Causal Commutative Arrows and Their Optimization

Hai Liu

Eric Cheng

Paul Hudak

Department of Computer Science
Yale University

{hai.liu,eric.cheng,paul.hudak}@yale.edu

Abstract

Arrows are a popular form of abstract computation. Beingenor
general than monads, they are more broadly applicable rapali
ticular are a good abstraction for signal processing andfidat
computations. Most notably, arrows form the basis for a doma
specific language calledampa which has been used in a variety
of concrete applications, including animation, robotgsnd syn-
thesis, control systems, and graphical user interfaces.

Our primary interest is in better understanding the clasabef
stract computations captured by Yampa. Unfortunatelpvesrare
not concrete enough to do this with precision. To remedyditig-
tion we introduce the concept obmmutative arrowthat capture a
kind of non-interference property of concurrent compuotagi We
also add amnit operator, and identify a crucial law that captures the
causal nature of arrow effects. We call the resulting coijnral
modelcausal commutative arrows

To study this class of computations in more detail, we define
an extension to the simply typed lambda calculus cadladsal
commutative arrow§CCA), and study its properties. Our key con-
tribution is the identification of a normal form for CCA calle
causal commutative normal for@CNF). By defining a normal-
ization procedure we have developed an optimization gfyateat
yields dramatic improvements in performance over conoeati
implementations of arrows. We have implemented this tegain
Haskell, and conducted benchmarks that validate the affé#Eiss
of our approach. When combined with stream fusion, the divera
methodology can result in speed-ups of greater than twaeiafe
magnitude.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guage§¥ Language Constructs and Features

General Terms Languages, Performance, Theory

Keywords Functional Programming, Arrows, Functional Reac-
tive Programming, Dataflow Language, Stream Processimgy, Pr
gram Optimization

Permission to make digital or hard copies of all or part of thiork for personal or
classroom use is granted without fee provided that copesarmade or distributed
for profit or commercial advantage and that copies bear titiseand the full citation
on the first page. To copy otherwise, to republish, to posteswess or to redistribute
to lists, requires prior specific permission and/or a fee.

ICFP’09, August 31-September 2, 2009, Edinburgh, Scotland, UK.
Copyright© 2009 ACM 978-1-60558-332-7/09/08. . . $5.00

1. Introduction

Consider the following recursive mathematical definitidnttoe
exponential function:

e(t)=1+ /t e(t)dt

In Yampa [35, 21], a domain-specific language embedded in
Haskell [36], we can write this using arrow syntax [32] asdafs:

exp = proc () — do
rec let e =1+ i
i « integral < e
returnA — e

Even for those not familiar with arrow syntax or Haskell, these
correspondence between the mathematics and the Yampaprogr
should be clear. As in most high-level language designs, ithi
the primary motivation for developing a language such aspé&am
reducing the gap between program and specification.

Yampa has been used in a variety of applications, including
robotics [21, 34, 33], sound synthesis [15, 6], animatids, [&1],
video games [11, 7], bio-chemical processes [22], contrelesns
[31], and graphical user interfaces [10, 9]. There are s¢veasons
that we prefer alanguage design based on arrows over, forsea
an approach such as that used in Fran [13]. First, arrows are m
modular— they convey information about input as well as output,
whereas Fran’s inputs are implicit and global. Second, geaf
arrows eliminates a subtle but devastating fornspéce leakas
described in [27]. Third, arrows introduce a meta-level ahpu-
tation that aids in reasoning about program correctneassfor-
mation, and optimization.

But in fact, conventional arrows (or to borrow a phrase from
[26], “classic arrows”) are not strong enough to capturefdineily
of computations that we are interested in — more laws areautted
constrain the computation space. Unfortunately, moretcainged
forms of computation — such as monads [29] and applicatixe-fu
tors [28] — are not general enough. In addition, there arenotigh
operators. In particular, we find the need for an absirataliza-
tion operator and its associated laws.

In this paper we give a precise abstract characterization of
a class of arrow computations that we cedlusal commutative
arrows, or just CCA for short. More precisely, the contributions
in this paper can be summarized as follows:

1. We define a notion o€ommutative arrowby extending the
conventional set of arrow laws to include a commutativity.la

2. We define anrrowInit type class with amit operator and an
associated law that captures the essence of causal cormputat

3. We define a small language call&CA, an extension of the
simply typed lambda calculus, in which the above ideas are
manifest. For this language we establish:

(a) anormal form and
(b) anormalization procedure

We achieve this result using only CCA laws, without refegrin
to any concrete semantics or implementation.

. We define amptimization techniguéor causal commutative ar-
rows that yields substantial improvements in performanez o
previous attempts to optimize arrow combinators and arrow
syntax.

. Finally, we show how to combine our ideas with thosstoedam
fusionto yield speed-ups that can exceed two orders of magni-
tude.

We begin the presentation with a brief overview of arrows in
Section 2. The knowledgeable reader may prefer to skip tijrec
to Section 3, where we give the definition and laws for CCA.
In Section 4 we define an extension of the simply-typed lambda
calculus that captures CCA, and show in Section 5 that any CCA
program can be transformed into a uniform representatian th
we call Causal Commutative Normal FordCCNF). We show
that the normalization procedure is sound, based on eaquadtio
reasoning using only the CCA laws. In Section 6 we discughéur
optimizations, and in Section 7 we present benchmarks stgpwi
the effectiveness of our approach. We conclude in Sectioitt8av
discussion of related work.

2. AnlIntroduction to Arrows

Arrows[23] are a generalization of monads that relax the stringent
linearity imposed by monads, while retaining a disciplisgégde of
composition. Arrows have enjoyed a wide range of applicetio
often as a domain-specific embedded language (DSEL [19, 20])
including the many Yampa applications cited earlier, asl asl
parsers and printers [25], parallel computing [18], and I30AY-
rows also have a theoretical foundation in category theshgre
they are strongly related to (but not precisely the saméd-ges)d
categorieqd2, 37].

2.1 Conventional Arrows

Like monads, arrows capture a certain class of abstract eomp
tations, and offer a way to structure programs. In Haskedl i
achieved through therrow type class:

class Arrow a where

arr :(b—>c) > abc
6> ::abc—>acd—abd
first :: abc — a (b,d) (c,d)

The combinatorrr lifts a function fromb to c to a “pure” arrow
computation fronb to c, namelya b ¢ wherea is the arrow type.
The output of a pure arrow entirely depends on the input (it is
analogous taeturn in theMonad class)>>> composes two arrow
computations by connecting the output of the first to the frgdu
the second (and is analogous to birfdX=)) in the Monad class).
But in addition to composing arrows linearly, it is desiealb
compose them in parallel —i.e. to allow “branching” and “gieg”
of inputs and outputs. There are several ways to do this, put b
simply defining thetirst combinator in théirrow class, all other
combinators can be definetlirst converts an arrow computation
taking one input and one result, into an arrow computati@m¢a
two inputs and two results. The original arrow is appliechis first
part of the input, and the result becomes the first part of thpua.
The second part of the input is fed directly to the secondqgfatte
output.

Other combinators can be defined using these three primitive
For example, the dual dfirst can be defined as:

arr : Arrow a = (b — ¢c) — abc
> :: Arrowa = abc—acd—abd
first :: Arrow a = a b c — a (b, d) (c, d)
(G) : Arrow a = abc — ab ¢’ —
a (b, b’) (c, ¢’)
loop Arrow a = a (b,d) (c,d) — abc
(a) arr £ (b) £ >>> g
L]
(c) first £
] L
(L ‘ ;
g :
d) £ ***x g (e) loop £

Figure 1. Commonly Used Arrow Combinators

second :: (Arrow a) = a b ¢ — a (d,b) (d,c)
second f = arr swap >>> first f >>> arr swap
where swap (a, b) = (b, a)

Parallel composition can be defined as a sequence of first and
second:

&*x® :: (Arrow a) = abc — ab’ c’ — a (b, b’) (c, c’)
f *xk g = first f >>> second g

A mere implementation of the arrow combinators, of course,
does not make it an arrow — the implementation must additipna
satisfy a set oérrow laws which are shown in Figure 2.

2.2 Looping Arrows

To model recursion, we can introduce@p combinator [32]. The
exponential example given in the introduction requiresirgion, as
do many applications in signal processing, for example.askell

this combinator is captured in therowLoop class:

class Arrow a = ArrowLoop a where
loop :: a (b,d) (c,d) — abc

A valid instance of this class should satisfy the additiolaals
shown in Figure 3. This class and its associated laws artecela
to the trace operator in [40, 17], which was generalized toves

in [32].

We find that arrows are best viewed pictorially, especiadly f
applications such as signal processing, where domain &sxquamn-
monly draw signal flow diagrams. Figure 1 shows some of thizbas
combinators in this manner, includingop.

2.3 Arrow Syntax

Recall the Yampa definition of the exponential function giear-
lier:
exp = proc () — do
rec let e =1+ 1
i « integral < e
returnA — e

This program is written usingrrow syntaxintroduced by Paterson
[32] and adopted by GHC (the predominant Haskell implementa
tion) because it ameliorates the cumbersome nature ofngriti

left identity arrid>f = f
right identity > arrid =
associativity (f>g)>h = [f>(g>h)
composition arr (g-f) = arrf>arrg
extension first (arr f) = arr(f x id)
functor first (f > g¢g) = first f>> firstg
exchange first f>> arr (id X g) = arr (id x g) >> first f
unit first f>> arr fst = arrfst>> f
association first (firstf) >> arr assoc = arr assoc >> firstf
whereassoc ((a,b),c¢) = (a,(b,c))
Figure2. Conventional Arrow Laws

left tightening loop (firsth>> f) = h>>loop f

right tightening loop (f >> firsth) = loop f>>h

sliding loop (f >> arr (id x k)) = loop (arr (id X k) >> f)

)
)
)
)
)
)

vanishing loop (loop f) = loop (arr assoc™" > f >> arr assoc)
superposing second (loop f) = loop (arr assoc > second f > arr assoc™ ")
extension loop (arr f) = arr(trace f)

wheretrace f b

let (¢,d) = f (b,d) inc

Figure3. Arrow Loop Laws

commutativity
product

first f >> second g
1Nt © *kk it J

second g >> first f
init (i, 7)

Figure4. Causal Commutative Arrow Laws

the point-free style demanded by arrows. The above progsam i
equivalent to the following sugar-free program:

exp = fixA (integral >>>arr (+1))
where fixA f = loop (second f >>>
arr (A (_, y) — (y, ¥

Although more cumbersome, we will use this program stylde t
remainder of the paper, in order to avoid having to explam th
meaning of arrow syntax in more detail.

3. Causal Commutative Arrows

In this section we introduce two key extensions to conveatiar-
rows, and demonstrate their use by implementing a streams-tra
former in Haskell.

First, as mentioned in the introduction, the set of arrow and
row loop laws is not strong enough to capture stream comipuatat
In particular, thecommutativity lavshown in Figure 4 establishes a
non-interference property for concurrent computationffects are
still allowed, but this law guarantees that concurrentaffeannot
interfere with each other. We say that an arroveésmmutativef
it satisfies the conventional laws as well as this criticalitonal
law. Yampa is in fact based on commutative arrows.

Second, we note that Yampa has a primitive operator called

iPre that is used to inject a delay into a computation; indeed it
is the primary effect imposed by the Yampa arrow [35, 21].i&im
operators, often calledelay, also appear in dataflow program-
ming [43], stream processing [39, 41], and synchronousuaggs
[4, 8]. In all cases, the operator introduces stateful cdatmn into
an otherwise stateless setting.

In an effort to make this operation more abstract, we rename i
init and capture it in the following type class:

class ArrowLoop a = Arrowlnit a where
init :: b — a b b

Intuitively, the argument tdnit is the initial output; subsequent

newtype SF a b=SF { unSF :: a — (b, SF a b) }
instance Arrow SF where
arr £ =SF h
where h x = (f x, SF h)
first £ = SF (b £)
where h f (x, z) = let (y, f’) = unSF f x
in ((y, z), SF (h £°))
£>>>g=SF (h f g)
where h f g x = let (y, £’) = unSF f x
(z, g2) =unSF g y
in (z, SF (h £’ g’))

instance ArrowLoop SF where
loop £ = SF (h f)
where h f x = let ((y, z), £’) = unSF £ (x, z)
in (y, SF (h £’))

instance ArrowInit SF where
init i = SF (h i)
where h i x = (i, SF (h x))

runSF :: SF a b —
runSF f =g £
where g £ (x:xs) = let (y, £’) = unSF f x
iny : g f’ xs

[a] [b]

—

Figure5. Causal Stream Transformer

of causal computations, namely that the current output riépe
only on the current as well as previous inputs. Besides tiysa
we make no other assumptions about the nature of these values
they may or may not vary with time, and the increment of change
may be finite or infinitesimally small.

More importantly, a valid instance of therowInit class must
satisfy theproduct law shown in Figure 4. This law states that
two inits paired together are equivalent to aneit of a pair.
Here we use thex** operator instead of its expanded definition
first... >>> second... to imply that the product law assumes
commutativity.

We will see in a later section thahit and the product law are
critical to our normalization and optimization strategiBsit init

Syntax

Variables V = z|ylz]...
Primitive Types t == 1|Int|Bool| ...
Types o, 3,0 == tlaxf|la—Fla~p
Expressions E = V|(ELE)|fstE|sndE|Xx:a.E|EiEx|()] ...
Environment I' = Z1:Q1,...,%n:0Qn
Typing Rules
) (r:a)el Nrx:akFE:p3
(UNIT) TE(:1 (VAR) 20— (ABS) v masp
I'tEi:a—p3 I'FEi:«
I'HFEs: « I'EEs:p3 I'FE:axp I'FE:axp
(APP) THFELEx: 3 (PAIR) TF(E,E2):axpf (FST) THfstE:a« (SND) TFsnd E: 3
Constants
arra,s : (a—B) — (a~ f) loopa, 8,0 (ax 0~ B x0)— (a~)
3>a0,8,0 (a~B) = (B~ 0) = (a~0) inita a— (@~ a)
firsta,g.0 (@~ pB) = (ax 0~ 3x0)
Definitions
assoc (axp)yx0—ax(B8x0) id © o— a
assoc = Az.(fst (fst z), (snd (fst z), snd z)) id = .o
assoc™! 1 ax(Bx0)— (axB)x6 () (B=0)—(a—B)— (a—0)
assoc? = Az.((fst z, fst (snd 2)), snd (snd z)) () = AfAgrz.f(gx)
juggle © (axB)x0— (ax0)xp () & (@ B) (0 = (ax8—Bx7)
juggle = assoc™! - (id x swap) - assoc (x) AfAgAz.(f (fst 2),g (snd 2))
transpose (axpB)x(@xn) — (ax8)x(B8xn) dup a—axa
transpose = assoc - (juggle X id) - assoc” dup Az.(z,x)
shuffle ax ((Bxd)x(@xn)—(ax(Bx0)x(dxn) swap aXxf—pBxa
shuffle = assoc™! - (id x transpose) swap Az.(snd z, fst z)
shuffle ™! (ax (Bx0)x(@Bxn) —ax((Bx8)x(@xn) seond (@~ B) = (0 x a~sr 0 x)
shuffle! = (id x transpose) - assoc second Af.arr swap 3> first f >> arr swap

Figure6. CCA alanguage of Causal Commutative Arrows

is also important in allowing us to define operators that weee
viously taken as domain-specific primitives. In particutamsider
the integral operator used in the exponentiation examples. With
init, we can definentegral using the Euler integration method
and a fixed global stegt as follows:

integral :: Arrowlnit a = a Double Double
integral = loop (arr (A (v, i) — i 4 dt * v) >>>
init 0>>> arr (A\i — (i, i)))

To complete the picture, we give an instance (i.e. an impteme
tation) of CCA that captures a causaleam transformeras shown
in Figure 5, where:

e SF a bis an arrow representing functions (transformers) from
streams of type to streams of type. It is essentially a recur-
sively defined data type consisting of a function with its-con
tinuation, a concept closely related to a form of finite state
tomaton called Mealy Maching[14]. Yampaenjoys a similar
implementation, and the same data type was c&llgdin [32].

e SF is declared an instance of type clasgesow, ArrowLoop
andArrowInit. For exampleexp can be instantiated as type
exp :: SF () Double. These instances obey all of the arrow
laws, including the two additional laws that we introduced.

e runSF :: SF a b -> [a] -> [b] converts anSF arrow

into a stream transformer that maps an input stream of type

[a] to an output stream of typkb].

As a demonstration, we can sample the exponential functian a
fixed time interval by running thexp arrow over an uniform input
streaminp:

dt = 0.01
inp =)

:: Double

:inp :: [O]

*Main> runSF exp inp
[1.0,1.01,1.0201,1.030301,1.04060401,1.0510100501,

We must stress that tfgF type is but one instance of a causal
commutative arrow, and alternative implementations suhhe
synchronous circuit typ8egMap in [32] and the stream function
type (incidentally also calledyF in [24] also qualify as valid
instances. The abstract properties such as normal formswvina
develop in the next section are applicable to any of thedarigss,
and thus are more broadly applicable than optimizationriegctes
based on a specific semantic model, such as the one considered

[5].

4. A Language of Causal Commutative Arrows

To study the properties of CCA more rigorously, we first idtwoe

a language of CCA terms in Figure 6. which is an extension @f th
simply-typed lambda calculus with a few primitives typagles,
and arrows. Note that:

e Although the syntax requires that we write type annotatfons
variables in lambda abstraction, we often omit them aneadst
give the type of an entire expression.

(a) Reorder parallel pure and stateful (b) Reorder sequential pure

and stateful

(c) Change sequential
composition to parallel

(d) Move sequential
composition into loop

(e) Move parallel
composition into
loop

(f) Fuse nested loops

Figure7. Arrow Transformations

¢ In previous examples we used the Haskell tgpeow a => a
b c to represent an arrow typemapping from typé to type

(a) Original

4
AR

(b) Reorganized

init 0 ->—|

Figure 8. Diagrams forexp

Figure9. Diagram forloopB

5. Normalization of CCA

In most implementations, programs written using arrowsycar
runtime overhead, primarily due to the extra tupling foraedo
functions’ arguments and return values. There have beeralev
attempts [30, 24] to optimize arrow-based programs usingnar
laws, but the results have not been entirely satisfactoithoigh
conventional arrow and arrow loop laws offer ways to comipinies
arrows or collapse nested loops, they are not powerful éntaig
deal witheffectfularrows, such as thait combinator.

51
Our new optimization strategy is based on the following eath

Intuition

c. However, CCA does not have type classes, and thus we write striking observationany CCA program can be transformed into

o ~ (3 instead.

e Each arrow constant represents a family of constant arroe+fu
tions indexed by types. We’'ll omit the type subscripts wheayt
are obvious from context.

The figure also defines a set of commonly used auxiliary func-
tions.

Besides satisfying the usual beta law for lambda expressarn
rows in CCA also satisfy the nine conventional arrow lawsg) (¢
2), the six arrow loop laws (Figure 3), and the two causal comm
tative arrow laws (Figure 4).

Due to the existence of immediate feedback in loops, CCA is
able to make use of general recursion that is not allowed én th
simply typed lambda calculus. To see why immediate feedimck
necessary, we can look back at thiecA function used to define the
combinator version oéxp. We rewrite it using CCA syntax below:

fiod : (@~ @) = (B~ a)
fixA = Af.loop(second f > arr(Ax.(snd x, snd x)))

It computes a fixed point of an arrow at the value level, andaioa
no init in its definition. We consider the ability to model general
recursion a strength of our work that is often lacking in ogteeam

or dataflow programming languages.

a single loop containing one pure arrow and one initial stasédue
More precisely, any CCA program can be normalized into eithe
the formarr f or:

loop(arr f >> second(second (init i)))

where f is a pure function and is an initial state. Note that
all other arrow combinators, and therefore all of the oveatls
associated with them (tupling, etc.) are completely elatéd Not
surprisingly, the resulting improvement in performanceadther
dramatic, as we will see later.

We treat the loop combinator not just as a way to provide
feedback from output to input, but also as a way to reorganize
a complex composition of arrows. To see how this works, it is
helpful to visualize a few examples, as shown in Figure 7, and
explained below. This should help explain the intuitionibelour
normalization process, which is treated formally in thetrsection.

The diagrams in Figure 7 can be explained as follows:

(a) Re-order parallel pure and stateful arrowBigure 7(a) shows
the exchange law for arrows, which is a special case of the
commutativity law, and useful for re-ordering pure andeftat
arrows.

(b) Re-order sequential pure and stateful arrowsigure 7(b)
shows how the immediate feedback of the loop combinator

loop loop f + loopB () (arr assoc™ > first f >> arr assoc)
init initi — loopB i (arr (swap - juggle - swap))
compasition arr f>> arrg — arr(g-f)
extension first (arr f) — arr (f xid)
left tightening h > loopBi f +— loopB i (first h>> f)
right tightening loopB i f >> arrg +— loopB i (f >> first (arr g))
vanishing loopB i (loopB j f) +— loopB (4,5) (arr shuffle >> f >> arr shuffle™")
superposing first (loopB i f) +— loopB i (arr juggle > first f >> arr juggle)
Figure 10. One Step Reduction for CCA
(NORM) ~Te 3(4, f) st.e = arr f or e = loopB i (arr f)
erdel exlles, ei>ehise elé
(SEQ) e1 S>> es U’ 6’
fUf firstf—e ele initi—e eleée
(FIRST) first f € (INIT) init i | €
loop fr—e eleé fUf loopBif —e ele
(LOOP) loop f 1 € (LOOPB) loopBi f | €

Figure11. Normalization Procedure for CCA

helps to re-order arrows. This follows from the definition of
second, and the tightening and sliding laws for loops.

(c) Change sequential composition to parallEigure 7(c) shows
that in addition to the sequential re-ordering we can use the
product law to fuse two stateful computations into one.

(d) Move sequential composition into ladpigure 7(d) shows the
left-tightening law for loops. Because the first arrow caodle
a loop, we are able to combine sequential compositions of two
loops into a nested one.

(e) Move parallel composition into loog-igure 7(e) shows a vari-
ant of the superposing law for loops usitfiyst instead of
second. Since we know that parallel composition can be de-

initialized before looping back, and is often regarded amsarnal
state. The value of type is immediately fed back and often used
for general recursions at the value level.

We define a single step reductien as a set of rules in Fig-
ure 10, and a normalization procedure in Figure 11. The nlerma
ization relation|} can be seen as a big step reduction following an
innermost strategy, and is indeed a function.

Note that some of the reduction rules resemble the arrow laws
of the same name. However, there are some subtle but importan
differences: First, unlike the laws, reduction is direct&écond,
the rules are extended to handl@pB instead ofloop. Finally,
they are adjusted to avoid overlaps.

composed into first and second, and if each of them can be Theorem 5.1 (CCNF) For all - e : o ~ (3, there exists a normal

transformed into a loop, they will eventually be combinein
a nested loop as shown.

() Fuse nested loops-igure 7(f) shows an extension of the van-
ishing law for loops to handle stateful computations. Itsgbr
requires the commutative law and product law to switch the po

sition of two stateful arrows and join them together.

As a concrete example, Figure 8(a) is a diagram of the ofigina
exp example given earlier. In Figure 8(b) we have unfolded the
definition of integral and applied the optimization strategy. The
result is a single loop, where all pure functions can be coetbi
together to minimize arrow implementation overheads.

5.2 Algorithm

In this section we give a formal definition of the normalipati
procedure. First we define a combinator calledpB that can be
viewed as syntactic sugar for handling both immediate ataldd
feedback:

loopB : 0 — (a X (y X 0) ~ B X (yx0)) = (e~)
loopB = Ai. A f.loop (f >> second(second (init i)))
A pictorial view of loopB is given in Figure 9. The second argu-

ment toloopB is an arrow mapping from an input of type to
output 3, while looping over a paity x 6. The value of typé is

form eyorm, called the Causal Commutative Normal Form, which
is either of the formurr f, or loopB i (arr f) for somei and f,
such that- enorm : @ ~ 3, ande | enorm. In unsugared form,
the second form is equivalent to:

loop(arr f >> second(second (init i)))

Proof: Follows directly from Lemmas 5.1 and 5.2. a
Note that we only consider closed terms with empty type en-
vironments in Theorem 5.1, otherwise we would have to irelud
lambda normal forms as part of CCNF. For example.a ~ 3
x : a ~ (3 would qualify as a valid CCNF since is of an ar-
row type, and there is no further reduction possible. Altffothis
addition may be needed in real implementations, it wouldegan
essarily complicate the discussion, so we disallow opengdor
simplicity.

Lemma5.1 (Soundness) The reduction rules given in Figure 10
are both type and semantics preserving, i.ee,if> ¢’ thene = ¢’
is syntactically derivable from the set of CCA laws.

Proof: By equational reasoning using arrow laws. Tlhep and
init rules follow from the definition ofloopB; composition and

extension are directly based on the arrow laws with the same
name;left andright tightening andsuperposing rules follow the
definition of loopB, the commutativity law and the arrow loop
laws with the same name. The proof of tr@ishing rule is more
involved, and is given in Appendix B. a

Note that the set of reduction rules is sound but not complete
because the loop combinator can introduce general recuasihe
value level.

Lemma 5.2 (Termination) The normalization procedure for CCA
given in Figure 11 terminates for all well-typed arrow exgseons
Fe:a~ .

Proof: By structural induction over all possible combinations of
well-typed arrow terms. See Appendix A for details. m|

6. Further Optimization

We have implemented the normalization procedure of CCA in
Haskell. In fact the normalization of an arrow term does ranteh

runCCNF :: e — ((b, e) — (c, e)) — [b] — [c]
runCCNF i £f =g i
where g i (x:xs) = let (y, i’) =f (x, i)
iny : g i’ xs

runCCNF essentially converts an optimized CCNF term directly
into a stream transformer. In doing so, we have successfaihs-
formed away all arrow instances, including the data stnectised
to implement them! The result is of course no longer absteaad
is closely tied to the low-level representation of streams.

Combining CCA With Stream Fusion We can perform even
more aggressive optimizations on CCNF by borrowing theastre
representation and optimization techniques introducedbytts
et al. [12]. First, we define a datatype to encapsulate arstesaa
product of a stepper function and an initial state:

data Stream a = forall s. Stream (s — Step a s) s
data Step a s = Yield a s

Herea is the element type anglis an existentially quantified state
type. For our purposes, we have simplified the return typénef t

to stop at CCNF, because pure functions in the language are oforiginal stepper function in [12]. Our stepper functionexgally

simply typed lambda calculus, which is strongly normaligziBxtra
care was taken to preserve sharing of lambda terms, to @imin
redundant variables, and so on.

In the remainder of this section we describe a simple seguenc
of other optimizations that ultimately leads to a single érgiive
loop that can be implemented extremely efficiently.

Optimized Loop In addition toloopB, for optimization purposes
we introduce another looping combinataropD, for loops with
only delayed feedback. For comparison, the Haskell defimitiof
both are given below:

loopB :: ArrowInit a =

e — a (b, (4,) (c, (d, &) — abec
loopD :: ArrowInit a =

e —a (b, e (c, e >abc
loopB i f = loop (f >>>second (second (init i)))
loopD i f = loop (f >>>second (init i))

The reason to introdudeopD is that many applications of CCA re-
sult in an arrow in which all loops only have delayed feedb&ait
example, after removing redundant variables, normalilentpdas,
and eliminating common sub-expressions, the CCNFefgris:

exp’ = loopB 0 (arr (A (x, (z, y)) —
let i=y+11in (i, (z, y+ dt * 1))))

Clearly the variable here is redundant, and it can be removed by
changingloopB to 1oopD:

exp’’ = loopD 0 (arr (A (x, y) —
let i=y+1in (i, y + dt i)))

The above function corresponds nicely with the diagram shiow
Figure 8(b). We call this resutiptimized CCNF

Inlining Implementation In fact LoopD can be made even more
efficient if we expose the underlying arrow implementatiéor
example, using theF data type shown in Figure 8popD can be
defined as:

loopD i £ =SF (g i £)
where g i f x =
let ((y, i’), £’) = unSF f (x, i)
in (y, SF (g i’ £°))

Also, if we examine the use dfoopD in optimized CCNF, we
notice that the arrow it takes is always a pure arrow, andéerc
can drop the arrow and use the pure function instead. Funthrey;

if our interest is just in computing from an input stream to an
output, we can drop the intermedis#®B data structure altogether,
thus yielding:

consumes a state and yields an element in the stream paitted wi
new state.

The key to effective fusion is that all stream producers rbest
non-recursive. In other words, a recursively defined streach as
exp should be written in terms of non-recursive stepper fumstjo
with recursion deferred until the stream is unfolded. Paots
written in this style can then be fused by the compiler intaik t
recursive loop, at which point tail-call eliminations andrious
unboxing optimizations can be easily applied.

This is where CCA and our normalization procedure fit togethe
so nicely. We can take advantage of the arrow syntax to write
recursive code, and rely on the arrow translator to exptassn-
recursively using th@oop combinator. We then normalize it into
CCNF, and rewrite it in terms of streams.

The last step is surprisingly straightforward. We introglyet
another loop combinatdroops that closely resembleopD:

t — ((a, t) — (b, t)) —
Stream a — Stream b
loopS z f (Stream nextO sO) = Stream next (z, s0)
where
next (i, s) = case next0 s of
Yield x s’ — Yield y (z’, s’)
where (y, z’) = f (x, i)

loopS ::

Intuitively, LoopS is the unlifted version ofoopD. The initial state
of the output stream consists of the initial feedback valaad the
state of the input stream. As the resulting stream gets dadblit
suppliest with an input tuple and carries the output along with the
next state of the input stream. In general, we can rewritagenf
the formloopD i (arr f) into loopS i f for somei and f.

To illustrate this, let us revisit thexp example. We take the op-
timized CCNFexp’’ and rewrite it in terms ofoopS asexpOpt:

expOpt :: Stream Double
expOpt sr = loopS 0 (A (x, y) — let i =y + 1
in (i, y +dt * i))
(constS ()

constS :: a — Stream a

constS ¢ = Stream next () where next _ = Yield c¢ (O

Since the resulting stream producer ignores any input, iieele
const$ to supply a stream of unit values. This does not negatively
impact performance, as the compiler is able to remove thendum
values eventually.

To extract elements from a stream, we can write a tail-réseirs
function to unfold it. For example, the functiarh extracts the nth
element from a stream:

nth :: Int — Stream a — a
nth n (Stream nextO s0) = go n sO where
go n s = case next0 s of
Yield x s — if n — 0
then x
else go (n-1) s’

e2 :: Double

e2 = nth 2 expOpt -- 1.0201

We can define unfolding functions other thamh in a similar
manner.

With the necessary optimization options turned on, GHCduse
nth andexpOpt into a tail-recursive loop. The code below shows
the equivalent intermediate representation extracted fB#1C af-
ter optimization. It uses only strict and unboxed typest§ and
Double#).

go :: Int# — Double# — Double#
gony=
case n of
__DEFAULT — go (n - 1) (y +dt * (y + 1.0))
0 —y+1.0
e2 :: Double

e2 = D# (go 2 0.0)

In summary, employing stream fusion, the GHC compiler can tu
any CCNF into a tight imperative loop that is free of all cons
cell and closure allocations. This results in a dramatiedpp for

Name (LOC)| 1.GHC | 2.arrowp]| 3. CCNF | 4. Stream
exp (4) 1.0 2.4 13.9 190.9
sine (6) 1.0 2.66 12.0 284.0

oscSine (4) 1.0 1.75 41 13.0

50’s sci-fi (5) 1.0 1.28 10.2 19.2

robotSim (8) 1.0 1.48 8.9 36.8

Figure 12. Performance Ratio (greater is better)

intermediate data structures, and can be orders of magnitud
faster than its arrow-based predecessors.

3. GHC's arrow syntax translator does not do as well as Ratlrs
original translator for the sample programs we chose, thoug
both are significantly outperformed by our normalizatiochte
nigues.

8. Discussion

Our key contribution is the discovery of a normal form for €or
Yampa, or CCA, programs: any CCA program can be transformed
into a single loop with just one pure (and strongly normabgi
function and a set of initial states. This discovery is nevd an
original, and has practical implications in implementingt fust
Yampa, but a broader class of synchronous dataflow languages
and stream computations because this property is entiased

on axiomatic laws, not any particular semantic model. Weudis

CCA programs and eliminates the need for heap allocation and Such relevance and related topics to our approach below.

garbage collection. In the next section we quantify thisnclaia
benchmarks.

7. Benchmarks

We ran a set of benchmarks to measure the performance obever
programs written in arrow syntax, but compiled and optirdize
different ways. For each program, we:

1. Compiled with GHC, which has a built-in translator forcr

syntax.

. Translated using Patersoréggrowp pre-processor to arrow
combinators, and then compiled with GHC.

. Normalized into CCNF combinators, and compiled with GHC.

. Normalized into CCNF combinators, rewritten in terms of
streams, and compiled with GHC using stream fusion.

The five benchmarks we used are: the exponential function
given earlier, a sine wave with fixed frequency using Goéstize
method, a sine wave with variable frequency, “50’s sci-fiiisd
synthesis program taken from [15], and a robot simulatoeriak
from [21]. The programs were compiled and run on an Intel Qore

8.1 Alternative Formalisms

Apart from arrows, other formalisms such as monads, comon-
ads and applicative functors have been used to model compu-
tations over data streams [3, 42, 28]. Central to many ofethes
approaches are the representation of streams and coropstati
about them. However, notably missing are the connectiotvedssn
stream computation and the related laws. For example, llissta
work [42] concluded that comonad is a suitable model forfttata
computation, but it lacks any discussion of whether the awada
laws are of any relevance.

In contrast, it is the very idea of making sense out of arrod/ an
arrow loop laws that motivated our work. We argue that arraves
a suitable abstract model for stream computation not orytmse
we can implement stream functions as arrows, but also becaus
abstract properties like the arrow laws help to bring mosigints
to our target application domain.

Besides having to satisfy respective laws for these fosmrad]
each abstraction has to introduce domain specific operattirsr-
wise it would be too general to be useful. With respect to ahus
streams, many have introducedit (also known asdelay) as a
primitive to enable stateful computation, but few seem tgeha

Duo machine with GHC version 6.10.1, using the C backend code Made the connection of its properties to program optinozeti

generator and02 optimization. We measured the CPU time used
to run a program through0® samples. The results are shown in
Figure 12, where the numbers represent normalized speatiap, r
and we also include the lines of code (LOC) for the sourcernaimg

The results show dramatic performance improvements using 82 Co

normalized arrows. We note that:

1. Based on the same arrow implementation, the performance

gain of CCNF over the first two approaches is entirely due to

program transformations at the source level. This mearts tha
the runtime overhead of arrows is significant, and cannot be

neglected for real applications.

2. The stream representation of CCNF produces high-pegiocm
code that is completely free of dynamic memory allocatiod an

Notably the product law we introduced for CCA relates to a
bisimilarity property of co-algebraic streams, i.e., theduct of
two initialized streams are bisimilar to one initializedestm of
product.

algebraic streams

The co-algebraic property of streams is well known, and maist
evant to our work is Caspi and Pouzet's representation eastr
and stream functions in a functional language setting [Jlictv

also uses a primitive similar to the trace operator (and ééme ar-

row loop combinator) to model recursion. Their compilattenh-

nique, however, lacks a systematic approach to optimizeedes-

cursions. We consider our technique more effective and rabre
stract.

Most synchronous languages, including the one introduced i
[5], are able to compile stream programs into a form cafied
gle loop codéby performing a causality analysis to break the feed-
back loop of recursively defined values. Many efforts havenbe
made to generate efficient single loop code [16, 1], but tobast
knowledge there has not been a strong result like normaldo@ur
discovery of CCNF is original, and the optimization by notize
tion approach is both systematic and deterministic. Tagettith
stream fusion, we produce a result that is not just a singlp, lbut
a highly optimized one.

Also relevant is Rutten’s work on high-order functionalestm
derivatives [38]. We believe that arrows are a more gendsttac-
tion than functional stream derivatives, because therlattt ex-
poses the structure of a stream. Moreover, arrows give oise t
high-level language with richer algebraic properties tthen2-adic
calculus considered in [38].

8.3 Expressiveness

It is known that operationally a Mealy machine is able to espnt
all causal stream functions [38], while the CCA languagengefi
in Figure 6 represents only a subset. For example, the switah
binator introduced in Yampa [21] is able to dynamically ex@ a
running arrow with a new one depending on an input event, and
hence to switch the system behavior completely. With CCAreh
is no way to change the compositional structure of the arnaw p
gram itself at run time. For another example, many dataflod/ an
stream programming languages also provide conditionats) as
if-then-else, as part of the language [43, 4]. To enable condi-
tionals at the arrow level, we need to further extend CCA taie
instance of theArrowChoice class. Both are worthy extensions to
consider for future work.

It should also be noted that the local state introduced iyt
is one of the minimal side effects one can introduce to arrow p
grams. The commutativity law for CCA ensures that the eftéct
one arrow cannot interfere with another when composed tieget
and it is no longer satisfiable when such ordering becomesrnmp
tant, e.g., when arrows are used to model parsers and gr[2tr

On the other hand, because the language for CCA remains
highly abstract, it could be applicable to domains othentRRP
or dataflow. We'll leave such findings to future work.

8.4 Stream fusion

Stream fusion can help fuse zips, left folds, and nested iigb
efficient loops. But on its own, it does not optimize recueghand
lazily defined streams effectively.

Consider a stream generating the Fibonacci sequence.reis o
of the simplest classic examples that characterizes stateéam
computation. One way of writing it in Haskell is to exploizlaess
and zip the stream with itself:

fibs :: [Int]
fibs = 0:1:zipWith () fibs (tail fibs)

While the code is concise and elegant, such programming styl
relies too much on the definition of an inductively definedistr
ture. The explicit sharing of the streaftibs in the definition is a
blessing and a curse. On one hand, it runs in linear time and co
stant space. On the other hand, the presence of the streacn str
ture gets in the way of optimization. None of the currentdasbr
deforestation techniques are able to effectively elingrans cell
allocations in this example. Real-world stream progranesusiu-
ally much more complex and involve more feedback, and the tim
spent in allocating intermediate structure and by the gmtml-
lector could degrade performance significantly.

We can certainly write a stream in stepper style that geesrat
the Fibonacci sequence:

Stream Int

next (0, 1) where
Yield r (b, 1)
a+b

fib_stream ::
fib_stream = Stream
next (a, b)
where r

f1 :: Int

f1l = nth 5 fib_stream -- 13

Stream fusion will fusenth andfib_stream to produce an effi-
cient loop. For a comparison, with our technique the arrorgioe

of the Fibonacci sequence shown below compiles to the sdime ef
cient loop a1 above, and yet retains the benefit of being abstract
and concise.

fibA = proc _ — do
rec let r =d2 4 di
dl < init 0 —< d2
d2 « init 1 < r
returnA < r

We must stress that writing stepper functions is not always a
easy as in trivial examples likéib and exp. Most non-trivial
stream programs that we are concerned with contain many-recu
sive parts, and expressing them in terms of combinators iona n
recursive way can get unwieldy. Moreover, this kind of cadstyle
exposes a lot of operational details which are arguably cessary
for representing the underlying algorithm. In contrastparsyn-
tax relieves the burden of coding in combinator form andvedlo
recursion via therec keyword. It also completely hides the actual
implementation of the underlying stream structure andesefore
more abstract.

The strength of CCA is the ability to normalize any causal and
recursive stream function. Combining both fusion and our no
malization algorithm, any CCA program can be reliably ane-pr
dictably optimized into an efficient machine-friendly lodphe pro-
cess can be fully automated, allowing programmers to progra
at an abstract level while getting performance competitivpro-
grams written in low-level imperative languages.

Acknowledgements This research was supported in part by NSF
grants CCF-0811665 and CNS-0720682, and a grant from Mi-
crosoft Research.

References

[1] Pascalin Amagbegnon, Loc Besnard, and Paul Le Guermic: |
plementation of the data-flow synchronous language sigimain
Conference on Programming Language Design and Implementat
pages 163-173. ACM Press, 1995.

[2] Robert Atkey. What is a categorical model of arrows?
Mathematically Structured Functional Programm;rp08.

In

[3] Per Bjesse, Koen Claessen, Mary Sheeran, and Satnarh. Siaga:
Hardware design in haskell. ICFP, pages 174-184, 1998.

[4] P. Caspi, N. Halbwachs, D. Pilaud, and J.A. Plaice. laisk
declarative language for programming synchronous systeims
14th ACM Symp. on Principles of Programming Languagesuary
1987.

Paul Caspi and Marc Pouzet. A Co-iterative Charactédnaof
Synchronous Stream Functions.Goalgebraic Methods in Computer
Science (CMCS'98)Electronic Notes in Theoretical Computer
Science, March 1998. Extended version available as a VERBMA
tech. report no. 97-07 atrw.1lri.fr/~pouzet.

5

—

[6

—

Eric Cheng and Paul Hudak. Look ma, no arrows — a functiona
reactive real-time sound synthesis framework. TechniagdR
YALEU/DCS/RR-1405, Yale University, May 2008.

[7] Mun Hon Cheong. Functional programming and 3d games,
November 2005. also see www.haskell.org/haskellwikgFra

[8] Jean-Louis Colago, Alain Girault, Grégoire HamondaMarc
Pouzet. Towards a higher-order synchronous data-flow Egguln

EMSOFT '04: Proceedings of the 4th ACM international coefere
on Embedded softwarpages 230-239, New York, NY, USA, 2004.
ACM.

[9] Antony Courtney. Modelling User Interfaces in a Functional
Language PhD thesis, Department of Computer Science, Yale
University, May 2004.

[10] Antony Courtney and Conal Elliott. Genuinely functanuser
interfaces. IrProc. of the 2001 Haskell Workshopeptember 2001.

[11] Antony Courtney, Henrik Nilsson, and John Petersone Yampa
arcade. IrProceedings of the 2003 ACM SIGPLAN Haskell Workshop
(Haskell'03) pages 7-18, Uppsala, Sweden, August 2003. ACM
Press.

[12] Duncan Coutts, Roman Leshchinskiy, and Don Stewartea®t
fusion: From lists to streams to nothing at all. MPmoceedings
of the ACM SIGPLAN International Conference on Functional
Programming, ICFP 200,7April 2007.

[13] Conal Elliott and Paul Hudak. Functional reactive aafion. In
International Conference on Functional Programmim@ges 263—
273, June 1997.

[14] G. H. Mealy. A method for synthesizing sequential citsu Bell
System Technical Journa84(5):1045-1079, 1955.

[15] George Giorgidze and Henrik Nilsson. Switched-on yampn
Paul Hudak and David Scott Warren, editdPsactical Aspects of
Declarative Languages, 10th International Symposium, PRD08,
San Francisco, CA, USA, January 7-8, 2008lume 4902 ot.ecture
Notes in Computer Sciengeages 282-298. Springer, 2008.

N. Halbwachs, P. Raymond, and C. Ratel. Generatingi@fticode
from data-flow programs. In J. Maluszyhski and M. Wirsinditers,
Proceedings of the Third International Symposium on Prograng
Language Implementation and Logic Programmingmber 528,
pages 1-13207-218. Springer Verlag, 1991.

Masahito Hasegawa. Recursion from cyclic sharing:edamonoidal
categories and models of cyclic lambda calculi. pages 1B&—-2
Springer Verlag, 1997.

[16]

[17]

[18] L. Huang, P. Hudak, and J. Peterson. Hporter: Usingwarm
compose parallel processes.Hroc. Practical Aspects of Declarative

Languagespages 275-289. Springer Verlag LNCS 4354, January
2007.

[19] P. Hudak. Building domain specific embedded languagh€M

Computing Survey28A:(electronic), December 1996.

[20] Paul Hudak. Modular domain specific languages and todfs
Proceedings of Fifth International Conference on Softwamise
pages 134-142. IEEE Computer Society, June 1998.

[21] Paul Hudak, Antony Courtney, Henrik Nilsson, and JoletePson.
Arrows, robots, and functional reactive programming. Skimmer
School on Advanced Functional Programming 2002, Oxford Uni
versity, volume 2638 of_ecture Notes in Computer Sciengages
159-187. Springer-Verlag, 2003.

[22] Paul Hudak, Paul Liu, Michael Stern, and Ashish Agarwéhmpa
meets the worm. Technical Report YALEU/DCS/RR-1408, Yale
University, July 2008.

[23] John Hughes. Generalising monads to arrofsience of Computer
Programming 37:67-111, May 2000.

[24] John Hughes. Programming with arrows. Advanced Functional
Programming pages 73-129, 2004.

[25] Patrik Jansson and Johan Jeuring. Polytypic compactiny and
parsing. INESOP pages 273-287, 1999.

[26] Sam Lindley, Philip Wadler, and Jeremy Yallop. The arralculus
(functional pearl).Draft, 2008.

[27] Hai Liu and Paul Hudak. Plugging a space leak with anvarro
Electronic Notes in Theoretical Computer Scignt@3:29-45, nov
2007.

[28] Conor McBride and Ross Paterson. Applicative programgmvith
effects.J. Funct. Program.18(1):1-13, 2008.

[29] Eugenio Moggi. Notions of computation and monatg. Comput,
93(1):55-92, 1991.

[30] Henrik Nilsson. Dynamic optimization for functionaéactive
programming using generalized algebraic data typetCHP, pages
54-65, 2005.

[31] Clemens Oertel.RatTracker: A Functional-Reactive Approach to
Flexible Control of Behavioural Conditioning Experiment®hD
thesis, Wilhelm-Schickard-Institute for Computer Scierat the
University of Tubingen, May 2006.

[32] Ross Paterson. A new notation for arrowsI@fP’01: International
Conference on Functional Programmingages 229-240, Firenze,
Italy, 2001.

[33] John Peterson, Gregory Hager, and Paul Hudak. A largfaig
declarative robotic programming. International Conference on
Robotics and Automatiori999.

[34] John Peterson, Paul Hudak, and Conal Elliott. Lambdadtion:
Controlling robots with Haskell. IfFirst International Workshop on
Practical Aspects of Declarative Languag&GPLAN, Jan 1999.

[35] John Peterson, Zhanyong Wan, Paul Hudak, and Henrigsbiil.
Yale FRP User's Manual Department of Computer Science, Yale
University, January 2001. Availableattp://www.haskell.org/
frp/manual .html.

[36] Simon Peyton Jones et al. The Haskell 98 language aratiis: The
revised reportJournal of Functional Programmind.3(1):0-255, Jan
2003. http://www.haskell.org/definition/.

[37] John Power and Hayo Thielecke. Closed freyd- and kajpegories.
In ICALP, pages 625-634, 1999.

[38] Jan J. M. M. Rutten. Algebraic specification and coatg&bsynthesis
of mealy automataElectr. Notes Theor. Comput. $&60:305-319,
2006.

[39] Robert Stephens. A survey of stream processicia Informatica
34(7):491-541, 1997.

[40] Ross Howard Street, A. Joyal, and D. Verity. Traced midalocat-
egories.Mathematical Proceedings of the Cambridge Philosophical
Society 119(3):425-446, 1996.

[41] William Thies, Michal Karczmarek, and Saman P. Amargkie.
Streamit: A language for streaming applications. G '02:
Proceedings of the 11th International Conference on Caenpil
Construction pages 179-196, London, UK, 2002. Springer-Verlag.

[42] Tarmo Uustalu and Varmo Vene. The essence of dataflograno-
ming. In Zoltan Horvath, editotCEFP, volume 4164 of_ecture
Notes in Computer Sciengeages 135-167. Springer, 2005.

[43] William W. Wadge and Edward A. Ashcrof.UCID, the dataflow

programming language Academic Press Professional, Inc., San
Diego, CA, USA, 1985.

A. Proof for thetermination lemma

Proof: We will show that the there always existga, for well
formed arrow expressiok e : a ~ [, and the normalization
procedure always terminates. This is done by structuraldtion
over all possible arrow terms, and any closed expressitirat's
not already in arrow terms shall be first beta reduced.

l.e=arrf
It already satisfies the termination condition.
2. e= first f

By induction hypothesisf |} arr f’, or f || loopB i (arr f"),
wheref’ and f” are pure functions.

In the first case by extension rufast f — arr(f’ x id) and
terminates; In the second case

first f guggle - f" - juggle - shuffie))
P first (loopB i(arr f)) 4. e =loop f

superposing By induction hypothesis "or f | loopB i .
—loopB i (arr juggle > arr " >> arr juggle) Inythe first Casgp {4 arr fron 4 loopB i (arr 1)

composition
—loopB i (arr (juggle - f juggle)) § ;00}9 { f’)
loop (arr
. loop
and terminates.
—loopB ()(arr assoc™ >> arr f' > arr assoc)
e=f>yg composition

By induction hypothesisf || arr f' or f |} loopB i (arr f"),
andg | arr ¢’ or g | loopB i (arr g”). So there are 4
combinations, and in all cases they terminate.

—loopB ()(arr (assoc - f - assoc™"))

and terminates. In the second case

1) . loop f ‘ ,
f>gq +loop (loopB i (arr f'))
arr f1>3>> arr g loop 1 . 1
composition —loopB ()(arr a)ssoc* >> loopB i (arr ') >
—arr(qg - f' arr assoc
(g7 1) left and right tightening
2) sloopB ()(loopB i (first(arr assoc™ 1) >> arr " >>
f>g first(arr assoc)))

arr f' > loopB i (arr g'")
left tightening

—loopB i (first (arr f') >> arr g")
extension

—loopB i (arr (f' X id) >> arr g")
composition

—loopB i (arr (¢" - (f' x id)))

3)
>y

W loopB i (arr f) >> arr ¢’
right tightening

—loopB i (arr f" >> first(arr g"))
extension

—loopB i (arr " >> arr(g’ X id))
composition

—loopB i (arr ((¢' x id) - "))

4)
f>g
loopB i (arr ") >> loopB i (arr g")
left tightening
—loopB j (first(loopB i (arr f)) >> arr g"')
superposing
—loopB j (loopB i (arr juggle >> arr "' >>
arr juggle) >> arr g")
composition
+loopB j (loopB i (arr (juggle - f" - juggle))
>> arr g”)
right tightening
—loopB j (loopB i (arr (juggle - f - juggle)
>> first(arr g")))
extension
—loopB j (loopB i (arr (juggle - f - juggle)
>> arr (¢ % id)))
composition
—loopB j (loopB i (arr ((¢" x id) - juggle
f" - juggle)))
vanishing
—loopB (j,1) (arr shuffle >>
arr ((g" x id) - juggle - f" - juggle) >>
arr shuffle™ ")
composition
s loopB (5,1) (arr (shuffle™ - (g x id)-

extension and composition
#loopB ()(loopB i (arr ((assoc x id)-
" (assoc™ x id))))
vanishing
—loopB ((),1)(arr shuffle 3> arr ((assoc X id)-
f" - (assoc™ x id)) 3> arr shuffle™")
composition
—loopB ((), 1) (arr(shuffle™" - (assoc x id) - f'-
(assoc™ x id) - shuffle))

and terminates.

.e=1niti

By init rule, init i +— loopB i (arr (swap - juggle - swap))
and terminates.

O

B. Proof for the vanishing rule of loopB
Proof: We will show that

loopB i (loopB j f)
= loopB (i,7) (arr shuffle >> f >> arr shuffle™")

by equational reasoning.

loopB i (loopB j f)
definition of loopB
= loop (loopB j f >> second (second (init i)))
definition of loopB
= loop (loop (f >> second (second (init j))) >>
second (second (init i)))
right tightening of loop
loop (loop (f => second (second (init j)) >>
first(second (second (init 1)))))
commutativity
loop (loop (f >> first(second (second (init i))) >>
second (second (init 7))))
vanishing of loop
loop (arr assoc™ > f >
first (second (second (init))) >>
second (second (init j)) >> arr assoc)
Lemma B.1
loop (arr assoc™ > f > arr shuffle”! >>
second (second (init (i,7))) >>
arr shuffle >> arr assoc)

shuffle™! - shuffle = id

loop (arr (shuffle™" - assoc™) >> arr shuffle 3> f >>
arr shuffle™" > second (second (init (i,))) >>
arr shuffle >> arr assoc)

shuffle! - assoc! = id x transpose

loop (arr (id x transpose) >> arr shuffle >> f >>
arr shuffle™! > second (second (init (i,j))) >>
arr shuffle >> arr assoc)

sliding

loop (arr shuffle > f >> arr shuffle™ >>
second (second (init (i,7))) >> arr shuffle >>
arr assoc 3> arr (id X transpose))

shuffle™! = (id x transpose) assoc

loop (arr shuffle > f>> arr shuffle” >
second (second (init (i,7))) >>
arr shuffle >> arr shuffle™")

shuffle- shuffle™! =id

loop (arr shuffle 3> f > arr shuffle™ >>
second (second (init (i,7))))

definition of loopB

loopB (i, j) (arr shuffle 3> f > arr shuffle™ ")

LemmaB.1
first (second (second (init 7))) >>
second (second (init j))
= arr shuffle™" > second(second (init(i, §))) >>
arr shuffle

Proof: We first show

first (second (second (init i)))
arr shuffle™" > second(second (first(init i))) >>
arr shuffle

This can be done by equational reasoning from both sidesn Fro
lhs:

first (second (second (init i)))

definition of second
= first(arr swap >> first(arr swap 3> first(init i) >>

arr swap) > arr swap)

functor and extension
= arr(swap x id) >>
first(first(arr swap >> first(init i) >> arr swap)) >>
arr(swap X id)
association
arr(swap X id) > arr assoc >>
first(arr swap >> first(init i) >> arr swap) >>
arr assoc” ! >> arr(swap x id)
functor and extension
arr(assoc - (swap x id)) >> arr(swap X id) >>
first(first(init 1)) >>
arr(swap X id) >> arr((swap x id) - assoc™ ')
association
arr((swap X id) - assoc - (swap X id)) >>
arr assoc 3> first(init 1) 3> arr assoc”! >>
arr((swap x id) - assoc™" - (swap x id))
composition
arr(assoc - (swap X id) - assoc - (swap X id)) >>
first (init 1) >>
arr((swap x id) - assoc™ - (swap x id) - assoc™?)
LemmaB.2
arr(assoc - (swap X id) - assoc - (swap X id)) >>
arr(id x (swap - assoc™! - transpose - assoc™ 1)) >>
first(init 1) >>
arr(id x (assoc - transpose - assoc - swap)) >>

arr((swap x id) - assoc™! - (swap x id) - assoc™?)

composition and normalization

arr(A(a, (¢, d)), (b, €)).(d, (e, ((c, b),a)))) >
first (init ©) >>

arr(A(d, (e, ((¢,b), a))).((a, (c,d)), (b, €)))

and fromlhs:

arr shuffle™? > second(second (first(init i))) >>
arr shuffle

definition of second

arr shuffle™" > arr swap >>

first(arr swap >> first(first(init i)) >> arr swap) >>
arr swap > arr shuffle

functor and extension

arr(swap - shuffle™") >> arr(swap x id) >>
first(first(first(init))) >>

arr(swap x id) >> arr(shuffle - swap)

association

arr((swap x id) - swap - shuffle” 1) >> arr assoc

> arr assoc > first(init i) > arr assoc”! >>

arr assoc™! 3> arr(shuffle - swap - (swap x id))
composition

arr(assoc - assoc - (swap x id) - swap - shuffle™) >>
first (init 1) >>

arr(shuffle - swap - (swap X id) - assoc™
normalization

arr(M((a, (c,), (b, €)).(d, (e, (¢, b), a)))) 3>
first (init ©) >>

arr(A(d, (e, (¢, b),a)))-((a, (¢,d)), (b,e)))

1. assoc™1)

Hencelhs = rhs. Using similar technique, we can also prove
(details omitted to save space)

second (second (init j))
arr shuffle™? > second(second (second (init j))) >>
arr shuffle

Therefore we have

first(second (second (init i))) 3> second(second (init j))
substitution

arr shuffle™" > second(second (first(init 1))) >>
arr shuffle >> arr shuffle”? >

second (second(second(init i))) =>> arr shuffle
shuffle- shuffle™* =id

arr shuffle™? > second(second (first(init i))) >>
second (second(second(init i))) =>> arr shuffle
functor and product

arr shuffle™" > second(second (init(i, 7))) >>
arr shuffle

O
LemmaB.2 Vg,g %, ¢g-¢ ' = id, we have
first f = arr (id x g) >> firstf >> arr(id x gfl)
Proof:
arr (id x g) >> firstf >> arr(id x g~ 1)
exchange
= firstf >> arr (id X g) >> arr(id x g71)
composition
= firstf >> arr ((id x g~ 1) - (id x g))
normalization
= firstf >> arrid
right identity
= firstf
O

