Parametric Datatype-Genericity

Jeremy Gibbons

Oxford University Computing Laboratory
Wolfson Building, Parks Road
Oxford OX1 3QD, United Kingdom

http://www.comlab.ox.ac.uk/jeremy.gibbons/

Abstract

Datatype-generic programs are programs that are parametrized
by a datatype or type functor: whereas polymorphic programs
abstract from the ‘integers’ in ‘lists of integers’, datatype-generic
programs abstract from the ‘lists of’. There are two main styles
of datatype-generic programming: the Algebra of Programming
approach, characterized by structured recursion operators arising
from initial algebras and final coalgebras, and the Generic Haskell
approach, characterized by case analysis over the structure of
a datatype. We show that the former enjoys a kind of higher-
order naturality, relating the behaviours of generic functions at
different types; in contrast, the latter is ad hoc, with no coherence
required or provided between the various clauses of a definition.
Moreover, the naturality properties arise ‘for free’, simply from the
parametrized types of the generic functions: we present a higher-
order parametricity theorem for datatype-generic operators.

Categories and Subject Descriptors D.3.3 [Programming lan-
guages]: Language constructs and features—Polymorphism, pat-
terns, control structures, recursion; F.3.3 [Logics and meanings
of programs]: Studies of program constructs—Program and re-
cursion schemes, type structure; F.3.2 [Logics and meanings of
programs]: Semantics of programming languages—Algebraic ap-
proaches to semantics; D.3.2 [Programming languages]: Language
classifications—Functional languages.

General Terms Languages, Design, Algorithms, Theory.

Keywords Higher-order natural transformations, parametricity,
free theorems, generic programming, higher-order functions, func-
tional programming, folds, unfolds.

1. Introduction

Consider the following familiar datatype of lists, with a fold operator
and a length function:

data List o = Nil | Cons o (List o)
foldL:: — (o — B — B) — Listoa — B
foldL e f Nil =e

foldL ef (Consax)=f a(foldL e f x)

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

WGP’09, August 30, 2009, Edinburgh, Scotland, UK.

Copyright © 2009 ACM 978-1-60558-510-9/09/08. . . $5.00

Ross Paterson

School of Informatics
City University London
London EC1V OHB, United Kingdom

http://www.soi.city.ac.uk/~ross/

length:: List @ — Int
length = foldLO (Aan — 1+n)

Here also is a datatype of binary trees, with its fold operator:

data Tree @ = Empty | Node a (Tree a) (Tree o)
foldT::f - (=B —B—p)—Treeax— f
foldT e f Empty =e

foldT ef (Node axy) =f a (foldT ef x) (foldT e f y)

One can compute the ‘left spine’ of a binary tree as a list, using
foldT:

Ispine:: Tree a0 — List o
Ispine = foldT Nil (Aaxy — Cons a x)

The ‘left depth’ of a binary tree is defined to be the length of the left
spine:

Ildepth:: Tree o0 — Int
ldepth = length o Ispine

It should come as no surprise that the two steps encoded above can
be fused into one, computing the left depth of the tree directly rather
than via a list:

Ildepth:: Tree o0 — Int
Idepth = foldT 0 (Aamn — 1+ m)

This result is a consequence of the well-known fusion law for
foldT, which states that

hofoldT e f = foldT e’ f’
<= he=€e ANh(fauv)=f a(hu)(hv)

Importantly, there is nothing inherently specific to binary trees
involved here. The ‘fold’ operator is datatype-generic, which is
to say, parametrized by a datatype, such as List or Tree; the
functions foldL and foldT above are datatype-specific instances
for the datatypes List and Tree, respectively. Moreover, there is a
datatype-generic fusion law for folds, of which this law for foldT is
a datatype-specific instance.

But there is more to this particular application of fusion than
meets the eye. It reveals some deep structure of the datatype-
generic fold operator, relating folds on binary trees and on lists.
Similar relationships hold between the folds on any two datatypes.
Specifically, the central observation of this paper is that:

fold is a higher-order natural transformation.

That is, ‘fold’ is a rather special kind of datatype-generic operator,
both enjoying and requiring coherence between its datatype-specific
instances. This is in contrast to many other datatype-generic op-
erators such as parsers, pretty-printers and marshallers, for which
there need be no such coherence. To the best of our knowledge, this
observation has not been recorded before.



The situation is analogous to that between parametric and
ad hoc polymorphism. For example, the parametrically polymor-
phic function (now with an explicit universal type quantification)
length::Vo.List ¢ — Int amounts to a family of monomorphic func-
tions length,, :: List a — Int, one for each type o. In languages sat-
isfying parametricity, such as Girard’s and Reynolds’ polymorphic
lambda calculi [11, 33], a parametricity property relates different
monomorphic instances of polymorphic functions such as length, (a
special case of) which states that:

lengthg (map f x) = lengthy x  forf:a— f

Informally, mapping over a list preserves its length. This parametric-
ity property follows from the type of the function length alone; one
need not look at the function definition in order to prove it [40].

In contrast, languages that provide ad hoc polymorphism do not
satisfy parametricity, and hence sacrifice these parametricity proper-
ties. For instance, Harper and Morrisett [13] present a polymorphic
lambda calculus extended with intensional polymorphism, which
supports run-time type analysis through a ‘typecase’ construct. This
allows one to define a function countInts:: List a — Int that counts all
the integers in a list, so that for example countlnts [4,5,6] = 3, but
countlnts [True, False, True] = 0, and countlnts [(1,2),(3,4)] = 0.
This too can be considered as a family of monomorphic functions
countlntsq :: List oo — Int, one for each type o. But the polymor-
phism is ad hoc, and there need be no corresponding coherence
between specific instances: the equation that would be (a special
case of) the parametricity property, namely,

countlntsg (map f x) = countlntsq x forf: ot — f

does not hold for the intended definition of countlnts, so it certainly
does not follow from its type.

Note that Haskell’s type class mechanism [12] allows one to
solve many of the problems for which ad hoc polymorphism seems
attractive, without sacrificing parametricity. It is still not possible —
or at least, not straightforward — to write something like countInts
above, but one can write instead a function count:: Eq o = o —
List oo — Int that counts the occurrences of a given element in a
list (in which the notation ‘Eq ¢ =’ denotes a type class context,
essentially a bounded quantification over the type class Eq of
types ¢ possessing an equality operation [22]). Using the standard
compilation technique by translation into dictionary-passing style,
count will be implemented with an additional parameter giving the
equality operation, effectively having the type

count’ :: (ot — a — Bool) — a — List o — Int

This turns the apparent ad hoc polymorphism into parametric
polymorphism; the parametricity property for the type of count’,
when specialized to functions, turns out to be

gad =h(fa)(fd)=
count' g h (f a) (map f x) = count' o g a x

for any f::a0 — B, g:: 00 — o« — Bool, h:: B — B — Bool. This
property is valid; among other consequences, when g and & are
specialized to the equality functions on o and f respectively, it
states that mapping with an injective function preserves element
counts.

This paper is concerned with parametric datatype-generic oper-
ators such as fold, which obey a parametricity property analogous
to that of length above, and contrasts them with ad hoc (or inten-
sionally) datatype-generic operators such as parsers, pretty-printers
and marshallers, which do not. Cardelli and Wegner [6] consider
parametric polymorphism to be ‘true polymorphism, whereas ad hoc
polymorphism is some kind of apparent polymorphism whose poly-
morphic character disappears at close range’. We refrain from mak-
ing quite so strong a statement in the context of datatype-generic pro-

gramming; however, we do consider parametric datatype-genericity
to be the ‘gold standard’ of datatype-generic programming, to be
preferred over ad hoc datatype-genericity when it is available.

Our intended audience is those intrigued by ‘theorems for free’
[40] and ‘functional programming with bananas and lenses’ [29].
A little familiarity with typed lambda calculi and the notions of
natural transformation and initial algebra will be helpful, although
we provide most definitions as we go along.

2. Datatype-generic programming

Computer science uses a small number of highly overloaded terms,
corresponding to characteristics that recur in many areas of the field.
The distinction between static and dynamic aspects is one example,
applying to typing, binding, IP addresses, web pages, loading of
libraries, memory allocation, and program analyses, among many
other things.

The term generic is another example, although in this case
particularly within the programming languages community rather
than computer science as a whole. ‘Generic programming’ means
different things to different people: polymorphism [1], abstract
datatypes [34], metaprogramming [37], and so on. We have been
using it to refer to programs parametrized by a datatype such as
‘lists of” or ‘trees of’; but to reduce confusion, we have coined
a new term datatype-generic programming [9] for this specific
usage. Examples of datatype-generic programs are the map and
fold higher-order traversal patterns of the origami programming
style [8], and data processing tools such as pretty-printers, parsers,
encoders, marshallers, comparators, and so on that form the main
applications of Generic Haskell [16].

All of the operations named above can be defined once and
for all, for all datatypes, rather than over and over again for each
specific datatype. (However, note that although the data processing
tools are all generic in the structure of data—a single definition
can be written to cover all shapes—they are ad hoc polymorphic
in the content—each takes arguments to handle content, explicitly
or implicitly, and each type of content requires different actual
parameters.) However, the two families of operations differ in the
style of definition that can be provided. Roughly speaking, the
origami family of datatype-generic operations have definitions that
are parametric in the datatype parameter, whereas those of the data
processor family are in general ad hoc in the parameter. That is
to say, in the former the datatype parameter is passed around and
applied, but not analysed; whereas the latter relies on a case analysis
of the parameter. As a consequence, different specific instances of
a datatype-generic operation from the origami family are related,
whereas there is no such constraint on instances of a datatype-
generic data processor.

Some instances of parametricity can be expressed in the form
of natural transformations in a suitable categorical setting. In
particular, the parametricity properties enjoyed by the origami
operators can be expressed as natural transformations in the category
of functors, or higher-order natural transformations. We therefore
may say that the origami operations are (higher-order) natural
in the datatype parameter. We do not mean to suggest that non-
origami datatype-generic operations such as pretty-printers and
parsers are ‘unnatural’. However, the definition by case analysis does
not provide naturality naturally: ensuring naturality requires very
careful consideration of the interaction between the different cases of
the definition. By analogy with Cardelli and Wegner’s observations
about polymorphism, we claim that higher-order naturality is at least
a useful healthiness condition on datatype-generic definitions.

Short explanations of the origami and Generic Haskell styles
follow; for a more detailed comparison, see [18].



2.1 Origami programming

The Origami [8] or Algebra of Programming [4] style is based
around the idea that datatypes are fixpoints of functors.

We assume a cartesian closed category C, with initial and final
objects, and all w-colimits and w-limits; the objects of C model
‘types’, and the arrows model ‘programs’ between those types.
‘We use w-cocontinuous and @w-continuous functors (that is, those
that preserve m-colimits and @-limits respectively) to describe the
shape of recursive datatypes; among others, this includes all the
polynomial functors (that is, those constructed from some base
objects using products and coproducts). An example of a polynomial
functor is the operation L whose action on objects is given by
Lo = 1+ Int x o, and whose action on arrows Lf behaves as the
identity on a unit (in the left of the sum), and applies f to the second
component of a pair (in the right of the sum).

An F-algebra is a pair (o, f) with f: Fa — a. A standard result
[36] is that an @-cocontinuous functor F possesses an initial F-
algebra, which we denote (uF,INg). We write FOLDE f for the
witness to the initiality, the unique homomorphism from the initial
algebra to an F-algebra (c,f); thus, for particular F, the type of
FOLDE itself is

(Fa — a) — (uUF — a)

The uniqueness of the witness to initiality is expressed in the
universal property

h=FOLDEf <= h-INp=f-Fh

For example, puL (where L is as defined above) is the datatype of
finite lists of integers; an integer-specific version of the function
length from Section 1 can be written

length = FOLD| (zero V inc2): List Int — Int

where zero:1 — Int always yields zero, inc2 : Int X Int — Int returns
the successor of the second component of a pair of integers, and V
is the morphism combining the two branches of a sum.

Two simple consequences of the universal property are an
evaluation rule showing how a data structure is consumed, obtained
by letting 7 = FOLDE f:

FOLDE f - INF = f - F(FOLDE f)

and a reflection rule (sometimes called ‘Lambek’s Lemma’) stating
that folding with constructors is the identity, obtained by letting
h=idyF and f = INE:

FOLDE INf = id,F

A more interesting consequence is the fusion law, for combining a
FOLD with a following function:

h-FOLDEf =FOLDE g <= h-f=g-Fh

Dually, an F-coalgebra for an @-continuous functor F is a
pair (a,f) with f: @ — Fa; the final F-coalgebra is (VF,OUTE);
the witness to finality, the unique homomorphism from an F-
coalgebra (c,f) to the final coalgebra, is denoted UNFOLDE f,
whose uniqueness is expressed in the universal property

h = UNFOLDg f <= OUTE-h=Fh-f

Consequences of the universal property include an evaluation rule:
OUTE - UNFOLDE f = F(UNFOLDE f) - f

a reflection rule:
UNFOLDE OUTE = idyf

and a fusion law for combining an UNFOLD with a preceding
function:

UNFOLDE f+-h =UNFOLDg g <= f-h=Fh-g

For example, the @-cocontinuous functor S acting on objects as
Sa = Int x a and on arrows as Sf = idy,, X f induces a datatype
IStream = vS of infinite streams of integers. A step function f :
o — Sa induces a stream producer UNFOLDg f : &¢ — IStream;
SO repeat = UNFOLDg (id A id) : Int — IStream yields a stream of
copies of a given integer, where A is the morphism making a pair
using two functions, and

ZipAdd = UNFOLDg addHeads : IStream X IStream — IStream
adds two integer streams element-wise, where
addHeads (SCons x xs,SCons y ys) = (x+y, (xs,ys))

(pattern-matching on a stream constructor ‘SCons’ for brevity).

2.2 Generic Haskell

A different approach to datatype-generic programming involves
case analyses on the structure of datatypes: ‘a generic program is
defined by induction on structure-representation types’ [18]. We take
as representative of this approach the Generic Haskell extension
[14, 17, 26] of Haskell [32], based on the notion of type-indexed
functions with kind-indexed types [15], in which the family of type
indexes is the polynomial types (sums and products of the unit type
and some basic types such as Int); however, our remarks apply just
as well to a number of related techniques, such as the ‘Scrap Your
Boilerplate’ series [23, 24, 25].

Consider the datatype-generic function encode, encoding a data
structure as a list of bits. In Generic Haskell, this is defined roughly
as follows. (We have made some simplifications, such as omitting
cases for labels and constructors, for brevity. We have also adapted
the Generic Haskell syntax slightly, for consistency with the rest of
this paper; in particular, we use the list constructors from Section 1,
so that we can use ‘:’ for type or kind judgements.)

encode{ o : x|} . (encode{a]}) = a — List Bool
encode{Unit[} () = Nil

encode{Int]} n = encodelnt n

encode{a +: B} (Inl x) = Cons (False,encode{ o]} x)
encode{loe +: B} (Inry) = Cons (True,encode{B[} y)
encode{a:x: B[} (x,y) = encode{olft x-+H encode{B[} y

The first line gives a type declaration, as usual; it declares that
encode specialized to a type « of kind x has type a — List Bool.
(This does not mean that encode can be applied only to types of
kind . Rather, the type of encode at a type index of another kind
is derived automatically from this. For example, encode{List[} has
type (a0 — List Bool) — (List ¢ — List Bool); hence the slogan that
‘type-indexed functions have kind-indexed types’ [15].) Moreover,
the context ‘(encode{ct[}) = indicates that encode depends on
itself, that is, it is defined inductively. There are cases for each
possible top-level structure of the type index; the base case for
integers assumes a primitive function encodelnt : Int — List Bool.
The Generic Haskell compiler uses these five cases to derive a
specialization of encode for any polynomial datatype, such as for
the types of integer lists and binary trees introduced in Section 1.

The important point is that the behaviour of encode is dispersed
across five separate cases, and any desired coherence between
different instances has to be very carefully engineered. Recall, for
example, the relationship from Section 1 between folds on binary
trees and on their left spines. Is there a corresponding relationship
between the encodings of binary trees and their left spines? It
turns out that there is some relationship between specializations of
encode for binary trees and for their left spines; but that relationship
depends on carefully engineered interaction between the behaviours
in different branches, and depends non-trivially on prefix-freeness
of the encoding (a happy consequence of this particular definition) —
and therefore is not a naturality property in the same sense.



To restate our point: ad hoc datatype-generic programs may in
fact be higher-order natural, and perhaps higher-order naturality is a
useful healthiness condition for datatype genericity; but with ad hoc
techniques, this naturality requires careful design, rather than arising
automatically — parametricity does not hold.

3. Higher-order functors and natural
transformations

It is standard to note that one can define a category whose objects
are functors from a category D to a category E, with natural
transformations as morphisms. We shall consider initial algebras, so
we limit our attention to @w-cocontinuous functors, writing D ~» E
for the category of such functors. This category inherits colimits
from E, constructed pointwise. We sometimes use the standard
notation C(c, ) for the arrows in category C from object ¢ to
object 3.

The next step is to consider functors to and from these functor
categories, i.e. higher-order functors (or hofunctors for short).
Consider the initial fixpoint operator pt, which maps functors of
C ~> C to objects of C. For each natural transformation ¢ : F - G
between w-cocontinuous functors F and G, there is a corresponding
mapping u¢ : uF — uG between the initial algebras of those
functors, defined by:

149 = FOLDE (ING - §yuG)

Preservation of the identity, u(idp) = id,F : uF — uF, follows from
the reflection rule, and preservation of composition

p(9-y)=uo py:uF — uH
follows from fold fusion. Moreover u also preserves @w-colimits. We
denote arbitrary hofunctors with calligraphic capitals (such as .77).
There is a notion of ‘application’ appropriate for the cartesian-

closed structure on Cat [27, IV.6], namely the functor * from
(D~ E) x D to E defined by:

Fxa=Fa
oxf =Gf ¢a
=¢p-Ff

for ¢ : F—- G and f: o« — B. (For later convenience, we introduce
the convention that “+’ binds tighter than ‘-’.)

3.1 Higher-order naturality

We have seen that u is a hofunctor on C; another such hofunctor is
the 7 defined by

JOx = x* [Ux
The action of 7 on objects of C ~» C (which are functors on C) is
HF =F(uF)

The action of this hofunctor on arrows of C ~» C (which are natural
transformations) is to take ¢ : F — G to an arrow

AP =¢xug:F(uF) — G(uG)
of C. Expanding the above definition of the application functor, this
becomes

HY=G(ug) Pur
=PuG- Flug)

The lifting of the notion of functor to the functor category
prompts the consideration of similarly lifting the notion of natural
transformation. A higher-order natural transformation (or hont
for short) on a category C is just the normal notion of natural
transformation, specialized to the functor category C ~+ C: for
hofunctors ¢, % : (C ~ C) ~ D, a hont OP: ¢ — ¢ is a

family of arrows OPg € D(#°F, #F) for F:C ~» C, such that
OPg - ¢ = & ¢ - OPf for ¢ : F - G. Diagrammatically:

OPF
HF —> XF

| |

%GTP(;)JE/G

It turns out that the constructor IN of initial algebras is a hont
J = 1, where the hofunctor 7 is as defined above. That is,

ING - 9uc - F(1¢) = p¢ - INg
This condition is straightforward to verify:

U -INg

= { characterization ¢ = FOLDF (ING - ¢pG) }
FOLDF (ING - §G) - INF

= { FoOLD evaluation }
ING - ¢G - F(FOLDF (ING - §,,6))

= { characterization of [t as a FOLD again  }
ING - 9uc -F(1g)

3.2 Fold

Our key example is provided by FOLD. Specifically, FOLD is a
hont s — ¢, where « is a fixed object of C, and contravariant
hofunctors 77, % are defined by:

HF = (Fa— a)
Hp=(0a):(Ga— a)— (Fa—a) forgp:F=G
HF = (uF — a)

Ao =(ue):(uG — a) — (uUF - a) for¢:F=-G

Because the hofunctors are contravariant, some of the arrows in the
higher-order naturality property get reversed:

OPg
HGC——HG

ml im

JKF?XF

Thus, our claim induces a proof obligation

FOLDF (f - §a) = FOLDG /- 19

for ¢ :F— G and f: Ga — o, which, since u¢ is itself an instance
of FOLD, can be discharged using fold fusion:

FOLDGf -ING - ¢[1G

= { FOLD evaluation }
f-G(FOLDG f) - $uG

= { naturalityof ¢ }
[+ 9a-F(FOLDG f)

In particular, an integer-specific instance of the example in Section 1
has T(a) = 14 1Int x (o0 x &), so that u T is binary trees of integers,
and Lo = 1+ Int x « as before, so that uL is lists of integers.
Choose ¢ : T — L = id + id x fst, which discards right children.
Then Ispine = ¢, and the naturality property implies that ldepth =
length - Ispine as required. (For a polymorphic datatype Tree o, one
would need to use a bifunctor such as To(B) =1+ 0o x (B x B);
the theory generalises smoothly in this way.)

3.3 Paramorphism

We have shown that both the datatype-generic constructor IN of
initial algebras and the FOLD operator enjoy a rather special property,
being parametric in their shape parameters. However, there is



nothing inherently specific about FOLD and IN in this regard;
many other datatype-generic operators enjoy similar properties. For
example, there are generalizations of FOLD, from so-called iteration
to primitive recursion. Meertens [28] captures the familiar pattern
of primitive recursion by defining the paramorphism:

PARAF: (F(a x uF) — a) — (uF — o)
This too is a hont PARA : 5 — J¢ where contravariant hofunctor
A (C~> C) ~> CP is given by:

HF = (F(o x uF) — @)

Y= ((9x(idxng))):#G— HF forg:F->G

and ¥ is the hofunctor used for FOLD above.

4. Co-algebraic honts

‘We can obtain another class of honts by dualizing the constructions
of the previous section, using @-continuous functors. In this case,
we obtain an @-continuous hofunctor v : (C ~» C) ~» C dualizing
1, with action on natural transformation ¢ : F — G defined by:

V¢ = UNFOLDg (@yfF - OUTE): VF — vG
(preservation of identities and compositions is straightforward to
check). We then have a family of dual natural transformations.
41 Out

Dually to IN, the destructor OUT of final co-algebras is natural in its
functor parameter too: OUT: v — % where v: (C~» C) ~ Cis as
defined above, and covariant hofunctor .#": (C ~» C) ~» C is given
by:

HF =F(vF)

HP=0¢xvd:F(VF) - G(vG) ford:F-G
That is,

G(v9) - ¢yF - OUTE = OUTG - V@

which may again easily be verified using the definition of v¢ and
the evaluation rule of UNFOLD.

4.2 Unfold
Similarly, the UNFOLD operator dualizing FOLD is a hont J# —» ¢
where covariant hofunctors 3¢, % : (C ~» C) ~» C are given by:
HP = (¢g): (0t — Fa) = (¢ — Gar) for ¢ :F -G
HF =(a— VvF)
Ho=(vp):(a¢— VF)— (¢ —»vG) for¢:F>G
The higher-order naturality amounts to the claim that
UNFOLDg (¢g -f) = V¢ - UNFOLDE f

for f: @ — Fo; by definition of v¢ and unfold fusion, it suffices to
show

@yF - OUTE - UNFOLDE f = G(UNFOLDE f) - ¢ - f

which follows from the naturality of ¢ and the evaluation rule for
UNFOLD:

¢vE - OUTE - UNFOLDE f

= { UNFOLD evaluation }
¢vF - F(UNFOLDE f) - f

= { naturalityof ¢ }
G(UNFOLDE ) - 9 - f

(Note that the higher-order naturality of UNFOLD is simpler than
that of FOLD, because it does not involve contravariance. Perhaps

UNFOLD should be better appreciated [10] — even considered the
‘ordinary’ case, and FOLD its dual?)

As an application of the higher-order naturality of UNFOLD,
consider Pascal’s Triangle:

1 5 10 10 5 1

The triangular shape can expressed as the final coalgebra of the
bifunctor U defined by Uy = Int X IStream X IStream X o, which
gives a vertex of type Int, two infinite edges of type IStream Int,
and an inner structure of type o. Pascal’s Triangle itself is
UNFOLDy step (repeat 1), where

step (SCons x (SCons y xs))
=let zs = SCons (2 x y) (zipAdd (xs,zs))
in (x,SConsy xs,SCons y xs,zs)

(That is, the seed of the unfold is one of the infinite edges. The initial
seed is an infinite stream of ones, and the seed evolves according to
the definition of zs above.)

Pascal’s Triangle has many nice properties. One of them is that
the nth element of the central column 1,2,6,20... is the number of:
non-decreasing sequences of n integers drawn from O... n; direct
routes on a grid making n steps East and n steps North in total;
directed, convex polyominoes having semiperimeter n 4 2; and
so on [35, Sequence A000984]. Extraction of this middle column
is achieved by v¢, where the natural transformation ¢ : U — S is
defined by ¢ (x,ys,zs,u) = (x,u). By higher-order naturality of
UNFOLD,

V¢ - UNFOLDy step = UNFOLDg step’
where

step’ (SCons x (SCons y xs))
=let zs = SCons (2 X y) (zipAdd (xs,zs))
in (x,zs)
This yields a direct method of computing Sequence A000984,
without having to generate Pascal’s Triangle first.

4.3 Apomorphism

As in the initial algebra case, there is a further family of operators
expressing various forms of co-iteration and primitive co-recursion,
all of which are also honts. Uustalu and Vene [39] dualize Meertens’
paramorphisms by defining the apomorphism:

APOg: (a — F(ot+ VF)) — (a0 — VF)

This is another hont APO: S# - ¢ where covariant hofunctor
A (C~» C)~» Cis given by:
HF = (a— F(a+VvF))
Ho=((¢x(id+Vvo))): H#F -G for¢:F->G

and ¥ is the hofunctor used for UNFOLD above.

5. Non-honts

This large collection of higher-order natural datatype-generic oper-
ations begs a question: is every datatype-generic operator a hont?
Certainly not! In fact, the Generic Haskell function encode of Sec-
tion 2.2 is a counterexample. If it were a hont, it would have to be
of the form

encodep : UF — List Bool



This is of the right type to be a hont u — %", where %" is the con-
stant hofunctor defined by .%2'F = List Bool and % ¢ = id| st poo-
However, the naturality property corresponding to any OP: u — %~
reduces to

OPG - ll¢ = OPF

for ¢ : F — G — that is, all naturally related data structures (such as
a binary tree and its left spine) are equivalent under OP. In particular,
if G is the constant functor defined by Ga = 1 and Gf = idy, then
for any F there is a unique natural transformation ¢ from F to G and
OPg factors through OPg. That is, OPF must have the same constant
value for any F, which is clearly not what is wanted.

The same applies to the generic size operation that counts the
(integer) values in a data structure — another standard example in
the Generic Haskell literature [17]:

sizeflo:*]} : (size{o}) = a — Int
size{|Unit]} () =0
size{|Int[} n =1

size{a 4 B} (Inl x) = size{af x
size{ a4 B} (Inry) = size{B[} y
size{a:x: B} (x,y) = size{al x+size{B}y

As with encode, a hont of this type would have to be constant; all
structures would have the same size.

The difference here is that Generic Haskell is based on case
analysis of the shape, rather than blind application of the shape
parameter; it therefore allows completely different behaviours in
different branches of the analysis. This gives greater flexibility (as a
corollary to the above, generic encoding and generic size cannot be
defined in the Algebra of Programming style), but with that greater
power comes greater responsibility.

6. Higher-order theorems for free

The statement that PARA is a hont can be proven from first principles,
or using the higher-order naturality of FOLD and IN, in terms of
which PARA is defined. However, by analogy with the first-order
case [33, 40], one might expect to be able to deduce the result
‘for free’ from the type of PARA, using a kind of second-order
parametricity theorem [30]. As in the first-order case, naturality is
the special case of parametricity where the type takes the form of
a morphism between functors. In this section, we present such a
theorem.

Our method is to define a small language in which initial algebra
operators like PARA may be defined, and to prove a parametricity
theorem for terms in this language. Though we present only the
initial algebra case, the same method can also be applied to define a
language for final co-algebra operators.

Our language has two parts: a typed lambda calculus, and a
notation for categorical combinators.

6.1 Lambda-calculus of types

The first part is a conventional typed A-calculus as shown in Figure 1.
We shall interpret this calculus using the cartesian-closed structure
on w-cocomplete categories and @-cocontinuous functors. Thus
kinds are interpreted as categories:

Cx =C

Crimr = Cig ~ Cg
This interpretation is readily extended to type contexts:
CXI::KI.,.“,X,,::K,, = Clq X X (CK"

The objects of the category Cp are type environments §. That is,
each 6 in C, is a family of objects, i.e. a function mapping type

Raw syntax

Kinds K *| K| =K
Types T K| X|AX:x.T|T\ T
Type contexts A X1 0K, Xn i Ky
Constants

1 %

(H)ux=>x=>%
(X)ux=*=%*
o (k=) =%

Type judgements A= T:: k

AFK:x (K:xeSig) AX:kFEX:k
AFT K = K

AX: kK ET: K AFTy: K

AFAX: k. T K = K AFT Ty Kk

Figure 1. Lambda-calculus of types

variables X :: k to objects of Ck. The arrows of this category are
indexed transformations T € Cx(8,8’), so that T X : Cx (8 X, 8’ X).

We assume for each constant K :: k an interpretation [K] € |Cy|.
Indeed we have used the same names for the constants in Figure 1
as the corresponding objects in the metalanguage. Thus [[1] is
the object of C, while [+] and [x]] are the corresponding binary
functors C ~ C ~» C and [[u]] is the functor p: (C ~ C) ~ C.
That is, u maps functors to objects, and natural transformations to
ordinary morphisms. Note that the calculus has no constant — for
function types, as this does not correspond to a covariant functor.
Function types will be handled specially by the next layer of the
calculus in the next section.

The interpretation of a type judgement A - 7T :: k is standard [7],
but specialised to the cartesian closed structure of this category of
categories, so that it defines a functor:

[AFT: k] € Cp~ Ck

This functor maps an object environment 8 € |Cy| to an object
[AFT:«]6 € |Cg]

and a transformation of environments T € CA(6,8’) to
[AFT: k]t € Cx([AFT::x]8,[AF T::x]8")

The interpretation of application is the functor * introduced in
Section 3.

6.2 A language for initial algebra combinators

The second part of the language allows us to express categorical
combinators. The syntax and type rules of our language are given in
Figure 2.

The signature Sig consists of the kinded type constants 7 :: K
of Figure 1, plus polymorphic constants k:AX;:: k;. S, where
Xy ky,...Xy 0K E S. We assume a fixed signature, containing the
usual polymorphic constants for 1, +, and X, as well as higher-order
polymorphic constants:

IN  :AF:x= % F(uF) — uF
FOLD:AF:i% = x,Au:x. (FA—A) — (UF — A)
MAP :AF:x= % A:x,B:*. (A— B)— (FA— FB)
Our language is somewhat restrictive; in particular it can express

higher-order functions on data structures, but cannot express data
structures containing functions. However, it is sufficient for defining



Raw syntax

Function types T|S1—$;
Expressions e ks, .5, |x|Ax:S. e|ej e
Expression contexts r X1:81, 00y X0 2 Sy
Function type judgements A - S
A S
AT % AF S,
A-T AES| — 8

Expression judgements A;T'Fe: T

AT

AETi:x

AT Ekr o1, ZS[T,‘/XJ (k:AX;::x;. S € Sig)

AFT

AFS AT x:S1Fe: S

AT, x:Skx:S ATHEAx:S1.e:851— S
ATHe :8S1— 8 AT Fe: S

AT Eer: Sy A Sy =Bn SH
ATHeper:Sh ATHe: S,

Figure 2. A-calculus of operators

the various initial algebra operators. For example, the PARA operator
of Section 3.3 can be expressed as
Fiux=xAux
Af :F(Ax uF) — A.
fst-FOLDEg (At:F(A x uF).
(f t,INg (MAPE snd 1)) :
(F(Ax uF) — A) — (uF — A)

Next we shall define a parametric interpretation of our language,
through which polymorphic types like the above yield parametricity
properties, including higher-order naturality.

6.3 Interpretation of function types and expressions

We can interpret function type judgements A - S straightforwardly
as mappings of objects:

Ofars] € [Csl—IC|

O[AF T]S = [AF T:4)8
OfAF S — 56 =O[AF$]6 — O[A+ $>]6

However we cannot define a mapping of arrows, because the
function type constructor — is not covariant in both arguments.
We shall instead interpret a judgement A - S as mapping arrows of
C, to relations between the corresponding objects of C. Although
relations support composition, this composition is not preserved by
the semantic mapping, so we shall not use a category of relations,
and the mapping will not be a functor.

To define relations, we need to identify a set of points of each
object of C. We define the functor Pt: C ~ Set by Pt = C(1,-).
The corresponding notion of application takes f € Pt (A — B) and
a € Pt A and yields f @ a € Pt B. We assume that C is well-pointed,
that is, equality of arrows, f = g, reduces to equality on points,
Vae C(l,A).fea=ge@a.

Then the relational interpretation follows the usual definition of
a logical relation. For 7 € C(8,8'), we define

RIAF S|t

€ Rel(Pt(O[AF S]8),Pt(O[AF S]6))

R[AF Tz (p,p)) =[AFT=x]t-p=p
RIAE St = Sz (f.f) =Vp.p" R[AE Stz (p.p") =
R[AES]e (fep.f ep)
For each constant k: AA. S, we assume for each 6 € |Cy| a point

[¥]6 € Pt (OfAF S])

such that for T € C(8,8’) we have R[AF S|t ([K] S, [k] 6').
For example, for the constant IN, the type
IN:AF::x = *. F(uF) — uF

implies the property
Vil gxug-t=1 = p¢ -INg-t=INg-

(recall that ‘x’ binds tighter than ), or equivalently

Vt. U@ - INF-t=ING-Q*Uu¢ -t
As C is well-pointed, this is equivalent to

HO-INF =ING- P+ U
which is exactly the higher-order naturality property of IN.
As a second example, for the constant

FOLD:AF:i% = x,Au:x. (FA—A) — (UF — A)
the property implied by the type reduces similarly to

Vf.f.a-f =f-¢ xa=> a-FOLDE f = FOLDG f' - u¢
which combines the higher-order naturality property of FOLD with

the first-order fusion law.
As a third example, for the constant

MAP:AF % = x,A::%x,B::%. (A — B) — (FA — FB)
the property implied by the type reduces similarly to
YV f . b-f =f -a= ¢xb-MAPEf = MAPG f - ¢ *a
Since MAPF represents the action of F on arrows, this reduces to

Vf. ¢ -Ff =Gf - 9a
which is the statement of the naturality of ¢. Note that as F occurs
in both positive and negative positions in the type of MAP, the
parametricity property does not correspond to naturality in F, just
as FOLD is parametric but not natural in A.

For each I'; A |- e: S, we have an interpretation of expressions

[T:AF e:S]8 € C(O[AF TS, D[AF S]8)

using the cartesian closed structure of C in the usual way. In
the special case where the expression e is closed, the expression
context I" will be empty, so that the semantics is an arrow in
C(1,O[]A+ S]0), that is, a point.

6.4 Consequences of the interpretation

Assuming these properties for the primitive constants, our aim is to
infer similar properties for other combinators that we can define in
our language.

This is expressed by our main theorem: if 7 is a transformation
between type environments & and &, such that the corresponding
relation holds between value environments ¥ and ¥/, then the
interpretation of A;I"F e: S with respect to 6 and ¥ is related to the
interpretation with respect to 8’ and 7. As with the corresponding
result for the polymorphic A-calculus, this is established by a
straightforward induction over the derivation of A;I"'Fe: S.

Theorem 1 Given
T € CA(6,6/)
vy € Pt(O[AFTI]9)
Y € Pt(O[AFTT] &)



we have

RAFT]T (r.Y) =
RIAF St ([ATF e:8]6 -7, [ATF e:5]8' - 7)

O

When e is closed, things are much simpler. I will be empty,
O[AFT]8 and OA+ T8’ will both be 1, so the relation between
them trivially holds.

Corollary 2 For any closed term A; e: S and 7 € CA(5,8’), we
have

RIAF St ([A; F e:S]8, [A; - e:S]8)

For example, the PARA operator defined above had the type
Fix=xAux k.. (FAXUF) —A) — (uUF — A)
From this type we can infer the property

Vff . a-f=f¢x(ax up) = a-PARAF f = PARAG [ - O

That is, we get for free the higher-order naturality property presented
in Section 3.3, combined with a first-order fusion law; specializing
to a = id yields the higher-order naturality alone.

7. Conclusions

We have shown that the datatype-generic FOLD operator enjoys a
kind of higher-order naturality property, relating different instances
connected by a natural transformation; moreover, that naturality
property arises for free from the type of the operator. Similar results
apply to many other datatype-generic operators in the origami
programming style. Moreover, those results may be derived for
free from the higher-kinded type of the operator. In contrast, in
approaches to datatype-generic programming that rely on case
analysis on the shape of data, such properties have to be much
more carefully engineered.

7.1 Inspiration

Our inspiration for the higher-order natural transformations de-
scribed in this paper is Paul Hoogendijk’s very elegant work with
Roland Backhouse [19, 20] on generic ‘zip’ functions ZIPg g : Fo
G — GoF that commute or transpose two functors F and G. The gen-
eral case requires a relational setting, because such a transposition
might be partial (for instance, yielding no result on mismatched data
structures, such as when zipping a pair of lists of differing length)
and non-deterministic (for instance, yielding results of arbitrary
shape, such as when zipping with a constant functor F). However,
the essence of the idea can be seen from considering the special case
when G corresponds to a fixed-shape datatype such as Pair. In this
case, the partially-parametrized remainder is conventionally called a
‘generic unzip’ UNZIPg : F o Pair — Pair o F, and can easily be given
an explicit definition:

UNZzIPE = Ffst A Fsnd

where fst and snd are the projections from Pair, and A generates
a Pair using two element-generating functions. It is not hard to
show that UNZIP is a hont (cPair) = (Pairc). The higher-order
naturality property arising from this observation was used in [5] to
transform an O(nlogn)-time algorithm for computing bit-reversal
permutations to O(n)-time.

7.2 Related work

The equation capturing the higher-order naturality of FOLD has
appeared before; for example, it is Theorem 6.12 of the second

author’s PhD thesis [31], Equation 29 in the influential ‘bananas
paper’ [29], and Equation (4) of [38]. However, to the best of our
knowledge, the fact that this property is a naturality property has not
been noted previously. Although Hoogendijk [19] coins the term
‘parametric polytypism’ (for what we call ‘parametric datatype-
genericity’), and contrasts it with ‘ad hoc polytypism’, the only
hont he considers is the generic zIP described above. In particular,
although Hoogendijk certainly makes use of FOLD, there is no
evidence from his writing that he realised that it too was a hont. The
closest observation we are aware of in the literature is an offhand
remark (‘catamorphisms on different types can be related, but the
precise details are not clear to us’) by Jeuring and Jansson [21]. The
extension to other datatype-generic operators such as UNFOLD, and
the higher-order parametricity result itself, appear to be novel, albeit
perhaps not very surprising with the benefit of hindsight.

7.3 Acknowledgements

We would like to thank the members of the Algebra of Programming
group at Oxford, for helpful discussions on this work; in particular,
Bruno Oliveira showed us how to carry out the fusion in Example 4.2.
Philip Wadler, Patty Johann, Neil Ghani, and the anonymous referees
all provided advice that improved our presentation.

References

[1] Matthew H. Austern. Generic Programming and the STL. Addison-
Wesley, 1999.

[2] Roland Backhouse and Jeremy Gibbons, editors. Summer School on
Generic Programming, volume 2793 of Lecture Notes in Computer
Science. Springer-Verlag, 2003.

[3] Roland Backhouse, Jeremy Gibbons, Ralf Hinze, and Johan Jeuring,
editors. Spring School on Datatype-Generic Programming, volume
4719 of Lecture Notes in Computer Science. Springer-Verlag, 2007.

[4] Richard Bird and Oege de Moor. Algebra of Programming. Prentice-
Hall, 1996.

[5] Richard Bird, Jeremy Gibbons, and Geraint Jones. Program
optimisation, naturally. In J. W. Davies, A. W. Roscoe, and J. C. P.
Woodcock, editors, Millenial Perspectives in Computer Science.
Palgrave, 2000.

[6] Luca Cardelli and Peter Wegner. On understanding types, data
abstraction and polymorphism. ACM Computing Surveys, 17(4):471—
522, December 1985.

[7] Roy L. Crole. Categories for Types. Cambridge University Press,
1994.

[8] Jeremy Gibbons. Origami programming. In Jeremy Gibbons and
Oege de Moor, editors, The Fun of Programming, Cornerstones in
Computing, pages 41-60. Palgrave, 2003.

[9] Jeremy Gibbons. Datatype-generic programming. In Backhouse et al.
(31.

[10] Jeremy Gibbons and Geraint Jones. The under-appreciated unfold. In
International Conference on Functional Programming, pages 273-279,
Baltimore, Maryland, September 1998.

[11] Jean-Yves Girard. Interprétation Fonctionnelle et Elimination des
Coupures de I’Arithmétique d’Ordre Supérieur. PhD thesis, Université
de Paris VII, 1972.

[12] Cordelia Hall, Kevin Hammond, Simon Peyton Jones, and Philip
Wadler. Type classes in Haskell. ACM Transactions on Programming
Languages and Systems, 18(2):19-138, 1996.

[13] Robert Harper and Greg Morrisett. Compiling polymorphism using
intensional type analysis. In POPL, 1995.

[14] Ralf Hinze. A generic programming extension for Haskell. In Erik
Meijer, editor, Third Haskell Workshop, 1999.

[15] Ralf Hinze. Polytypic values possess polykinded types. In Roland
Backhouse and José Nuno Oliveira, editors, Mathematics of Program



Construction, volume 1837 of Lecture Notes in Computer Science,
pages 2-27. Springer-Verlag, 2000.

[16] Ralf Hinze and Johan Jeuring. Generic Haskell: Applications. In
Backhouse and Gibbons [2], pages 57-97.

[17] Ralf Hinze and Johan Jeuring. Generic Haskell: Practice and theory.
In Backhouse and Gibbons [2], pages 1-56.

[18] Ralf Hinze, Johan Jeuring, and Andres Lh. Comparing approaches to
generic programming in Haskell. In Backhouse et al. [3].

[19] Paul Hoogendijk. A Generic Theory of Datatypes. PhD thesis,
Technische Universiteit Eindhoven, 1997.

[20] Paul Hoogendijk and Roland Backhouse. When do datatypes
commute? In Eugenio Moggi and Guiseppe Rosolini, editors, Category
Theory and Computer Science, volume 1290 of Lecture Notes in
Computer Science, pages 242-260. Springer-Verlag, September 1997.

[21] Johan Jeuring and Patrick Jansson. Polytypic programming. In
John Launchbury, Erik Meijer, and Tim Sheard, editors, Advanced
Functional Programming, volume 1129 of Lecture Notes in Computer
Science. Springer-Verlag, 1996.

[22] Mark P. Jones. Functional programming with overloading and higher-
order polymorphism. In Johan Jeuring and Erik Meijer, editors,
LNCS 925: Advanced Functional Programming. Springer-Verlag,
1995. Lecture notes from the First International Spring School on
Advanced Functional Programming Techniques, Bastad, Sweden.

[23] Ralf Lidmmel and Simon Peyton Jones. Scrap your boilerplate:
A practical design pattern for generic programming. In Types in
Language Design and Implementation, 2003.

[24] Ralf Lammel and Simon Peyton Jones. Scrap more Boilerplate:
Reflection, zips, and generalised casts. In International Conference on
Functional Programming, pages 244-255. ACM Press, 2004.

[25] Ralf Lammel and Simon Peyton Jones. Scrap your Boilerplate with
class: Extensible generic functions. In International Conference on
Functional Programming, pages 204-215. ACM Press, September
2005.

[26] Andres Loh. Exploring Generic Haskell. PhD thesis, Utrecht
University, 2004.

[27] Saunders Mac Lane. Categories for the Working Mathematician.
Springer-Verlag, 1971.

[28] Lambert Meertens. Paramorphisms. Formal Aspects of Computing,
4(5):413-424, 1992.

[29] Erik Meijer, Maarten Fokkinga, and Ross Paterson. Functional
programming with bananas, lenses, envelopes and barbed wire.
In John Hughes, editor, Functional Programming Languages and
Computer Architecture, volume 523 of Lecture Notes in Computer
Science, pages 124—144. Springer-Verlag, 1991.

[30] John C. Mitchell and Albert R. Meyer. Second-order logical relations.
In Rohit Parikh, editor, Logics of Programs, volume 193 of Lecture
Notes in Computer Science, pages 225-236, 1985.

[31] Ross A. Paterson. Reasoning about Functional Programs. PhD thesis,
University of Queensland, 1987.

[32] Simon Peyton Jones. The Haskell 98 Language and Libraries: The
Revised Report. Cambridge University Press, 2003.

[33] John C. Reynolds. Towards a theory of type structure. In B. Robinet,
editor, Colloque sur la Programmation, volume 19 of Lecture Notes in
Computer Science, pages 408—425. Springer-Verlag, 1974.

[34] Jeremy G. Siek, Lie-Quan Lee, and Andrew Lumsdaine. The Boost
Graph Library. Addison-Wesley, 2002.

[35] Neil J. A. Sloane. On-line encyclopedia of integer sequences.
http://www.research.att.com/~njas/sequences/. Accessed
May 2007.

[36] Michael B. Smyth and Gordon D. Plotkin. The category-theoretic
solution of recursive domain equations. SIAM Journal on Computing,
11(4):761-783, November 1982.

[37] Walid Taha. A gentle introduction to multi-stage programming.
In Christian Lengauer, Don Batory, Charles Consel, and Martin
Odersky, editors, Domain-Specific Program Generation, number 3016
in Lecture Notes in Computer Science, pages 30-50. Springer-Verlag,
2004.

[38] Tarmo Uustalu, Varmo Vene, and Alberto Pardo. Recursion schemes
from comonads. Nordic Journal of Computing, 2001.

[39] Varmo Vene and Tarmo Uustalu. Functional programming with
apomorphisms (corecursion). Proceedings of the Estonian Academy
of Sciences: Physics, Mathematics, 47(3):147-161, 1998. 9th Nordic
Workshop on Programming Theory.

[40] Philip Wadler. Theorems for free! In Functional Programming
Languages and Computer Architecture, pages 347-359. ACM, 1989.



