
Causal Commutative Arrows and Their Optimization

Hai Liu Eric Cheng Paul Hudak
Department of Computer Science

Yale University
{hai.liu,eric.cheng,paul.hudak}@yale.edu

Abstract
Arrows are a popular form of abstract computation. Being more
general than monads, they are more broadly applicable, and in par-
ticular are a good abstraction for signal processing and dataflow
computations. Most notably, arrows form the basis for a domain
specific language calledYampa, which has been used in a variety
of concrete applications, including animation, robotics,sound syn-
thesis, control systems, and graphical user interfaces.

Our primary interest is in better understanding the class ofab-
stract computations captured by Yampa. Unfortunately, arrows are
not concrete enough to do this with precision. To remedy thissitua-
tion we introduce the concept ofcommutative arrowsthat capture a
kind of non-interference property of concurrent computations. We
also add aninit operator, and identify a crucial law that captures the
causal nature of arrow effects. We call the resulting computational
modelcausal commutative arrows.

To study this class of computations in more detail, we define
an extension to the simply typed lambda calculus calledcausal
commutative arrows(CCA), and study its properties. Our key con-
tribution is the identification of a normal form for CCA called
causal commutative normal form(CCNF). By defining a normal-
ization procedure we have developed an optimization strategy that
yields dramatic improvements in performance over conventional
implementations of arrows. We have implemented this technique in
Haskell, and conducted benchmarks that validate the effectiveness
of our approach. When combined with stream fusion, the overall
methodology can result in speed-ups of greater than two orders of
magnitude.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features

General Terms Languages, Performance, Theory

Keywords Functional Programming, Arrows, Functional Reac-
tive Programming, Dataflow Language, Stream Processing, Pro-
gram Optimization

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

ICFP’09, August 31–September 2, 2009, Edinburgh, Scotland, UK.
Copyright c© 2009 ACM 978-1-60558-332-7/09/08. . . $5.00

1. Introduction
Consider the following recursive mathematical definition of the
exponential function:

e(t) = 1 +

Z t

0

e(t)dt

In Yampa [35, 21], a domain-specific language embedded in
Haskell [36], we can write this using arrow syntax [32] as follows:

exp = proc () → do
rec let e = 1 + i

i ← integral −≺ e
returnA −≺ e

Even for those not familiar with arrow syntax or Haskell, theclose
correspondence between the mathematics and the Yampa program
should be clear. As in most high-level language designs, this is
the primary motivation for developing a language such as Yampa:
reducing the gap between program and specification.

Yampa has been used in a variety of applications, including
robotics [21, 34, 33], sound synthesis [15, 6], animation [35, 21],
video games [11, 7], bio-chemical processes [22], control systems
[31], and graphical user interfaces [10, 9]. There are several reasons
that we prefer a language design based on arrows over, for example,
an approach such as that used in Fran [13]. First, arrows are more
modular– they convey information about input as well as output,
whereas Fran’s inputs are implicit and global. Second, the use of
arrows eliminates a subtle but devastating form ofspace leak, as
described in [27]. Third, arrows introduce a meta-level of compu-
tation that aids in reasoning about program correctness, transfor-
mation, and optimization.

But in fact, conventional arrows (or to borrow a phrase from
[26], “classic arrows”) are not strong enough to capture thefamily
of computations that we are interested in – more laws are needed to
constrain the computation space. Unfortunately, more constrained
forms of computation – such as monads [29] and applicative func-
tors [28] – are not general enough. In addition, there are notenough
operators. In particular, we find the need for an abstractinitializa-
tion operator and its associated laws.

In this paper we give a precise abstract characterization of
a class of arrow computations that we callcausal commutative
arrows, or just CCA for short. More precisely, the contributions
in this paper can be summarized as follows:

1. We define a notion ofcommutative arrowby extending the
conventional set of arrow laws to include a commutativity law.

2. We define anArrowInit type class with aninit operator and an
associated law that captures the essence of causal computation.

3. We define a small language calledCCA, an extension of the
simply typed lambda calculus, in which the above ideas are
manifest. For this language we establish:

(a) anormal form, and

(b) anormalization procedure.

We achieve this result using only CCA laws, without referring
to any concrete semantics or implementation.

4. We define anoptimization techniquefor causal commutative ar-
rows that yields substantial improvements in performance over
previous attempts to optimize arrow combinators and arrow
syntax.

5. Finally, we show how to combine our ideas with those ofstream
fusionto yield speed-ups that can exceed two orders of magni-
tude.

We begin the presentation with a brief overview of arrows in
Section 2. The knowledgeable reader may prefer to skip directly
to Section 3, where we give the definition and laws for CCA.
In Section 4 we define an extension of the simply-typed lambda
calculus that captures CCA, and show in Section 5 that any CCA
program can be transformed into a uniform representation that
we call Causal Commutative Normal Form(CCNF). We show
that the normalization procedure is sound, based on equational
reasoning using only the CCA laws. In Section 6 we discuss further
optimizations, and in Section 7 we present benchmarks showing
the effectiveness of our approach. We conclude in Section 8 with a
discussion of related work.

2. An Introduction to Arrows
Arrows [23] are a generalization of monads that relax the stringent
linearity imposed by monads, while retaining a disciplinedstyle of
composition. Arrows have enjoyed a wide range of applications,
often as a domain-specific embedded language (DSEL [19, 20]),
including the many Yampa applications cited earlier, as well as
parsers and printers [25], parallel computing [18], and so on. Ar-
rows also have a theoretical foundation in category theory,where
they are strongly related to (but not precisely the same as)Freyd
categories[2, 37].

2.1 Conventional Arrows

Like monads, arrows capture a certain class of abstract compu-
tations, and offer a way to structure programs. In Haskell this is
achieved through theArrow type class:

class Arrow a where
arr :: (b → c) → a b c
(>>>) :: a b c → a c d → a b d
first :: a b c → a (b,d) (c,d)

The combinatorarr lifts a function fromb to c to a “pure” arrow
computation fromb to c, namelya b c wherea is the arrow type.
The output of a pure arrow entirely depends on the input (it is
analogous toreturn in theMonad class).>>> composes two arrow
computations by connecting the output of the first to the input of
the second (and is analogous to bind ((>>=)) in theMonad class).
But in addition to composing arrows linearly, it is desirable to
compose them in parallel – i.e. to allow “branching” and “merging”
of inputs and outputs. There are several ways to do this, but by
simply defining thefirst combinator in theArrow class, all other
combinators can be defined.first converts an arrow computation
taking one input and one result, into an arrow computation taking
two inputs and two results. The original arrow is applied to the first
part of the input, and the result becomes the first part of the output.
The second part of the input is fed directly to the second partof the
output.

Other combinators can be defined using these three primitives.
For example, the dual offirst can be defined as:

arr :: Arrow a ⇒ (b → c) → a b c
(>>>) :: Arrow a ⇒ a b c → a c d → a b d
first :: Arrow a ⇒ a b c → a (b, d) (c, d)
(***) :: Arrow a ⇒ a b c → a b’ c’ →

a (b, b’) (c, c’)
loop :: Arrow a ⇒ a (b,d) (c,d) → a b c

(a) arr f (b) f >>> g

(c) first f

(d) f *** g (e) loop f

Figure 1. Commonly Used Arrow Combinators

second :: (Arrow a) ⇒ a b c → a (d,b) (d,c)
second f = arr swap >>> first f >>> arr swap
where swap (a, b) = (b, a)

Parallel composition can be defined as a sequence of first and
second:

(***) :: (Arrow a) ⇒ a b c → a b’ c’ → a (b, b’) (c, c’)
f *** g = first f >>> second g

A mere implementation of the arrow combinators, of course,
does not make it an arrow – the implementation must additionally
satisfy a set ofarrow laws, which are shown in Figure 2.

2.2 Looping Arrows

To model recursion, we can introduce aloop combinator [32]. The
exponential example given in the introduction requires recursion, as
do many applications in signal processing, for example. In Haskell
this combinator is captured in theArrowLoop class:

class Arrow a ⇒ ArrowLoop a where
loop :: a (b,d) (c,d) → a b c

A valid instance of this class should satisfy the additionallaws
shown in Figure 3. This class and its associated laws are related
to the trace operator in [40, 17], which was generalized to arrows
in [32].

We find that arrows are best viewed pictorially, especially for
applications such as signal processing, where domain experts com-
monly draw signal flow diagrams. Figure 1 shows some of the basic
combinators in this manner, includingloop.

2.3 Arrow Syntax

Recall the Yampa definition of the exponential function given ear-
lier:

exp = proc () → do
rec let e = 1 + i

i ← integral −≺ e
returnA −≺ e

This program is written usingarrow syntax, introduced by Paterson
[32] and adopted by GHC (the predominant Haskell implementa-
tion) because it ameliorates the cumbersome nature of writing in

left identity arr id ≫ f = f
right identity f ≫ arr id = f
associativity (f ≫ g) ≫ h = f ≫ (g ≫ h)
composition arr (g · f) = arr f ≫ arr g
extension first (arr f) = arr(f × id)
functor first (f ≫ g) = first f ≫ first g
exchange first f ≫ arr (id × g) = arr (id × g) ≫ first f
unit first f ≫ arr fst = arr fst ≫ f
association first (firstf) ≫ arr assoc = arr assoc ≫ firstf

whereassoc ((a, b), c) = (a, (b, c))

Figure 2. Conventional Arrow Laws

left tightening loop (first h ≫ f) = h ≫ loop f
right tightening loop (f ≫ first h) = loop f ≫ h
sliding loop (f ≫ arr (id × k)) = loop (arr (id × k) ≫ f)
vanishing loop (loop f) = loop (arr assoc−1

≫ f ≫ arr assoc)
superposing second (loop f) = loop (arr assoc ≫ second f ≫ arr assoc−1)
extension loop (arr f) = arr(trace f)

wheretrace f b = let (c, d) = f (b, d) in c

Figure 3. Arrow Loop Laws

commutativity first f ≫ second g = second g ≫ first f
product init i ⋆⋆⋆ init j = init (i, j)

Figure 4. Causal Commutative Arrow Laws

the point-free style demanded by arrows. The above program is
equivalent to the following sugar-free program:

exp = fixA (integral >>> arr (+1))
where fixA f = loop (second f >>>

arr (λ (_, y) → (y, y)))

Although more cumbersome, we will use this program style in the
remainder of the paper, in order to avoid having to explain the
meaning of arrow syntax in more detail.

3. Causal Commutative Arrows
In this section we introduce two key extensions to conventional ar-
rows, and demonstrate their use by implementing a stream trans-
former in Haskell.

First, as mentioned in the introduction, the set of arrow andar-
row loop laws is not strong enough to capture stream computations.
In particular, thecommutativity lawshown in Figure 4 establishes a
non-interference property for concurrent computations – effects are
still allowed, but this law guarantees that concurrent effects cannot
interfere with each other. We say that an arrow iscommutativeif
it satisfies the conventional laws as well as this critical additional
law. Yampa is in fact based on commutative arrows.

Second, we note that Yampa has a primitive operator called
iPre that is used to inject a delay into a computation; indeed it
is the primary effect imposed by the Yampa arrow [35, 21]. Similar
operators, often calleddelay, also appear in dataflow program-
ming [43], stream processing [39, 41], and synchronous languages
[4, 8]. In all cases, the operator introduces stateful computation into
an otherwise stateless setting.

In an effort to make this operation more abstract, we rename it
init and capture it in the following type class:

class ArrowLoop a ⇒ ArrowInit a where
init :: b → a b b

Intuitively, the argument toinit is the initial output; subsequent
output is a copy of the input to the arrow. It captures the essence

newtype SF a b = SF { unSF :: a → (b, SF a b) }

instance Arrow SF where
arr f = SF h

where h x = (f x, SF h)
first f = SF (h f)

where h f (x, z) = let (y, f’) = unSF f x
in ((y, z), SF (h f’))

f >>> g = SF (h f g)
where h f g x = let (y, f’) = unSF f x

(z, g’) = unSF g y
in (z, SF (h f’ g’))

instance ArrowLoop SF where
loop f = SF (h f)

where h f x = let ((y, z), f’) = unSF f (x, z)
in (y, SF (h f’))

instance ArrowInit SF where
init i = SF (h i)

where h i x = (i, SF (h x))

runSF :: SF a b → [a] → [b]
runSF f = g f
where g f (x:xs) = let (y, f’) = unSF f x

in y : g f’ xs

Figure 5. Causal Stream Transformer

of causal computations, namely that the current output depends
only on the current as well as previous inputs. Besides causality,
we make no other assumptions about the nature of these values:
they may or may not vary with time, and the increment of change
may be finite or infinitesimally small.

More importantly, a valid instance of theArrowInit class must
satisfy theproduct law shown in Figure 4. This law states that
two inits paired together are equivalent to oneinit of a pair.
Here we use the*** operator instead of its expanded definition
first . . . >>> second . . . to imply that the product law assumes
commutativity.

We will see in a later section thatinit and the product law are
critical to our normalization and optimization strategies. But init

Syntax

Variables V ::= x | y | z | . . .
Primitive Types t ::= 1 | Int | Bool | . . .

Types α, β, θ ::= t | α × β | α → β | α ; β
Expressions E ::= V | (E1, E2) | fst E | snd E | λx : α.E | E1 E2 | () | . . .

Environment Γ ::= x1 : α1, . . . , xn : αn

Typing Rules

(UNIT) Γ ⊢ () : 1 (VAR)
(x : α) ∈ Γ
Γ ⊢ x : α

(ABS)
Γ, x : α ⊢ E : β
Γ ⊢ λx : α.E : α → β

(APP)

Γ ⊢ E1 : α → β
Γ ⊢ E2 : α
Γ ⊢ E1 E2 : β

(PAIR)

Γ ⊢ E1 : α
Γ ⊢ E2 : β
Γ ⊢ (E1, E2) : α × β

(FST)
Γ ⊢ E : α × β
Γ ⊢ fst E : α

(SND)
Γ ⊢ E : α × β
Γ ⊢ snd E : β

Constants
arrα,β : (α → β) → (α ; β)

≫α,β,θ : (α ; β) → (β ; θ) → (α ; θ)
firstα,β,θ : (α ; β) → (α × θ ; β × θ)

loopα,β,θ : (α × θ ; β × θ) → (α ; β)
initα : α → (α ; α)

Definitions

assoc : (α × β) × θ → α × (β × θ)
assoc = λz.(fst (fst z), (snd (fst z), snd z))

assoc−1 : α × (β × θ) → (α × β) × θ

assoc−1 = λz.((fst z, fst (snd z)), snd (snd z))
juggle : (α × β) × θ → (α × θ) × β

juggle = assoc−1 · (id × swap) · assoc
transpose : (α × β) × (θ × η) → (α × θ) × (β × η)
transpose = assoc · (juggle × id) · assoc−1

shuffle : α × ((β × δ) × (θ × η)) → (α × (β × θ)) × (δ × η)
shuffle = assoc−1 · (id × transpose)

shuffle−1 : (α × (β × θ)) × (δ × η) → α × ((β × δ) × (θ × η))
shuffle−1 = (id × transpose) · assoc

id : α → α
id = λx.x
(·) : (β → θ) → (α → β) → (α → θ)
(·) = λf.λg.λx.f(g x)

(×) : (α → β) → (θ → γ) → (α × θ → β × γ)
(×) : λf.λg.λz.(f (fst z), g (snd z))
dup : α → α × α
dup = λx.(x, x)

swap : α × β → β × α
swap = λz.(snd z, fst z)

second : (α ; β) → (θ × α ; θ × β)
second = λf.arr swap ≫ first f ≫ arr swap

Figure 6. CCA: a language of Causal Commutative Arrows

is also important in allowing us to define operators that werepre-
viously taken as domain-specific primitives. In particular, consider
theintegral operator used in the exponentiation examples. With
init, we can defineintegral using the Euler integration method
and a fixed global stepdt as follows:

integral :: ArrowInit a ⇒ a Double Double
integral = loop (arr (λ (v, i) → i + dt ∗ v) >>>

init 0 >>> arr (λi → (i, i)))

To complete the picture, we give an instance (i.e. an implemen-
tation) of CCA that captures a causalstream transformer, as shown
in Figure 5, where:

• SF a b is an arrow representing functions (transformers) from
streams of typea to streams of typeb. It is essentially a recur-
sively defined data type consisting of a function with its con-
tinuation, a concept closely related to a form of finite stateau-
tomaton called aMealy Machine[14]. Yampaenjoys a similar
implementation, and the same data type was calledAutoin [32].

• SF is declared an instance of type classesArrow, ArrowLoop
andArrowInit. For example,exp can be instantiated as type
exp :: SF () Double. These instances obey all of the arrow
laws, including the two additional laws that we introduced.

• runSF :: SF a b -> [a] -> [b] converts anSF arrow
into a stream transformer that maps an input stream of type
[a] to an output stream of type[b].

As a demonstration, we can sample the exponential function at a
fixed time interval by running theexp arrow over an uniform input
streaminp:

dt = 0.01 :: Double
inp = () : inp :: [()]

∗Main> runSF exp inp
[1.0,1.01,1.0201,1.030301,1.04060401,1.0510100501,
...

We must stress that theSF type is but one instance of a causal
commutative arrow, and alternative implementations such as the
synchronous circuit typeSeqMap in [32] and the stream function
type (incidentally also called)SF in [24] also qualify as valid
instances. The abstract properties such as normal forms that we
develop in the next section are applicable to any of these instances,
and thus are more broadly applicable than optimization techniques
based on a specific semantic model, such as the one consideredin
[5].

4. A Language of Causal Commutative Arrows
To study the properties of CCA more rigorously, we first introduce
a language of CCA terms in Figure 6. which is an extension of the
simply-typed lambda calculus with a few primitives types, tuples,
and arrows. Note that:

• Although the syntax requires that we write type annotationsfor
variables in lambda abstraction, we often omit them and instead
give the type of an entire expression.

(a) Reorder parallel pure and stateful (b) Reorder sequential pure
and stateful

(c) Change sequential
composition to parallel

(d) Move sequential
composition into loop

(e) Move parallel
composition into

loop

(f) Fuse nested loops

Figure 7. Arrow Transformations

• In previous examples we used the Haskell typeArrow a => a
b c to represent an arrow typea mapping from typeb to type
c. However, CCA does not have type classes, and thus we write
α ; β instead.

• Each arrow constant represents a family of constant arrow func-
tions indexed by types. We’ll omit the type subscripts when they
are obvious from context.

The figure also defines a set of commonly used auxiliary func-
tions.

Besides satisfying the usual beta law for lambda expressions, ar-
rows in CCA also satisfy the nine conventional arrow laws (Figure
2), the six arrow loop laws (Figure 3), and the two causal commu-
tative arrow laws (Figure 4).

Due to the existence of immediate feedback in loops, CCA is
able to make use of general recursion that is not allowed in the
simply typed lambda calculus. To see why immediate feedbackis
necessary, we can look back at thefixA function used to define the
combinator version ofexp. We rewrite it using CCA syntax below:

fixA : (α ; α) → (β ; α)
fixA = λf.loop(second f ≫ arr(λx.(snd x, snd x)))

It computes a fixed point of an arrow at the value level, and contains
no init in its definition. We consider the ability to model general
recursion a strength of our work that is often lacking in other stream
or dataflow programming languages.

(a) Original

(b) Reorganized

Figure 8. Diagrams forexp

Figure 9. Diagram forloopB

5. Normalization of CCA
In most implementations, programs written using arrows carry a
runtime overhead, primarily due to the extra tupling forcedonto
functions’ arguments and return values. There have been several
attempts [30, 24] to optimize arrow-based programs using arrow
laws, but the results have not been entirely satisfactory. Although
conventional arrow and arrow loop laws offer ways to combinepure
arrows or collapse nested loops, they are not powerful enough to
deal witheffectfularrows, such as theinit combinator.

5.1 Intuition

Our new optimization strategy is based on the following rather
striking observation:any CCA program can be transformed into
a single loop containing one pure arrow and one initial statevalue.
More precisely, any CCA program can be normalized into either
the formarr f or:

loop(arr f ≫ second (second (init i)))

where f is a pure function andi is an initial state. Note that
all other arrow combinators, and therefore all of the overheads
associated with them (tupling, etc.) are completely eliminated. Not
surprisingly, the resulting improvement in performance israther
dramatic, as we will see later.

We treat the loop combinator not just as a way to provide
feedback from output to input, but also as a way to reorganize
a complex composition of arrows. To see how this works, it is
helpful to visualize a few examples, as shown in Figure 7, and
explained below. This should help explain the intuition behind our
normalization process, which is treated formally in the next section.

The diagrams in Figure 7 can be explained as follows:

(a) Re-order parallel pure and stateful arrows. Figure 7(a) shows
the exchange law for arrows, which is a special case of the
commutativity law, and useful for re-ordering pure and stateful
arrows.

(b) Re-order sequential pure and stateful arrows. Figure 7(b)
shows how the immediate feedback of the loop combinator

loop loop f 7→ loopB () (arr assoc−1
≫ first f ≫ arr assoc)

init init i 7→ loopB i (arr (swap · juggle · swap))
composition arr f ≫ arr g 7→ arr (g · f)
extension first (arr f) 7→ arr (f × id)
left tightening h ≫ loopB i f 7→ loopB i (first h ≫ f)
right tightening loopB i f ≫ arr g 7→ loopB i (f ≫ first (arr g))
vanishing loopB i (loopB j f) 7→ loopB (i, j) (arr shuffle ≫ f ≫ arr shuffle−1)
superposing first (loopB i f) 7→ loopB i (arr juggle ≫ first f ≫ arr juggle)

Figure 10. One Step Reduction for CCA

(NORM)
e ⇓ e

∃(i, f) s.t.e = arr f or e = loopB i (arr f)

(SEQ)
e1 ⇓ e′1 e2 ⇓ e′2 e′1 ≫ e′2 7→ e e ⇓ e′

e1 ≫ e2 ⇓ e′

(FIRST)
f ⇓ f ′ first f ′ 7→ e e ⇓ e′

first f ⇓ e′
(INIT)

init i 7→ e e ⇓ e′

init i ⇓ e′

(LOOP)
loop f 7→ e e ⇓ e′

loop f ⇓ e′
(LOOPB)

f ⇓ f ′ loopB i f ′ 7→ e e ⇓ e′

loopB i f ⇓ e′

Figure 11. Normalization Procedure for CCA

helps to re-order arrows. This follows from the definition of
second , and the tightening and sliding laws for loops.

(c) Change sequential composition to parallel. Figure 7(c) shows
that in addition to the sequential re-ordering we can use the
product law to fuse two stateful computations into one.

(d) Move sequential composition into loop. Figure 7(d) shows the
left-tightening law for loops. Because the first arrow can also be
a loop, we are able to combine sequential compositions of two
loops into a nested one.

(e) Move parallel composition into loop. Figure 7(e) shows a vari-
ant of the superposing law for loops usingfirst instead of
second . Since we know that parallel composition can be de-
composed into first and second, and if each of them can be
transformed into a loop, they will eventually be combined into
a nested loop as shown.

(f) Fuse nested loops. Figure 7(f) shows an extension of the van-
ishing law for loops to handle stateful computations. Its proof
requires the commutative law and product law to switch the po-
sition of two stateful arrows and join them together.

As a concrete example, Figure 8(a) is a diagram of the original
exp example given earlier. In Figure 8(b) we have unfolded the
definition ofintegral and applied the optimization strategy. The
result is a single loop, where all pure functions can be combined
together to minimize arrow implementation overheads.

5.2 Algorithm

In this section we give a formal definition of the normalization
procedure. First we define a combinator calledloopB that can be
viewed as syntactic sugar for handling both immediate and delayed
feedback:

loopB : θ → (α × (γ × θ) ; β × (γ × θ)) → (α ; β)
loopB = λi.λf.loop (f ≫ second(second(init i)))

A pictorial view of loopB is given in Figure 9. The second argu-
ment to loopB is an arrow mapping from an input of typeα to
outputβ, while looping over a pairγ × θ. The value of typeθ is

initialized before looping back, and is often regarded as aninternal
state. The value of typeγ is immediately fed back and often used
for general recursions at the value level.

We define a single step reduction7→ as a set of rules in Fig-
ure 10, and a normalization procedure in Figure 11. The normal-
ization relation⇓ can be seen as a big step reduction following an
innermost strategy, and is indeed a function.

Note that some of the reduction rules resemble the arrow laws
of the same name. However, there are some subtle but important
differences: First, unlike the laws, reduction is directed. Second,
the rules are extended to handleloopB instead ofloop. Finally,
they are adjusted to avoid overlaps.

Theorem 5.1 (CCNF) For all ⊢ e : α ; β, there exists a normal
form enorm , called the Causal Commutative Normal Form, which
is either of the formarr f , or loopB i (arr f) for somei andf ,
such that⊢ enorm : α ; β, ande ⇓ enorm . In unsugared form,
the second form is equivalent to:

loop(arr f ≫ second (second (init i)))

Proof: Follows directly from Lemmas 5.1 and 5.2. 2

Note that we only consider closed terms with empty type en-
vironments in Theorem 5.1, otherwise we would have to include
lambda normal forms as part of CCNF. For example,x : α ; β ⊢
x : α ; β would qualify as a valid CCNF sincex is of an ar-
row type, and there is no further reduction possible. Although this
addition may be needed in real implementations, it would unnec-
essarily complicate the discussion, so we disallow open terms for
simplicity.

Lemma 5.1 (Soundness) The reduction rules given in Figure 10
are both type and semantics preserving, i.e., ife 7→ e′ thene = e′

is syntactically derivable from the set of CCA laws.

Proof: By equational reasoning using arrow laws. Theloop and
init rules follow from the definition ofloopB ; composition and

extension are directly based on the arrow laws with the same
name;left andright tightening andsuperposing rules follow the
definition of loopB , the commutativity law and the arrow loop
laws with the same name. The proof of thevanishing rule is more
involved, and is given in Appendix B. 2

Note that the set of reduction rules is sound but not complete,
because the loop combinator can introduce general recursion at the
value level.

Lemma 5.2 (Termination) The normalization procedure for CCA
given in Figure 11 terminates for all well-typed arrow expressions
⊢ e : α ; β.

Proof: By structural induction over all possible combinations of
well-typed arrow terms. See Appendix A for details. 2

6. Further Optimization
We have implemented the normalization procedure of CCA in
Haskell. In fact the normalization of an arrow term does not have
to stop at CCNF, because pure functions in the language are of
simply typed lambda calculus, which is strongly normalizing. Extra
care was taken to preserve sharing of lambda terms, to eliminate
redundant variables, and so on.

In the remainder of this section we describe a simple sequence
of other optimizations that ultimately leads to a single imperative
loop that can be implemented extremely efficiently.

Optimized Loop In addition toloopB, for optimization purposes
we introduce another looping combinator,loopD, for loops with
only delayed feedback. For comparison, the Haskell definitions of
both are given below:

loopB :: ArrowInit a ⇒
e → a (b, (d, e)) (c, (d, e)) → a b c

loopD :: ArrowInit a ⇒
e → a (b, e) (c, e) → a b c

loopB i f = loop (f >>> second (second (init i)))
loopD i f = loop (f >>> second (init i))

The reason to introduceloopD is that many applications of CCA re-
sult in an arrow in which all loops only have delayed feedback. For
example, after removing redundant variables, normalizinglambdas,
and eliminating common sub-expressions, the CCNF forexp is:

exp’ = loopB 0 (arr (λ (x, (z, y)) →
let i = y + 1 in (i, (z, y + dt ∗ i))))

Clearly the variablez here is redundant, and it can be removed by
changingloopB to loopD:

exp’’ = loopD 0 (arr (λ (x, y) →
let i = y + 1 in (i, y + dt ∗ i)))

The above function corresponds nicely with the diagram shown in
Figure 8(b). We call this resultoptimized CCNF.

Inlining Implementation In fact loopD can be made even more
efficient if we expose the underlying arrow implementation.For
example, using theSF data type shown in Figure 5,loopD can be
defined as:

loopD i f = SF (g i f)
where g i f x =

let ((y, i’), f’) = unSF f (x, i)
in (y, SF (g i’ f’))

Also, if we examine the use ofloopD in optimized CCNF, we
notice that the arrow it takes is always a pure arrow, and hence we
can drop the arrow and use the pure function instead. Furthermore,
if our interest is just in computing from an input stream to an
output, we can drop the intermediateSF data structure altogether,
thus yielding:

runCCNF :: e → ((b, e) → (c, e)) → [b] → [c]
runCCNF i f = g i
where g i (x:xs) = let (y, i’) = f (x, i)

in y : g i’ xs

runCCNF essentially converts an optimized CCNF term directly
into a stream transformer. In doing so, we have successfullytrans-
formed away all arrow instances, including the data structure used
to implement them! The result is of course no longer abstract, and
is closely tied to the low-level representation of streams.

Combining CCA With Stream Fusion We can perform even
more aggressive optimizations on CCNF by borrowing the stream
representation and optimization techniques introduced byCoutts
et al. [12]. First, we define a datatype to encapsulate a stream as a
product of a stepper function and an initial state:

data Stream a = forall s. Stream (s → Step a s) s
data Step a s = Yield a s

Herea is the element type ands is an existentially quantified state
type. For our purposes, we have simplified the return type of the
original stepper function in [12]. Our stepper function essentially
consumes a state and yields an element in the stream paired with a
new state.

The key to effective fusion is that all stream producers mustbe
non-recursive. In other words, a recursively defined streamsuch as
exp should be written in terms of non-recursive stepper functions,
with recursion deferred until the stream is unfolded. Programs
written in this style can then be fused by the compiler into a tail-
recursive loop, at which point tail-call eliminations and various
unboxing optimizations can be easily applied.

This is where CCA and our normalization procedure fit together
so nicely. We can take advantage of the arrow syntax to write
recursive code, and rely on the arrow translator to express it non-
recursively using theloop combinator. We then normalize it into
CCNF, and rewrite it in terms of streams.

The last step is surprisingly straightforward. We introduce yet
another loop combinatorloopS that closely resemblesloopD:

loopS :: t → ((a, t) → (b, t)) →
Stream a → Stream b

loopS z f (Stream next0 s0) = Stream next (z, s0)
where

next (i, s) = case next0 s of
Yield x s’ → Yield y (z’, s’)

where (y, z’) = f (x, i)

Intuitively, loopS is the unlifted version ofloopD. The initial state
of the output stream consists of the initial feedback valuez and the
state of the input stream. As the resulting stream gets unfolded, it
suppliesf with an input tuple and carries the output along with the
next state of the input stream. In general, we can rewrite terms of
the formloopD i (arr f) into loopS i f for somei andf .

To illustrate this, let us revisit theexp example. We take the op-
timized CCNFexp’’ and rewrite it in terms ofloopS asexpOpt:

expOpt :: Stream Double
expOpt sr = loopS 0 (λ (x, y) → let i = y + 1

in (i, y + dt ∗ i))
(constS ())

constS :: a → Stream a
constS c = Stream next () where next _ = Yield c ()

Since the resulting stream producer ignores any input, we define
constS to supply a stream of unit values. This does not negatively
impact performance, as the compiler is able to remove the dummy
values eventually.

To extract elements from a stream, we can write a tail-recursive
function to unfold it. For example, the functionnth extracts the nth
element from a stream:

nth :: Int → Stream a → a
nth n (Stream next0 s0) = go n s0 where

go n s = case next0 s of
Yield x s’ → if n == 0

then x
else go (n-1) s’

e2 :: Double
e2 = nth 2 expOpt -- 1.0201

We can define unfolding functions other thannth in a similar
manner.

With the necessary optimization options turned on, GHC fuses
nth andexpOpt into a tail-recursive loop. The code below shows
the equivalent intermediate representation extracted from GHC af-
ter optimization. It uses only strict and unboxed types (Int# and
Double#).

go :: Int# → Double# → Double#
go n y =

case n of
__DEFAULT → go (n - 1) (y + dt ∗ (y + 1.0))
0 → y + 1.0

e2 :: Double
e2 = D# (go 2 0.0)

In summary, employing stream fusion, the GHC compiler can turn
any CCNF into a tight imperative loop that is free of all cons
cell and closure allocations. This results in a dramatic speedup for
CCA programs and eliminates the need for heap allocation and
garbage collection. In the next section we quantify this claim via
benchmarks.

7. Benchmarks
We ran a set of benchmarks to measure the performance of several
programs written in arrow syntax, but compiled and optimized in
different ways. For each program, we:

1. Compiled with GHC, which has a built-in translator for arrow
syntax.

2. Translated using Paterson’sarrowp pre-processor to arrow
combinators, and then compiled with GHC.

3. Normalized into CCNF combinators, and compiled with GHC.

4. Normalized into CCNF combinators, rewritten in terms of
streams, and compiled with GHC using stream fusion.

The five benchmarks we used are: the exponential function
given earlier, a sine wave with fixed frequency using Goertzel’s
method, a sine wave with variable frequency, “50’s sci-fi” sound
synthesis program taken from [15], and a robot simulator taken
from [21]. The programs were compiled and run on an Intel Core2
Duo machine with GHC version 6.10.1, using the C backend code
generator and-O2 optimization. We measured the CPU time used
to run a program through106 samples. The results are shown in
Figure 12, where the numbers represent normalized speedup ratios,
and we also include the lines of code (LOC) for the source program.

The results show dramatic performance improvements using
normalized arrows. We note that:

1. Based on the same arrow implementation, the performance
gain of CCNF over the first two approaches is entirely due to
program transformations at the source level. This means that
the runtime overhead of arrows is significant, and cannot be
neglected for real applications.

2. The stream representation of CCNF produces high-performance
code that is completely free of dynamic memory allocation and

Name (LOC) 1. GHC 2. arrowp 3. CCNF 4. Stream
exp (4) 1.0 2.4 13.9 190.9
sine (6) 1.0 2.66 12.0 284.0

oscSine (4) 1.0 1.75 4.1 13.0
50’s sci-fi (5) 1.0 1.28 10.2 19.2
robotSim (8) 1.0 1.48 8.9 36.8

Figure 12. Performance Ratio (greater is better)

intermediate data structures, and can be orders of magnitude
faster than its arrow-based predecessors.

3. GHC’s arrow syntax translator does not do as well as Paterson’s
original translator for the sample programs we chose, though
both are significantly outperformed by our normalization tech-
niques.

8. Discussion
Our key contribution is the discovery of a normal form for core
Yampa, or CCA, programs: any CCA program can be transformed
into a single loop with just one pure (and strongly normalizing)
function and a set of initial states. This discovery is new and
original, and has practical implications in implementing not just
Yampa, but a broader class of synchronous dataflow languages
and stream computations because this property is entirely based
on axiomatic laws, not any particular semantic model. We discuss
such relevance and related topics to our approach below.

8.1 Alternative Formalisms

Apart from arrows, other formalisms such as monads, comon-
ads and applicative functors have been used to model compu-
tations over data streams [3, 42, 28]. Central to many of these
approaches are the representation of streams and computations
about them. However, notably missing are the connections between
stream computation and the related laws. For example, Uustalu’s
work [42] concluded that comonad is a suitable model for dataflow
computation, but it lacks any discussion of whether the comonadic
laws are of any relevance.

In contrast, it is the very idea of making sense out of arrow and
arrow loop laws that motivated our work. We argue that arrowsare
a suitable abstract model for stream computation not only because
we can implement stream functions as arrows, but also because
abstract properties like the arrow laws help to bring more insights
to our target application domain.

Besides having to satisfy respective laws for these formalisms,
each abstraction has to introduce domain specific operators, other-
wise it would be too general to be useful. With respect to causal
streams, many have introducedinit (also known asdelay) as a
primitive to enable stateful computation, but few seem to have
made the connection of its properties to program optimizations.

Notably the product law we introduced for CCA relates to a
bisimilarity property of co-algebraic streams, i.e., the product of
two initialized streams are bisimilar to one initialized stream of
product.

8.2 Co-algebraic streams

The co-algebraic property of streams is well known, and mostrel-
evant to our work is Caspi and Pouzet’s representation of stream
and stream functions in a functional language setting [5], which
also uses a primitive similar to the trace operator (and hence the ar-
row loop combinator) to model recursion. Their compilationtech-
nique, however, lacks a systematic approach to optimize nested re-
cursions. We consider our technique more effective and moreab-
stract.

Most synchronous languages, including the one introduced in
[5], are able to compile stream programs into a form calledsin-
gle loop codeby performing a causality analysis to break the feed-
back loop of recursively defined values. Many efforts have been
made to generate efficient single loop code [16, 1], but to ourbest
knowledge there has not been a strong result like normal forms. Our
discovery of CCNF is original, and the optimization by normaliza-
tion approach is both systematic and deterministic. Together with
stream fusion, we produce a result that is not just a single loop, but
a highly optimized one.

Also relevant is Rutten’s work on high-order functional stream
derivatives [38]. We believe that arrows are a more general abstrac-
tion than functional stream derivatives, because the latter still ex-
poses the structure of a stream. Moreover, arrows give rise to a
high-level language with richer algebraic properties thanthe 2-adic
calculus considered in [38].

8.3 Expressiveness

It is known that operationally a Mealy machine is able to represent
all causal stream functions [38], while the CCA language defined
in Figure 6 represents only a subset. For example, the switchcom-
binator introduced in Yampa [21] is able to dynamically replace a
running arrow with a new one depending on an input event, and
hence to switch the system behavior completely. With CCA, there
is no way to change the compositional structure of the arrow pro-
gram itself at run time. For another example, many dataflow and
stream programming languages also provide conditionals, such as
if-then-else, as part of the language [43, 4]. To enable condi-
tionals at the arrow level, we need to further extend CCA to bean
instance of theArrowChoice class. Both are worthy extensions to
consider for future work.

It should also be noted that the local state introduced byinit
is one of the minimal side effects one can introduce to arrow pro-
grams. The commutativity law for CCA ensures that the effectof
one arrow cannot interfere with another when composed together,
and it is no longer satisfiable when such ordering becomes impor-
tant, e.g., when arrows are used to model parsers and printers [25].

On the other hand, because the language for CCA remains
highly abstract, it could be applicable to domains other than FRP
or dataflow. We’ll leave such findings to future work.

8.4 Stream fusion

Stream fusion can help fuse zips, left folds, and nested lists into
efficient loops. But on its own, it does not optimize recursively and
lazily defined streams effectively.

Consider a stream generating the Fibonacci sequence. It is one
of the simplest classic examples that characterizes stateful stream
computation. One way of writing it in Haskell is to exploit laziness
and zip the stream with itself:

fibs :: [Int]
fibs = 0:1:zipWith (+) fibs (tail fibs)

While the code is concise and elegant, such programming style
relies too much on the definition of an inductively defined struc-
ture. The explicit sharing of the streamfibs in the definition is a
blessing and a curse. On one hand, it runs in linear time and con-
stant space. On the other hand, the presence of the stream struc-
ture gets in the way of optimization. None of the current fusion or
deforestation techniques are able to effectively eliminate cons cell
allocations in this example. Real-world stream programs are usu-
ally much more complex and involve more feedback, and the time
spent in allocating intermediate structure and by the garbage col-
lector could degrade performance significantly.

We can certainly write a stream in stepper style that generates
the Fibonacci sequence:

fib_stream :: Stream Int
fib_stream = Stream next (0, 1) where

next (a, b) = Yield r (b, r)
where r = a + b

f1 :: Int
f1 = nth 5 fib_stream -- 13

Stream fusion will fusenth andfib stream to produce an effi-
cient loop. For a comparison, with our technique the arrow version
of the Fibonacci sequence shown below compiles to the same effi-
cient loop asf1 above, and yet retains the benefit of being abstract
and concise.

fibA = proc _ → do
rec let r = d2 + d1

d1 ← init 0 −≺ d2
d2 ← init 1 −≺ r

returnA −≺ r

We must stress that writing stepper functions is not always as
easy as in trivial examples likefib and exp. Most non-trivial
stream programs that we are concerned with contain many recur-
sive parts, and expressing them in terms of combinators in a non-
recursive way can get unwieldy. Moreover, this kind of coding style
exposes a lot of operational details which are arguably unnecessary
for representing the underlying algorithm. In contrast, arrow syn-
tax relieves the burden of coding in combinator form and allows
recursion via therec keyword. It also completely hides the actual
implementation of the underlying stream structure and is therefore
more abstract.

The strength of CCA is the ability to normalize any causal and
recursive stream function. Combining both fusion and our nor-
malization algorithm, any CCA program can be reliably and pre-
dictably optimized into an efficient machine-friendly loop. The pro-
cess can be fully automated, allowing programmers to program
at an abstract level while getting performance competitiveto pro-
grams written in low-level imperative languages.

Acknowledgements This research was supported in part by NSF
grants CCF-0811665 and CNS-0720682, and a grant from Mi-
crosoft Research.

References
[1] Pascalin Amagbegnon, Loc Besnard, and Paul Le Guernic. Im-

plementation of the data-flow synchronous language signal.In In
Conference on Programming Language Design and Implementation,
pages 163–173. ACM Press, 1995.

[2] Robert Atkey. What is a categorical model of arrows? In
Mathematically Structured Functional Programming, 2008.

[3] Per Bjesse, Koen Claessen, Mary Sheeran, and Satnam Singh. Lava:
Hardware design in haskell. InICFP, pages 174–184, 1998.

[4] P. Caspi, N. Halbwachs, D. Pilaud, and J.A. Plaice. Lustre: A
declarative language for programming synchronous systems. In
14th ACM Symp. on Principles of Programming Languages, January
1987.

[5] Paul Caspi and Marc Pouzet. A Co-iterative Characterization of
Synchronous Stream Functions. InCoalgebraic Methods in Computer
Science (CMCS’98), Electronic Notes in Theoretical Computer
Science, March 1998. Extended version available as a VERIMAG
tech. report no. 97–07 atwww.lri.fr/∼pouzet.

[6] Eric Cheng and Paul Hudak. Look ma, no arrows – a functional
reactive real-time sound synthesis framework. Technical Report
YALEU/DCS/RR-1405, Yale University, May 2008.

[7] Mun Hon Cheong. Functional programming and 3d games,
November 2005. also see www.haskell.org/haskellwiki/Frag.

[8] Jean-Louis Colaço, Alain Girault, Grégoire Hamon, and Marc
Pouzet. Towards a higher-order synchronous data-flow language. In

EMSOFT ’04: Proceedings of the 4th ACM international conference
on Embedded software, pages 230–239, New York, NY, USA, 2004.
ACM.

[9] Antony Courtney. Modelling User Interfaces in a Functional
Language. PhD thesis, Department of Computer Science, Yale
University, May 2004.

[10] Antony Courtney and Conal Elliott. Genuinely functional user
interfaces. InProc. of the 2001 Haskell Workshop, September 2001.

[11] Antony Courtney, Henrik Nilsson, and John Peterson. The Yampa
arcade. InProceedings of the 2003 ACM SIGPLAN Haskell Workshop
(Haskell’03), pages 7–18, Uppsala, Sweden, August 2003. ACM
Press.

[12] Duncan Coutts, Roman Leshchinskiy, and Don Stewart. Stream
fusion: From lists to streams to nothing at all. InProceedings
of the ACM SIGPLAN International Conference on Functional
Programming, ICFP 2007, April 2007.

[13] Conal Elliott and Paul Hudak. Functional reactive animation. In
International Conference on Functional Programming, pages 263–
273, June 1997.

[14] G. H. Mealy. A method for synthesizing sequential circuits. Bell
System Technical Journal, 34(5):1045–1079, 1955.

[15] George Giorgidze and Henrik Nilsson. Switched-on yampa. In
Paul Hudak and David Scott Warren, editors,Practical Aspects of
Declarative Languages, 10th International Symposium, PADL 2008,
San Francisco, CA, USA, January 7-8, 2008, volume 4902 ofLecture
Notes in Computer Science, pages 282–298. Springer, 2008.

[16] N. Halbwachs, P. Raymond, and C. Ratel. Generating efficient code
from data-flow programs. In J. Maluszyński and M. Wirsing, editors,
Proceedings of the Third International Symposium on Programming
Language Implementation and Logic Programming, number 528,
pages 1–13207–218. Springer Verlag, 1991.

[17] Masahito Hasegawa. Recursion from cyclic sharing: traced monoidal
categories and models of cyclic lambda calculi. pages 196–213.
Springer Verlag, 1997.

[18] L. Huang, P. Hudak, and J. Peterson. Hporter: Using arrows to
compose parallel processes. InProc. Practical Aspects of Declarative
Languages, pages 275–289. Springer Verlag LNCS 4354, January
2007.

[19] P. Hudak. Building domain specific embedded languages.ACM
Computing Surveys, 28A:(electronic), December 1996.

[20] Paul Hudak. Modular domain specific languages and tools. In
Proceedings of Fifth International Conference on SoftwareReuse,
pages 134–142. IEEE Computer Society, June 1998.

[21] Paul Hudak, Antony Courtney, Henrik Nilsson, and John Peterson.
Arrows, robots, and functional reactive programming. InSummer
School on Advanced Functional Programming 2002, Oxford Uni-
versity, volume 2638 ofLecture Notes in Computer Science, pages
159–187. Springer-Verlag, 2003.

[22] Paul Hudak, Paul Liu, Michael Stern, and Ashish Agarwal. Yampa
meets the worm. Technical Report YALEU/DCS/RR-1408, Yale
University, July 2008.

[23] John Hughes. Generalising monads to arrows.Science of Computer
Programming, 37:67–111, May 2000.

[24] John Hughes. Programming with arrows. InAdvanced Functional
Programming, pages 73–129, 2004.

[25] Patrik Jansson and Johan Jeuring. Polytypic compact printing and
parsing. InESOP, pages 273–287, 1999.

[26] Sam Lindley, Philip Wadler, and Jeremy Yallop. The arrow calculus
(functional pearl).Draft, 2008.

[27] Hai Liu and Paul Hudak. Plugging a space leak with an arrow.
Electronic Notes in Theoretical Computer Science, 193:29–45, nov
2007.

[28] Conor McBride and Ross Paterson. Applicative programming with
effects.J. Funct. Program., 18(1):1–13, 2008.

[29] Eugenio Moggi. Notions of computation and monads.Inf. Comput.,
93(1):55–92, 1991.

[30] Henrik Nilsson. Dynamic optimization for functional reactive
programming using generalized algebraic data types. InICFP, pages
54–65, 2005.

[31] Clemens Oertel.RatTracker: A Functional-Reactive Approach to
Flexible Control of Behavioural Conditioning Experiments. PhD
thesis, Wilhelm-Schickard-Institute for Computer Science at the
University of Tübingen, May 2006.

[32] Ross Paterson. A new notation for arrows. InICFP’01: International
Conference on Functional Programming, pages 229–240, Firenze,
Italy, 2001.

[33] John Peterson, Gregory Hager, and Paul Hudak. A language for
declarative robotic programming. InInternational Conference on
Robotics and Automation, 1999.

[34] John Peterson, Paul Hudak, and Conal Elliott. Lambda inmotion:
Controlling robots with Haskell. InFirst International Workshop on
Practical Aspects of Declarative Languages. SIGPLAN, Jan 1999.

[35] John Peterson, Zhanyong Wan, Paul Hudak, and Henrik Nilsson.
Yale FRP User’s Manual. Department of Computer Science, Yale
University, January 2001. Available athttp://www.haskell.org/
frp/manual.html.

[36] Simon Peyton Jones et al. The Haskell 98 language and libraries: The
revised report.Journal of Functional Programming, 13(1):0–255, Jan
2003. http://www.haskell.org/definition/.

[37] John Power and Hayo Thielecke. Closed freyd- and kappa-categories.
In ICALP, pages 625–634, 1999.

[38] Jan J. M. M. Rutten. Algebraic specification and coalgebraic synthesis
of mealy automata.Electr. Notes Theor. Comput. Sci, 160:305–319,
2006.

[39] Robert Stephens. A survey of stream processing.Acta Informatica,
34(7):491–541, 1997.

[40] Ross Howard Street, A. Joyal, and D. Verity. Traced monoidal cat-
egories.Mathematical Proceedings of the Cambridge Philosophical
Society, 119(3):425–446, 1996.

[41] William Thies, Michal Karczmarek, and Saman P. Amarasinghe.
Streamit: A language for streaming applications. InCC ’02:
Proceedings of the 11th International Conference on Compiler
Construction, pages 179–196, London, UK, 2002. Springer-Verlag.

[42] Tarmo Uustalu and Varmo Vene. The essence of dataflow program-
ming. In Zoltán Horváth, editor,CEFP, volume 4164 ofLecture
Notes in Computer Science, pages 135–167. Springer, 2005.

[43] William W. Wadge and Edward A. Ashcroft.LUCID, the dataflow
programming language. Academic Press Professional, Inc., San
Diego, CA, USA, 1985.

A. Proof for the termination lemma
Proof: We will show that the there always exists aenorm for well
formed arrow expression⊢ e : α ; β, and the normalization
procedure always terminates. This is done by structural induction
over all possible arrow terms, and any closed expressione that’s
not already in arrow terms shall be first beta reduced.

1. e = arr f
It already satisfies the termination condition.

2. e = first f
By induction hypothesis,f ⇓ arr f ′, orf ⇓ loopB i (arr f ′′),
wheref ′ andf ′′ are pure functions.

In the first case by extension rulefirst f 7→ arr(f ′ × id) and
terminates; In the second case

first f
7→∗ first(loopB i(arr f ′′))

superposing
7→loopB i (arr juggle ≫ arr f ′′

≫ arr juggle)
composition

7→loopB i (arr (juggle · f ′′juggle))

and terminates.

3. e = f ≫ g
By induction hypothesis,f ⇓ arr f ′ or f ⇓ loopB i (arr f ′′),
and g ⇓ arr g′ or g ⇓ loopB i (arr g′′). So there are 4
combinations, and in all cases they terminate.

1)
f ≫ g

7→∗ arr f ′
≫ arr g′

composition
7→arr(g′ · f ′)

2)
f ≫ g

7→∗ arr f ′
≫ loopB i (arr g′′)

left tightening
7→loopB i (first (arr f ′) ≫ arr g′′)

extension
7→loopB i (arr (f ′ × id) ≫ arr g′′)

composition
7→loopB i (arr (g′′ · (f ′ × id)))

3)
f ≫ g

7→∗ loopB i (arr f ′′) ≫ arr g′

right tightening
7→loopB i (arr f ′′

≫ first(arr g′))
extension

7→loopB i (arr f ′′
≫ arr(g′ × id))

composition
7→loopB i (arr ((g′ × id) · f ′′))

4)
f ≫ g

7→∗ loopB i (arr f ′′) ≫ loopB i (arr g′′)
left tightening

7→loopB j (first(loopB i (arr f ′′)) ≫ arr g′′)
superposing

7→loopB j (loopB i (arr juggle ≫ arr f ′′
≫

arr juggle) ≫ arr g′′)
composition

7→∗ loopB j (loopB i (arr (juggle · f ′′ · juggle))
≫ arr g′′)

right tightening
7→loopB j (loopB i (arr (juggle · f ′′ · juggle)

≫ first(arr g′′)))
extension

7→loopB j (loopB i (arr (juggle · f ′′ · juggle)
≫ arr (g′′ × id)))

composition
7→loopB j (loopB i (arr ((g′′ × id) · juggle

·f ′′ · juggle)))
vanishing

7→loopB (j, i) (arr shuffle ≫

arr ((g′′ × id) · juggle · f ′′ · juggle) ≫

arr shuffle−1)
composition

7→∗ loopB (j, i) (arr (shuffle−1 · (g′′ × id)·

juggle · f ′′ · juggle · shuffle))

4. e = loop f
By induction hypothesis,f ⇓ arr f ′ or f ⇓ loopB i (arr f ′′).
In the first case

loop f
7→∗ loop (arr f ′)

loop
7→loopB ()(arr assoc−1

≫ arr f ′
≫ arr assoc)

composition
7→loopB ()(arr (assoc · f ′ · assoc−1))

and terminates. In the second case

loop f
7→∗ loop (loopB i (arr f ′′))

loop
7→loopB ()(arr assoc−1

≫ loopB i (arr f ′′) ≫

arr assoc)
left and right tightening

7→∗ loopB ()(loopB i (first(arr assoc−1) ≫ arr f ′′
≫

first(arr assoc)))
extension and composition

7→∗ loopB ()(loopB i (arr ((assoc × id)·
f ′′ · (assoc−1 × id))))

vanishing
7→loopB ((), i)(arr shuffle ≫ arr ((assoc × id)·

f ′′ · (assoc−1 × id)) ≫ arr shuffle−1)
composition

7→loopB ((), i)(arr(shuffle−1 · (assoc × id) · f ′′·
(assoc−1 × id) · shuffle))

and terminates.

5. e = init i
By init rule, init i 7→ loopB i (arr (swap · juggle · swap))
and terminates.

2

B. Proof for the vanishing rule of loopB

Proof: We will show that

loopB i (loopB j f)
= loopB (i, j) (arr shuffle ≫ f ≫ arr shuffle−1)

by equational reasoning.

loopB i (loopB j f)
definition of loopB

= loop (loopB j f ≫ second (second (init i)))
definition of loopB

= loop (loop (f ≫ second (second (init j))) ≫

second (second (init i)))
right tightening of loop

= loop (loop (f ≫ second (second (init j)) ≫

first(second (second (init i)))))
commutativity

= loop (loop (f ≫ first(second (second (init i))) ≫

second (second (init j))))
vanishing of loop

= loop (arr assoc−1
≫ f ≫

first (second (second (init i))) ≫

second (second (init j)) ≫ arr assoc)
Lemma B.1

= loop (arr assoc−1
≫ f ≫ arr shuffle−1

≫

second (second (init (i, j))) ≫

arr shuffle ≫ arr assoc)

shuffle−1 · shuffle = id
= loop (arr (shuffle−1 · assoc−1) ≫ arr shuffle ≫ f ≫

arr shuffle−1
≫ second (second (init (i, j))) ≫

arr shuffle ≫ arr assoc)
shuffle−1 · assoc−1 = id × transpose

= loop (arr (id × transpose) ≫ arr shuffle ≫ f ≫

arr shuffle−1
≫ second (second (init (i, j))) ≫

arr shuffle ≫ arr assoc)
sliding

= loop (arr shuffle ≫ f ≫ arr shuffle−1
≫

second (second (init (i, j))) ≫ arr shuffle ≫

arr assoc ≫ arr (id × transpose))
shuffle−1 = (id × transpose)· assoc

= loop (arr shuffle ≫ f ≫ arr shuffle−1
≫

second (second (init (i, j))) ≫

arr shuffle ≫ arr shuffle−1)
shuffle· shuffle−1 = id

= loop (arr shuffle ≫ f ≫ arr shuffle−1
≫

second (second (init (i, j))))
definition of loopB

= loopB (i, j)(arr shuffle ≫ f ≫ arr shuffle−1)

Lemma B.1
first (second (second (init i))) ≫

second (second (init j))
= arr shuffle−1

≫ second (second(init(i, j))) ≫

arr shuffle

Proof: We first show

first (second (second (init i)))
= arr shuffle−1

≫ second(second (first(init i))) ≫

arr shuffle

This can be done by equational reasoning from both sides. From
lhs:

first (second (second (init i)))
definition of second

= first(arr swap ≫ first(arr swap ≫ first(init i) ≫

arr swap) ≫ arr swap)
functor and extension

= arr(swap × id) ≫

first(first(arr swap ≫ first(init i) ≫ arr swap)) ≫

arr(swap × id)
association

= arr(swap × id) ≫ arr assoc ≫

first(arr swap ≫ first(init i) ≫ arr swap) ≫

arr assoc−1
≫ arr(swap × id)

functor and extension
= arr(assoc · (swap × id)) ≫ arr(swap × id) ≫

first(first(init i)) ≫

arr(swap × id) ≫ arr((swap × id) · assoc−1)
association

= arr((swap × id) · assoc · (swap × id)) ≫

arr assoc ≫ first(init i) ≫ arr assoc−1
≫

arr((swap × id) · assoc−1 · (swap × id))
composition

= arr(assoc · (swap × id) · assoc · (swap × id)) ≫

first(init i) ≫

arr((swap × id) · assoc−1 · (swap × id) · assoc−1)
Lemma B.2

= arr(assoc · (swap × id) · assoc · (swap × id)) ≫

arr(id × (swap · assoc−1 · transpose · assoc−1)) ≫

first(init i) ≫

arr(id × (assoc · transpose · assoc · swap)) ≫

arr((swap × id) · assoc−1 · (swap × id) · assoc−1)
composition and normalization

= arr(λ((a, (c, d)), (b, e)).(d, (e, ((c, b), a)))) ≫

first(init i) ≫

arr(λ(d, (e, ((c, b), a))).((a, (c, d)), (b, e)))

and fromlhs :

arr shuffle−1
≫ second(second (first(init i))) ≫

arr shuffle
definition of second

= arr shuffle−1
≫ arr swap ≫

first(arr swap ≫ first(first(init i)) ≫ arr swap) ≫

arr swap ≫ arr shuffle
functor and extension

= arr(swap · shuffle−1) ≫ arr(swap × id) ≫

first(first(first(init i))) ≫

arr(swap × id) ≫ arr(shuffle · swap)
association

= arr((swap × id) · swap · shuffle−1) ≫ arr assoc

≫ arr assoc ≫ first(init i) ≫ arr assoc−1
≫

arr assoc−1
≫ arr(shuffle · swap · (swap × id))

composition
= arr(assoc · assoc · (swap × id) · swap · shuffle−1) ≫

first(init i) ≫

arr(shuffle · swap · (swap × id) · assoc−1 · assoc−1)
normalization

= arr(λ((a, (c, d)), (b, e)).(d, (e, ((c, b), a)))) ≫

first(init i) ≫

arr(λ(d, (e, ((c, b), a))).((a, (c, d)), (b, e)))

Hence lhs = rhs . Using similar technique, we can also prove
(details omitted to save space)

second (second (init j))
= arr shuffle−1

≫ second(second (second(init j))) ≫

arr shuffle

Therefore we have

first(second(second(init i))) ≫ second (second(init j))
substitution

= arr shuffle−1
≫ second(second (first(init i))) ≫

arr shuffle ≫ arr shuffle−1
≫

second (second(second(init i))) ≫ arr shuffle

shuffle· shuffle−1 = id
= arr shuffle−1

≫ second(second (first(init i))) ≫

second (second(second(init i))) ≫ arr shuffle
functor and product

= arr shuffle−1
≫ second(second (init(i, j))) ≫

arr shuffle
2

Lemma B.2 ∀g, g−1, g · g−1 = id , we have

first f = arr (id × g) ≫ firstf ≫ arr(id × g
−1)

Proof:

arr (id × g) ≫ firstf ≫ arr(id × g−1)
exchange

= firstf ≫ arr (id × g) ≫ arr(id × g−1)
composition

= firstf ≫ arr ((id × g−1) · (id × g))
normalization

= firstf ≫ arr id
right identity

= firstf

2

