal at all points:

∀ (t : Time+) (s : Signal a) . pre s t = lim s t ′

t
′
→t

−

Here, Time+ denotes positive time. Consequently, at any given
point, the output of pre does not depend upon its present input,
which is the crucial property of pre: see Section 4.

The primitive pre is usually implemented as a delay of one
time step. Of course, this only approximates the ideal semantics.
However, if the length of the time steps tends to zero, the semantics
of such an implementation of pre converges to the ideal semantics.

Note that pre is only defined for continuous-time signals. This is
because the left limit at any point of a discrete-time signal (a signal
defined only at countably many points in time) is undefined. In our
setting, this amounts to an event signal without any occurrences;
which is a signal equivalent to the output from never . Applying
pre to an event signal would thus be pointless (use never instead),
and any attempt to do so would likely be a mistake stemming from
a misunderstanding of the semantics of pre . Disallowing pre on
events thus eliminates a potential source of programming bugs.

In contrast, Yampa, because discrete-time signals are realised
as continuous-time signals carrying an option type (see Section
3.1), cannot rule out pre being applied to event signals, nor can
it guarantee the proper semantics of such an application.

Note also that pre is only defined for positive time. When the
local time is zero (henceforth referred to as time0), the output
of pre is necessarily undefined as there are no prior points in

4 It is possible to have one pure primitive that is overloaded to operate on
either time domain, but we do not do so here for clarity.

time. Thus we need an initialise combinator that defines a signal
function’s output at time0:

initialise : ∀ {as b} → b → SF as [C b] → SF as [C b]

Initialisation is discussed further in Section 5.

3.4 Example

Let us illustrate the concepts and definitions that have been intro-
duced thus far by constructing a simple signal function network.
Its purpose is to monitor a real-valued continuous-time input sig-
nal and output the same signal until the input dips below 0. At this
point, the output should be clamped to 0, and then remain at 0 from
then on.

clamp : SF [C R] [C R]
clamp = switch ((pure (λx → x < 0) ≫ edge) &&& pure id)

(λ → constant 0)

4. Decoupled Signal Functions

As previously discussed, the loop combinator allows feedback to
be introduced into a network. This is an essential capability, as
feedback is widely used in reactive programming.

However, feedback must not cause deadlock due to a signal
function depending on its own output in an unproductive manner.
To guarantee this, we conservatively prohibit instantaneous cycles
in the network. This is a common design choice in reactive lan-
guages, but our way of enforcing it is different. We identify de-
coupled signal functions, essentially a class of signal functions that
can be used safely in feedback loops, and index the type of a signal
function by whether or not it is decoupled.

Decoupled Signal Function. A signal function is decoupled if, at
any given time, its output can depend upon its past inputs, but not
its present and future inputs:

SFdec as bs = {sf : SF as bs

| ∀ (t : Time) (sv1 sv2 : SigVec as) .
(∀ t ′ < t . sv1 t ′ ≡ sv2 t ′)
⇒ (sf sv1 t ≡ sf sv2 t)}

Decoupled Cycle. A cycle is decoupled if it passes through a
decoupled signal function.

Instantaneous Cycle (Algebraic Loop). A cycle is instantaneous
if it does not pass through a decoupled signal function.

In Yampa, the onus is on the programmer to ensure that all cy-
cles are correctly decoupled. An instantaneous cycle will not be
detected statically, and the program could well loop at run-time.

Many reactive languages deal with this problem by requiring a
specific decoupling construct (a language primitive) to appear syn-
tactically within the definition of any feedback loops. This works in
a first order setting, but becomes very restrictive in a higher order
setting as decoupled signal functions cannot be taken as parameters
and used to decouple loops.

Our solution is to encode decoupledness information in the
types of signal functions. This allows us to statically ensure that
a well-typed program does not contain any instantaneous cycles.
Furthermore, the decoupledness of a signal function will be visible
in its type signature, providing guidance to an FRP programmer.

4.1 Decoupledness Descriptors

We introduce a data type of decoupledness descriptors:

data Dec : Set where

dec : Dec -- decoupled signal functions

cau : Dec -- causal signal functions

We then index SF with a decoupledness descriptor:

SF : SVDesc → SVDesc → Dec → Set

We can now enforce that the feedback signal function within a loop
is decoupled:

loop : ∀ {as bs cs ds } → {d : Dec} →
SF (as ++ cs) (bs ++ ds) d → SF ds cs dec →
SF as bs d

The primitive signal functions now need to be retyped to include
appropriate decoupledness descriptors:

pure : ∀ {a b} → (a → b) → SF [C a] [C b] cau

pureE : ∀ {a b} → (a → b) → SF [E a] [E b] cau

constant : ∀ {as b} → b → SF as [C b] dec

edge : SF [C Bool] [E Unit] cau

hold : ∀ {a } → a → SF [E a] [C a] cau

never : ∀ {as b} → SF as [E b] dec

now : ∀ {as } → SF as [E Unit] dec

pre : ∀ {a } → SF [C a] [C a] dec

initialise : ∀ {as b} → {d : Dec}
→ b → SF as [C b] d → SF as [C b] d

Notice that, from the definition of decoupled signal functions,
it is evident that they are a subtype of causal signal functions
(dec <: cau). This means that we can coerce a decoupled sig-
nal function into a causal one. Intuitively, we do this by forgetting
that the decoupled signal function does not depend upon the present
input. We provide a weakening primitive that performs this coer-
cion:

weaken : ∀ {as bs d d ′} →
d <: d ′ → SF as bs d → SF as bs d ′

The primitive combinators compute the decoupledness descriptor
of their composite signal function from the descriptors of their
components. To do this, we use the join (∨) and meet (∧) of
the decoupledness descriptors (with respect to subtyping):

≫ : ∀ {as bs cs d1 d2} →
SF as bs d1 → SF bs cs d2 → SF as cs (d1 ∧ d2)

∗∗∗ : ∀ {as bs cs ds d1 d2} →
SF as cs d1 → SF bs ds d2 →
SF (as ++ bs) (cs ++ ds) (d1 ∨ d2)

&&& : ∀ {as bs cs d1 d2} →
SF as bs d1 → SF as cs d2 →
SF as (bs ++ cs) (d1 ∨ d2)

switch : ∀ {as bs e d1 d2} →
SF as (E e :: bs) d1 → (e → SF as bs d2) →
SF as bs (d1 ∨ d2)

dswitch : ∀ {as bs e d1 d2} →
SF as (E e :: bs) d1 → (e → SF as bs d2) →
SF as bs (d1 ∨ d2)

We have now ensured that all feedback in the network is well
defined. In Yampa, badly defined cycles can cause the execution
to loop at run-time, something that our type system guarantees will
not occur.

Note that without indexing signal functions by their decoupled-
ness, an Agda implementation using this type system (such as the
one described in Section 6) would not pass Agda’s termination
checker.

4.2 Example: Switching Integration Methods

To demonstrate the usefulness of decoupledness descriptors, we
give here a small example of how they can be used to allow dy-
namic switching between several integration signal functions. This
is inspired by an example from Lucid Synchrone [Colaço et al.

2004], the synchronous data-flow language with the greatest sim-
ilarity to FRP. Our example differs in that the integration signal
function is being used to decouple a loop, allowing the decision of
whether to switch integration functions to depend upon the current
output.

To our knowledge, there is no other reactive language that could
accept this program while also guaranteeing the absence of dead-
lock at run-time.

4.2.1 Recurring Switches

For this example we need to introduce an additional class of switch-
ing combinators: recurring switches (similar to every in Lucid Syn-
chrone). The behaviour of a recurring switch is to apply its subor-
dinate signal function to the tail of its input, producing the overall
output. Whenever an event (the head of the input) occurs, the signal
function carried by that event replaces the subordinate signal func-
tion. Recurring switches come in two varieties: like basic switches,
they differ in whether the output at the instant of switching is from
the new (rswitch) or old (drswitch) subordinate signal function.

rswitch : ∀ {as bs d1 d2} → SF as bs d1 →
SF (E (SF as bs d2) :: as) bs cau

drswitch : ∀ {as bs d1 d2} → SF as bs d1 →
SF (E (SF as bs d2) :: as) bs (d1 ∨ d2)

4.2.2 Dynamic Integrator

There are many different ways to define an integration signal func-
tion, usually involving a trade-off between efficiency and accuracy.
Some definitions of integration allow for decoupled behaviour,
while others do not.

We first introduce some synonyms. We assume the signal to be
integrated (Input) is a floating point number, as is the integrated
signal (Output). An integrator (Intgr) is a causal signal function
that integrates a signal, and a decoupled integrator (dIntgr) is one
that is decoupled. We assume integral is an existing decoupled
integrator.

Input = Float

Output = Float

Intgr = SF [C Input] [C Output] cau
dIntgr = SF [C Input] [C Output] dec

integral : dIntgr

Sometimes it can be advantageous to swap between integrators
dynamically if the behaviour of the input signal changes radically
(making sure to transfer the state). For the purposes of this example,
we assume that we have a signal function (intgrDecider) that
contains several integrators, and is capable of deciding, given the
current input and output, whether to switch to one of them. For
this, we require all such integrators to be decoupled (as the output
is required to decide which integrator to use to compute that very
output), and use them as the feedback signal function within a
loop. The intgrDecider also receives as input new integrators,
along with some decision rules that allow it to determine when they
should be used.

We can now define a dynamic integrator (dynIntgr) that uses a
loop to connect intgrDecider with a drswitch containing an initial
decoupled integrator:

DecisionRules : Set

NewIntgr = dIntgr ×DecisionRules

intgrDecider : SF (E NewIntgr :: C Input :: C Output :: [])
(C Output :: E dIntgr :: C Input :: [])
cau

dynIntgr : SF (E NewIntgr :: C Input :: []) [C Output] cau
dynIntgr = loop intgrDecider (drswitch integral)

This program could be defined in Yampa. However, there would
be no restriction on the decoupledness of the integrators. It would
be possible to provide a new, non-decoupled integrator as input,
which would then cause deadlock if it was ever used. Here, the
types ensure this will never happen.

5. Uninitialised Signals

Recall the pre signal function from Section 3.3. This primitive is
very common in reactive programming, and is the standard means
of decoupling feedback. However, the output of pre is undefined
at time0. It is for this reason that the initialise primitive exists,
which defines the output of a signal function at time0.

It is possible to sidestep this issue by combining pre and
initialise into one combinator (such as the iPre primitive in
Yampa). We do not do this for several reasons:

• We may not want, or be able (if no initialisation value is avail-
able), to initialise the signal at the usage of pre , but only else-
where in the program.

• An uninitialised signal can pass through a stateless signal func-
tion without causing an error, it just produces an uninitialised
output signal.

• Some signals may not require initialising, such as within the
residual signal function of a dswitch (see Section 5.2).

In Yampa, the onus is on the programmer to ensure that any unini-
tialised signals are correctly initialised where necessary. When this
is not done correctly, it can cause run-time errors.

5.1 Initialisation Descriptors

Our solution is to add initialisation information to the signal de-
scriptors. This guides the FRP programmer when writing programs,
and allows the type checker to reject any programs where unini-
tialised signals could cause a run-time error. (Without this addition
we could not implement uninitialised signals in Agda using this
type system; the totality checker would reject it.)

Note that the property of a signal being defined or not at time0

is only of interest for continuous-time signals. Event signals are, by
definition, only defined at discrete points in time, and thus there is
no need to initialise them if they are not defined at time0.

data Init : Set where

ini : Init -- initialised signals

uni : Init -- uninitialised signals

data SigDesc : Set where

E : Set → SigDesc

C : Init → Set → SigDesc

The primitive signal functions that mention continuous-time sig-
nals in their types now need to be retyped:

pure : ∀ {a b} → {i : Init } →
(a → b) → SF [C i a] [C i b] cau

constant : ∀ {as b} → b → SF as [C ini b] dec

edge : SF [C ini Bool] [E Unit] cau

hold : ∀ {a } → a → SF [E a] [C ini a] cau

pre : ∀ {a } → SF [C ini a] [C uni a] dec

initialise : ∀ {as b d } → {i : Init } →
b → SF as [C i b] d → SF as [C ini b] d

Initialised signals are subtypes of uninitialised signals (ini <: uni),
as they can be coerced by forgetting the value at time0. We extend
the weaken primitive to reflect this:

weaken : ∀ {as as′ bs bs′ d d ′} →
as′ <: as → bs <: bs′ → d <: d ′ →
SF as bs d → SF as′ bs′ d ′

Note that, as is usual for function types, the subtyping is contravari-
ant on the input signal vector. A signal vector is a subtype of an-
other if all signals in the former are subtypes of the respective sig-
nals in the latter (we do not use any width subtyping).

5.2 Switching into Uninitialised Signals

Our signal descriptors allow us to deal with uninitialised signals
at time0, but, crucially, not at any other time. As previously dis-
cussed, signal functions exist in their own local time. What is time0

for one part of the system may not be for another part. We must
ensure that an uninitialised signal does not “escape” from a sub-
network that locally is at time0, into an outer network that is not.

For example, consider switch . When the residual signal func-
tion is switched in, it could produce uninitialised output at its (lo-
cal) time0. But this uninitialised signal then escapes, potentially
causing a run-time error.

In fact, switches are the only place that this can occur, as it is
only switches that create sub-networks at a different local time.

We resolve this by requiring that all output signals from the
residual signal function are initialised, enforcing this at the type
level:

initc : SVDesc → SVDesc

initc = map initcAux

where initcAux : SigDesc → SigDesc

initcAux (E a) = E a

initcAux (C a) = C ini a

switch : ∀ {as bs e d1 d2} →
SF as (E e :: bs) d1 →
(e → SF as (initc bs) d2) →
SF as bs (d1 ∨ d2)

We do not require this constraint for decoupled switches, as their
output at time0 is defined as being the output from the subordi-
nate signal function. The (time0) output from the residual signal
function is discarded, so it does not matter if it is uninitialised.

Furthermore, this means that the initialisation of the residual
signal function’s output does not affect the overall initialisation of
the switch construct. We redefine dswitch to reflect this flexibility:

dswitch : ∀ {as bs bs′ e d1 d2} →
SF as (E e :: bs) d1 →
(e → SF as bs′ d2) →
initc bs <: bs′ →
SF as bs (d1 ∨ d2)

6. Safety and Semantics

Agda has completeness and termination checkers, ensuring that
Agda programs are total and terminating. Thus our FRP embedding
within Agda has these assurances as well.

To run signal functions, our prototype implementation operates
by running the network iteratively over a discrete sequence of
time steps. At each time step, the input is sampled and fed into
the network, along with the time delta since the preceding time
step. The network then updates any internal state, and produces an
output sample. This is the same approach as taken by Yampa and
many other reactive languages. We give the operational semantics
of this in Figure 4. These semantics correspond directly to the Agda
function we use to execute one step of a network (=⇒):

∆t : Set
∆t = Time

=⇒ : ∀ {as bs d } →
∆t×SF as bs d ×SVRep as → SF as bs d ×SVRep bs

This (one time step) evaluation function is accepted by Agda; there-
fore the evaluation of each time step is guaranteed to terminate,

data SF : SVDesc → SVDesc → Dec → Set where

prim : ∀ {as bs State } → (∆t → State → SVRep as → State ×SVRep bs) → State → SF as bs cau

dprim : ∀ {as bs State } → (∆t → State → (SVRep as → State)×SVRep bs) → State → SF as bs dec

≫ : ∀ {as bs cs d1 d2} → SF as bs d1 → SF bs cs d2 → SF as cs (d1 ∧ d2)
∗∗∗ : ∀ {as bs cs ds d1 d2} → SF as cs d1 → SF bs ds d2 → SF (as ++ bs) (cs ++ ds) (d1 ∨ d2)

loop : ∀ {as bs cs ds d } → SF (as ++ cs) (bs ++ ds) d → SF ds cs dec → SF as bs d

switch : ∀ {as bs e d1 d2} → SF as (E e :: bs) d1 → (e → SF as bs d2) → SF as bs (d1 ∨ d2)
dswitch : ∀ {as bs e d1 d2} → SF as (E e :: bs) d1 → (e → SF as bs d2) → SF as bs (d1 ∨ d2)

Figure 3. Implementation Core Primitives

f δt s as 7→ (s′ , bs)
PRIM

(prim f s , as) =⇒δt (prim f s′ , bs)

f δt s 7→ (g , bs) g as 7→ s′

DPRIM
(dprim f s , as) =⇒δt (dprim f s′ , bs)

(sfl , as) =⇒δt (sfl ′ , bs) (sfr , bs) =⇒δt (sfr ′ , cs)
SEQ

(sfl ≫ sfr , as) =⇒δt (sfl ′ ≫ sfr ′ , cs)

svsplit asbs 7→ (as, bs) (sfl , as) =⇒δt (sfl ′ , cs) (sfr , bs) =⇒δt (sfr ′ , ds) cs ++ ds 7→ csds
PAR

(sfl ∗∗∗ sfr , asbs) =⇒δt (sfl ′ ∗∗∗ sfr ′ , csds)

sff =⇒δt
φ1

(sffφ , cs) as ++ cs 7→ ascs (sfs , ascs) =⇒δt (sfs′ , bsds) svsplit bsds 7→ (bs , ds) (sffφ , ds) =⇒δt
φ2

sff ′

LOOP
(loop sfs sff , as) =⇒δt (loop sfs′ sff ′ , bs)

(sf , as) =⇒δt (sf ′ , NoEvent :: bs)
SW-NOEV

(switch sf f , as) =⇒δt (switch sf ′ f , bs)

(sfs , as) =⇒δt (sfs′ , Event e :: bss) f e 7→ sfr (sfr , as) =⇒0 (sfr ′ , bsr)
SW-EV

(switch sfs f , as) =⇒δt (sfr ′ , bsr)

(sf , as) =⇒δt (sf ′ , NoEvent :: bs)
DSW-NOEV

(dswitch sf f , as) =⇒δt (dswitch sf ′ f , bs)

(sfs , as) =⇒δt (sfs′ , Event e :: bss) f e 7→ sfr (sfr , as) =⇒0 (sfr ′ , bsr)
DSW-EV

(dswitch sfs f , as) =⇒δt (sfr ′ , bss)

Figure 4. Operational Semantics for the =⇒δt Evaluation Relation

producing output. Although execution of an FRP program is usu-
ally modelled as non-terminating (an infinite sequence of steps), we
can nevertheless guarantee that they are productive because each
individual step is productive.

As our implementation allows feedback loops and uninitialised
signals, this demonstrates that our type system allows for the con-
struction of safe programs with these features.

6.1 Prototype Implementation

We will not discuss the implementation in detail, but give the key
points that are required to understand the semantics.

Signal functions are represented internally as a data type, of
which the constructors are five primitive combinators and two
primitive signal functions (see Figure 3). We will call these the
core primitives.

Note that this implementation does not allow arbitrary routing to
be expressed at the reactive level; routing at the functional level is
required for some network structures. This design choice was made
for simplicity of presentation, as routing is not the primary concern
of this paper. We stress that this is a limitation of this particular
implementation, not of the type system in general.

The two core signal functions are prim (for causal signal func-
tions) and dprim (for decoupled signal functions). The internal
structures of these two primitives reflect the properties we require
them to have.

A causal signal function must be able to produce output at the
current time, provided it has access to all past and present inputs.
We realise this by giving prim an internal state (with which to
record past inputs), and a function that maps the time delta (since
the preceding time step), state and input to an updated state and
output.

A decoupled signal function must be able to produce output at
the current time, provided it has access to all past inputs. Thus its
internal function requires only the time delta and state to produce
an output. In order to manage updating the state, it also produces
a function mapping input to an updated state. The key point here
is that while the input will be required to fully evaluate the signal
function at the current time step, the output can be produced before
that input is provided.

Be aware that prim and dprim are intended to be hidden from
the FRP programmer. The FRP primitives (such as edge and pre ,
and many more not described in this paper) are defined in terms of
them internally.

Notice that the semantics of loop (rule LOOP in Figure 4)
require the use of two auxiliary evaluation relations. These are
phase 1 evaluation (=⇒φ1

) and phase 2 evaluation (=⇒φ2
), both

of which are only defined on decoupled signal functions. They are
required to allow partial evaluation of a decoupled signal function,
producing its output without requiring its current input (phase 1),
and then to allow this partially evaluated signal function (denoted
SFφ, see Figure 5) to be updated by providing the input (phase 2).
The semantics of these two relations are given in Figures 6 and 7.
The types of their corresponding Agda functions are:

=⇒φ1
: ∀ {as bs } → ∆t×SF as bs dec →
SFφ as bs ×SVRep bs

=⇒φ2
: ∀ {as bs } → ∆t×SFφ as bs ×SVRep as →
SF as bs dec

The semantics also make use of svsplit , an auxiliary function that
splits a signal vector into two parts, determined by the required type
of the output:

svsplit : ∀ {as bs } → SVRep (as ++ bs) →
SVRep as ×SVRep bs

We use 7→ to denote evaluation at the functional level.

Finally, we let the representation of an event signal be either
NoEvent or Event e; in the latter case e is the value carried by
the event.

6.2 Semantics of Uninitialised Signals

The semantics given here omit any mention of signal initialisation.
This is because these semantics only apply to time steps after
the initialisation step (at time0). The initialisation step requires a
slightly different (and more complicated) set of semantic rules that
we do not give in this paper. Be aware that when our evaluation
rules are used with a zero time delta (as in SW-EVENT), we should
actually be using the time0 semantics.

7. Related Work

The synchronous data-flow languages [Benveniste et al. 2003,
Halbwachs 1993, 1998] have long modelled reactive programs as
synchronous data-flow networks. These languages usually have
static first-order structures, allowing them to prevent undesirable
network structures by performing a static analysis at compile time.
While not having the expressiveness of FRP, they can provide
strong space and time guarantees on their programs.

A typical example is Lucid Synchrone [Pouzet 2006], which
does not allow instantaneous feedback loops, nor the construction
of any nodes (signal functions) that produce uninitialised output.
To guarantee that this is not the case, the decoupling and initiali-
sation primitives (pre and→) have to appear syntactically within a
recursive node definition.

There has been recent work to extend Lucid Synchrone with
higher order features [Colaço et al. 2004], setting it apart from the
other synchronous languages. However, higher order nodes cannot
be used to decouple feedback loops due to the aforementioned
syntactic requirements.

FRP approaches the problem from the other direction. Most
FRP implementations are highly expressive, but lack termination
guarantees, and space and time bounds. Real-Time FRP (RT-FRP)
[Wan et al. 2001], a small and experimental CFRP variant, is a no-
table exception that does provide some guarantees. RT-FRP disal-
lows instantaneous feedback through the type system, which, like
Lucid Synchrone, insists on the explicit insertion of the decoupling
primitive (delay) into any recursive calls. However, RT-FRP has
very limited capabilities for abstracting over and combining reac-
tive entities, essentially only being concerned with monolithic reac-
tive expressions. Also, there are no uninitialised signals in RT-FRP,
as delay requires an initialisation value as an additional parameter
(like iPre in Yampa).

FrTime [Cooper and Krishnamurthi 2006] is another recent
FRP incarnation, though distinguished in that it is embedded in
DrScheme rather than Haskell. FrTime takes the same approach to
decoupling as Lucid Synchrone, requiring explicit decoupling and
initialisation within a node definition.

8. Further Work

We have focused primarily on basic switches in this paper, giving
brief mention to recurring switches. However, as demonstrated
by Yampa [Nilsson et al. 2002], much more general switches are
possible that allow for greater dynamism of network structure. Our
next task is to extend our implementation with such switches.

Yampa is structured using Arrows [Hughes 2000], and thus
many of its (and our) combinators are arrow combinators. Program-
ming directly with arrow combinators is awkward for more compli-
cated arrows, and so a syntactic sugar has been devised to aid writ-
ing of arrow code [Paterson 2001] (similar to monadic do notation).
A recent development has been the Arrow Calculus [Lindley et al.
2008], an alternative (and equivalent) notation for arrows, with a

data SFφ : SVDesc → SVDesc → Set where

dprimφ : ∀ {as bs State } → (∆t → State → (SVRep as → State)×SVRep bs) → (SVRep as → State) → SFφ as bs

≫φl : ∀ {as bs cs d } → SFφ as bs → SF bs cs d → SFφ as cs

≫φr : ∀ {as bs cs d } → SF as bs d → SFφ bs cs → SFφ as cs

∗∗∗φ : ∀ {as bs cs ds } → SFφ as cs → SFφ bs ds → SFφ (as ++ bs) (cs ++ ds)
loopφ : ∀ {as bs cs ds } → SFφ (as ++ cs) (bs ++ ds) → SF ds cs dec → SVRep cs → SFφ as bs

switchφ : ∀ {as bs e } → SFφ as (E e :: bs) → (e → SF as bs dec) → SFφ as bs

dswitchφ : ∀ {as bs e } → SFφ as (E e :: bs) → (e → SF as bs dec) → SFφ as bs

Figure 5. Partially Evaluated Signal Functions

f δt s 7→ (sφ , bs)
Φ1-DPRIM

dprim f s =⇒δt
φ1

(dprimφ f sφ , bs)

sfl =⇒δt
φ1

(sflφ , bs) (sfr , bs) =⇒δt (sfr ′ , cs)

Φ1-SEQ-L
sfl ≫ sfr =⇒δt

φ1
(sflφ ≫φl sfr

′ , cs)

sfr =⇒δt
φ1

(sfrφ , cs)

Φ1-SEQ-R
sfl ≫ sfr =⇒δt

φ1
(sfl ≫φr sfrφ , cs)

sfl =⇒δt
φ1

(sflφ , cs) sfr =⇒δt
φ1

(sfrφ , ds) cs ++ ds 7→ csds

Φ1-PAR
sfl ∗∗∗ sfr =⇒δt

φ1
(sflφ ∗∗∗φ sfrφ , csds)

sfs =⇒δt
φ1

(sfsφ , bsds) svsplit bsds 7→ (bs , ds) (sff , ds) =⇒δt (sff ′ , cs)

Φ1-LOOP
loop sfs sff =⇒δt

φ1
(loopφ sfsφ sff ′ cs , bs)

sf =⇒δt
φ1

(sfφ , NoEvent :: bs)

Φ1-SW-NOEV
switch sf f =⇒δt

φ1
(switchφ sfφ f , bs)

sfs =⇒δt
φ1

(sfsφ , Event e :: bss) f e 7→ sfr sfr =⇒0
φ1

(sfrφ , bsr)

Φ1-SW-EV
switch sfs f =⇒δt

φ1
(sfrφ , bsr)

sf =⇒δt
φ1

(sfφ , NoEvent :: bs)

Φ1-DSW-NOEV
dswitch sf f =⇒δt

φ1
(dswitchφ sfφ f , bs)

sfs =⇒δt
φ1

(sfsφ , Event e :: bss) f e 7→ sfr sfr =⇒0
φ1

(sfrφ , bsr)

Φ1-DSW-EV
dswitch sfs f =⇒δt

φ1
(sfrφ , bss)

Figure 6. Operational Semantics for the =⇒δt φ1
Evaluation Relation

sφ as 7→ s′

Φ2-DPRIM
(dprimφ f sφ , as) =⇒δt

φ2
dprim f s′

(sflφ , as) =⇒δt
φ2

sfl ′

Φ2-SEQ-L
(sflφ ≫φl sfr

′ , as) =⇒δt
φ2

sfl ′ ≫ sfr ′

(sfl , as) =⇒δt (sfl ′ , bs) (sfrφ , bs) =⇒δt
φ2

sfr ′

Φ2-SEQ-R
(sfl ≫φr sfrφ , as) =⇒δt

φ2
sfl ′ ≫ sfr ′

svsplit asbs 7→ (as, bs) (sflφ , as) =⇒δt
φ2

sfl ′ (sfrφ , bs) =⇒δt
φ2

sfr ′

Φ2-PAR
(sflφ ∗∗∗φ sfrφ , asbs) =⇒δt

φ2
sfl ′ ∗∗∗ sfr ′

as ++ cs 7→ ascs (sfsφ , ascs) =⇒δt
φ2

sfs′

Φ2-LOOP
(loopφ sfsφ sff ′ cs , as) =⇒δt

φ2
loop sfs′ sff ′

(sfφ , as) =⇒δt
φ2

sf ′

Φ2-SW-NOEV
(switchφ sfφ f , as) =⇒δt

φ2
switch sf ′ f

(sfφ , as) =⇒δt
φ2

sf ′

Φ2-DSW-NOEV
(dswitchφ sfφ f , as) =⇒δt

φ2
dswitch sf ′ f

Figure 7. Operational Semantics for the =⇒δt φ2
Evaluation Relation

structure bearing more resemblance to the lambda calculus. We are
interested in using the arrow calculus for programming at the reac-
tive level (where it could replace our core routing combinators).

An important aspect of FRP is its capacity for dynamism and
higher-order data-flow. It should be possible to exploit this by
receiving new programs (signal functions) as system inputs at run-
time. This is not yet possible in any FRP implementations, but there
has been work in Haskell to allow dynamic loading of new code,
which would make a good starting point for future work in this
direction [Pang et al. 2004].

In this paper, we keep track of decoupledness by noting which
signal functions are decoupled. We could take a more fine grained
approach by recording the decoupledness of each output signal with
respect to each input signal. This would give each signal function
a matrix of decoupledness descriptors, allowing for far more pre-
cise tracking of decoupledness than the comparatively conserva-
tive method we use in this paper. For example, the following signal
function would have all output signals decoupled from all input
signals in such a setting, whereas here it is typed as causal:

parPre : SF (C ini R :: C ini R :: []) (C uni R :: C uni R :: []) cau
parPre = (pre ∗∗∗ pure id) ≫ (pure id ∗∗∗ pre)

Such a setting would allow us, for example, to define a loop com-
binator similar to Yampa’s, in which it is not necessary to explic-
itly separate a feedback signal function from the subordinate signal
function.

Finally we note that our current prototype is a proof of con-
cept implementation only. The long term aim of our work is to de-
velop an efficient scalable implementation of FRP that incorporates
the safety properties described in this paper. For example, while it
would not be possible to prove the safety of an embedded imple-
mentation in Haskell in the manner we have done here, it might be
possible to encode the domain-specific type constraints in a Haskell
embedding. Note that it would not matter to the end use that the
implementation does not carry the proof as long as the implemen-
tation is correct. However, earlier attempts of ours to work inside
Haskell were discouraging (for example, there were problems en-
coding associativity of vector concatenation). That was in part what
prompted us to switch to a framework where we would not have
to worry about language restrictions to realise our design. But it
may be that recent Haskell extensions such as type-level functions
would suffice. The alternative would be to implement a more con-
ventional stand-alone type checker. It may still be possible to do
that in an embedded setting using quasiquoting [Mainland et al.
2008, Giorgidze and Nilsson 2011].

9. Conclusions

In this paper we presented a domain-specific type system for FRP.
This type system ensures that signal function networks with feed-
back loops and uninitialised signals will be productive, without

sacrificing support for higher-order data-flow and structural dy-
namism.

The type system also makes a distinction between the functional
and reactive levels of an FRP program, restricting some concepts
(such as time domain) to the reactive level.

We demonstrated the expressiveness of the type system with a
simple example of a well formed program (Section 4.2) that would
either be statically rejected, or permit non-productive networks to
be dynamically constructed, in any other reactive language we are
aware of.

We have implemented a prototype interpreter for our FRP pro-
grams in Agda. We have given a simplified version of the opera-
tional semantics of this interpreter in this paper (omitting initiali-
sation at time0), and the full implementation is available from the
first author’s website.

As our implementation is accepted by Agda, we know it is safe

and productive.5 The implementation also constitutes a machine-
checked proof of the safety of our type system for FRP, in principle
allowing it to be used with confidence by other FRP implementa-
tions.

Acknowledgments

We would like to thank George Giorgidze, Nils Anders Daniels-
son and the anonymous reviewers for their helpful comments and
feedback.

References

Simulink User’s Guide, Version 7.6. 3 Apple Hill Drive, Natick, MA, 2010.
URL www.mathworks.com/help/toolbox/simulink/.

Albert Benveniste, Paul Caspi, Stephen Edwards, Nicolas Halbwachs, Paul
Le Guernic, and Robert de Simone. The synchronous languages twelve
years later. Proceedings of the IEEE, Special issue on embedded systems,
91(1):64–83, 2003.

Gérard Berry and Georges Gonthier. The Esterel synchronous programming
language: Design, semantics, implementation. Science of Computer

Programming, 19(2):87–152, 1992.

Paul Caspi and Marc Pouzet. Synchronous Kahn networks. In International

Conference on Functional Programming (ICFP ’96), pages 226–238.
ACM, 1996.

Mun Hon Cheong. Functional programming and 3D games. BEng thesis,
University of New South Wales, 2005.

Jean-Louis Colaço, Alain Girault, Grégoire Hamon, and Marc Pouzet. To-
wards a higher-order synchronous data-flow language. In Embedded

Software (EMSOFT ’04), pages 230–239. ACM, 2004.

Gregory H. Cooper and Shriram Krishnamurthi. Embedding dynamic
dataflow in a call-by-value language. In European Symposium on Pro-

gramming (ESOP ’06), pages 294–308. Springer, 2006.

Antony Courtney and Conal Elliott. Genuinely functional user interfaces.
In Haskell Workshop (Haskell ’01), pages 41–69. Elsevier, 2001.

Antony Courtney, Henrik Nilsson, and John Peterson. The Yampa arcade.
In Haskell Workshop (Haskell ’03), pages 7–18. ACM, 2003.

Conal Elliott. Push-pull functional reactive programming. In Haskell

Symposium (Haskell ’09), pages 25–36. ACM, 2009.

Conal Elliott and Paul Hudak. Functional reactive animation. In Interna-

tional Conference on Functional Programming (ICFP ’97), pages 263–
273. ACM, 1997.

George Giorgidze and Henrik Nilsson. Switched-on Yampa: Declarative
programming of modular synthesizers. In Practical Aspects of Declara-

tive Languages (PADL ’08), pages 282–298. Springer, 2008.

George Giorgidze and Henrik Nilsson. Embedding a functional hybrid
modelling language in Haskell. In Implementation and Application of

Functional Languages (IFL ’08), pages 138–155. Springer, 2011.

5 Assuming there are no flaws in the Agda system itself.

Nicolas Halbwachs. Synchronous Programming of Reactive Systems. The
Springer International Series in Engineering and Computer Science.
Springer, 1993.

Nicolas Halbwachs. Synchronous programming of reactive systems, a
tutorial and commented bibliography. In Computer Aided Verification

(CAV ’98), pages 1–16. Springer, 1998.

Nicolas Halbwachs, Paul Caspi, Pascal Raymond, and Daniel Pilaud. The
synchronous data-flow programming language Lustre. Proceedings of

the IEEE, 79(9):1305–1320, 1991.

Thomas A. Henzinger. The theory of hybrid automata. In Logics in

Computer Science (LICS ’96), pages 278–292. IEEE Computer Society,
1996.

John Hughes. Generalising monads to arrows. Science of Computer

Programming, 37(1–3):67–111, 2000.

Sam Lindley, Philip Wadler, and Jeremy Yallop. The arrow calculus.
Technical report, School of Informatics, University of Edinburgh, 2008.

Geoffrey Mainland, Greg Morrisett, and Matt Welsh. Flask: Staged func-
tional programming for sensor networks. In International Conference

on Functional Programming (ICFP ’08), pages 335–345. ACM, 2008.

Henrik Nilsson, Antony Courtney, and John Peterson. Functional reactive
programming, continued. In Haskell Workshop (Haskell ’02), pages 51–
64. ACM, 2002.

Ulf Norell. Towards a Practical Programming Language Based on De-

pendent Type Theory. PhD thesis, Chalmers University of Technology,
2007.

André Pang, Don Stewart, Sean Seefried, and Manuel M. T. Chakravarty.
Plugging Haskell in. In Haskell Workshop (Haskell ’04), pages 10–21.
ACM, 2004.

Ross Paterson. A new notation for arrows. In International Conference on

Functional Programming (ICFP ’01), pages 229–240. ACM, 2001.

John Peterson, Paul Hudak, and Conal Elliott. Lambda in motion: Control-
ling robots with Haskell. In Practical Aspects of Declarative Languages

(PADL ’99), pages 91–105. Springer, 1999.

Benjamin C. Pierce. Types and Programming Languages. MIT Press, 2002.

Marc Pouzet. Lucid Synchrone, version 3: Tutorial and ref-

erence manual. Université Paris-Sud, LRI, 2006. URL
www.di.ens.fr/ pouzet/lucid-synchrone.

Neil Sculthorpe and Henrik Nilsson. Optimisation of dynamic, hybrid
signal function networks. In Trends in Functional Programming (TFP

’08), pages 97–112. Intellect, 2009.

Simon Thompson. Type Theory and Functional Programming. Addison-
Wesley, 1991.

Zhanyong Wan and Paul Hudak. Functional reactive programming from
first principles. In Programming Language Design and Implementation

(PLDI ’00), pages 242–252. ACM, 2000.

Zhanyong Wan, Walid Taha, and Paul Hudak. Real-time FRP. In Interna-

tional Conference on Functional Programming (ICFP ’01), pages 146–
156. ACM, 2001.

