
ar
X

iv
:c

s/
04

07
03

6v
1

 [
cs

.D
S]

 1
5

Ju
l 2

00
4

All Maximal Independent Sets and

Dynamic Dominance for Sparse Graphs

David Eppstein⋆

Computer Science Department
School of Information & Computer Science

University of California, Irvine
eppstein@uci.edu

Abstract. We describe algorithms, based on Avis and Fukuda’s reverse search paradigm, for listing
all maximal independent sets in a sparse graph in polynomial time and delay per output. For bounded
degree graphs, our algorithms take constant time per set generated; for minor-closed graph families,
the time is O(n) per set, and for more general sparse graph families we achieve subquadratic time
per set. We also describe new data structures for maintaining a dynamic vertex set S in a sparse or
minor-closed graph family, and querying the number of vertices not dominated by S; for minor-closed
graph families the time per update is constant, while it is sublinear for any sparse graph family. We
can also maintain a dynamic vertex set in an arbitrary m-edge graph and test the independence of
the maintained set in time O(

√
m) per update. We use the domination data structures as part of our

enumeration algorithms.

1 Introduction

In this paper we revisit the classical combinatorial enumeration problem of generating all maximal
independent sets of a graph, or equivalently generating all cliques in the complement of the graph.
Many algorithms for this problem are known; see, e.g., [9–13, 15, 17, 18, 21, 22], or the survey by
Bomze et al. [3]. However, all take at least quadratic time per generated independent set even
on sparse graphs. There has also been work on maximal independent set enumeration with time
bounds proportional to the maximum possible number of such sets [4, 8, 20], but these algorithms
may take a large time per set on instances with few maximal independent sets. We find more
efficient maximal independent set generation algorithms for many graph classes including bounded
degree graphs, minor-closed graph families, and subgraph-closed sparse graph families. Although
graphs in these classes have polynomially many cliques [5], generating all maximal independent sets
is more difficult for these graphs as there may be exponentially many such sets.

Our maximal independent set algorithms require us to quickly test whether certain subsets of the
vertices of the graph dominate the remaining vertices, so we also consider the problem of dynamic
dominance testing. We provide very efficient algorithms for this problem on minor-closed graph
families, taking constant time per test. We also find sublinear algorithms for dynamic dominance
in more general sparse graph families. As a simple consequence of the latter result we show how to
test independence of dynamic vertex sets in arbitrary graphs.

2 Reverse Search

Reverse search is a powerful paradigm for enumeration developed by Avis and Fukuda [1, 2] and
applied by them to many enumeration problems including listing all vertices of a convex polytope,
triangulations of a planar point set, vertices or cells of a hyperplane arrangement, spanning trees in

⋆ Supported in part by NSF grant CCR-9912338.

http://arxiv.org/abs/cs/0407036v1

graphs and non-crossing spanning trees in the plane, connected induced subgraphs of graphs, and
topological orderings of directed acyclic graphs.

To use reverse search, one needs a parent operation on the objects being enumerated, such that
any two objects can be transformed to a common canonical object by repeated parent operations. For
instance, for triangulations, the parent operation finds two triangles sharing an edge and maximizing
the sum of the two angles opposite the shared edge, and replaces them by two other triangles with
the same union; repeated application of this flip operation reduces any triangulation to a canonical
triangulation, the Delaunay triangulation of the input. For convex polytopes, the parent operation
can be any simplex method pivot rule, for an appropriate linear objective function, and the canonical
object is the vertex minimizing the objective function’s value. We form a rooted tree, having as its
vertices the objects to be enumerated, with edges between each object and its parent, and having
the canonical object as root. Reverse search is simply depth first tree traversal applied to this
tree. In order to perform this traversal, one must be able to identify the children of each node in
the tree. Typically, a polynomially-sized superset of the children is identified (e.g. in the case of
triangulations, this superset could be all triangulations reachable from the given one by a single
flip). We can then test whether any member of the superset is a child of the current object by
applying the parent operation to it and comparing the result to the current object.

Thus, reverse search performs the following steps for each object: identify a superset of the
object’s children, apply the parent operation to test each member of the superset, and search
recursively each child found by this test. In this basic form, the time per object is the product of
the number of items in the superset with the time to generate each member of the superset and
apply the parent operation to it. As we shall see for our maximal independent set enumeration
algorithm, however, reverse search may be sped up in various ways, for instance by maintaining
data structures that allow us to perform the parent tests more quickly.

3 Basic Independent Set Generation Algorithm

To apply reverse search to maximal independent set generation, we need an appropriate parent for
each maximal independent set S. Assume we have ordered the vertices into a sequence; this allows
us to compute the lexicographically first maximal independent superset of any independent set by
considering the vertices one at a time, in order, and adding each vertex to the set whenever it is
independent of the vertices already in the set. The lexicographically first maximal independent set
(LFMIS for short) is the lexicographically first maximal independent superset of the empty set.
To find the parent of S, let v be the vertex of LFMIS \ S occurring earliest in the sequence, let
N = N(v) ∩ S, and let parent(S) be the lexicographically first maximal independent superset of
(S ∪ {v}) \ N . Each parent operation increases the length of the initial prefix of shared vertices
between S and LFMIS, so after at most |LFMIS| repetitions of the parent operation, the canonical
maximal independent set LFMIS will be reached. Therefore, this parent operation satisfies the
requirements of the reverse search paradigm.

For any vertex v in LFMIS, let later(v) be the set of vertices in V (G) \ LFMIS for which v
is the adjacent LFMIS vertex that appears earliest in the ordering. The sets later(v) partition
V (G) \ LFMIS. If S is maximal independent, and parent(S) is the lexicographically first maximal
independent superset of (S ∪ {v}) \ N , then N ⊂ later(v), for no vertex in N could be adjacent
to an earlier vertex in LFMIS than v without violating the assumed independence of S. Thus, to
search for the children of a maximal independent set S, we need only consider sets N ⊂ later(v)
for some v in the initial prefix of shared vertices between S and LFMIS.

The recursive search pseudocode in Listing 1, with an initial call to search(LFMIS), instantiates
the reverse search paradigm for the maximal independent set problem. The collection of potential

2

def search(S):
output S
for each vertex v in the ordered sequence:

if v is not in LFMIS:
continue

if v is not in S:
break

for each nonempty independent subset N of later(v):
T = (S union N) \ (neighbors of N)
if T is maximal and parent(T) == S:

search(T)

Listing1. Recursive reverse search for maximal independent sets.

children generated by each call to search may include sets that are not maximal independent, so
we must check that each generated set T is maximal as well as that its parent is S; this problem
of testing maximality is a large part of the difficulty in making our reverse search algorithms
efficient. To reduce the space occupied by the call stack, we generally prefer a version of the search
procedure in which the recursive calls have been unfolded into the procedure itself. This unfolding
can be done without need for an auxiliary stack, at the expense of some code complexity and an
additional parent computation per generated set, as shown in Listing 2.

4 Minor-Closed Domination

To make our search procedure efficient, we need a fast way of handling its maximality tests. The
sets that must be tested are automatically independent, and an independent set is maximal if and
only if it dominates the graph; that is, all vertices are either in or adjacent to the set. Therefore,
we make use of a more general data structure for testing domination. We describe here such a data
structure for minor-closed graph families. That is, given graph G from a minor-closed graph family
F , we wish to maintain a set S ⊂ V (G), subset to insertions and deletions of elements of S, and
answer queries requesting the number of vertices in G that are not dominated by S. We show how
to do this in constant time per update or query, and linear space and preprocessing time. We will
use this data structure later as part of our maximal independent set enumeration algorithm.

Lemma 1. For any minor closed graph family F , graph G ∈ F , and nonempty Q ⊂ V (G), define

an equivalence relation
Q∼ on V (G) \ Q by u

Q∼ v if and only if N(u) ∩ Q = N(v) ∩ Q. Then the

number of equivalence classes of
Q∼ is O(|Q|), where the constant of proportionality depends on F

but not on G.

Proof. Suppose for a contradiction that we can find G ∈ F and Q ⊂ V (G) where the number of

equivalence classes of
Q∼ is an arbitrarily large multiple of |Q|. For any such Q and G, form a minor

GQ of G by the following process: let the vertices of GQ be the same as the vertices of Q. Consider

(sequentially, in arbitrary order) the equivalence classes of
Q∼, choose a representative vertex v for

each equivalence class, and form an edge in GQ by contracting a path through v between two vertices
in N(v) ∩Q, unless all such paths connect pairs of vertices that are already connected in GQ. At
each step of the construction process outlined above, GQ is a minor of G; therefore, it belongs to F ,
and using the known sparsity of minor-closed graph families [14] we can show that there are O(|Q|)
cliques in the partially constructed minor GQ [5]. An equivalence class represented by v can only
fail to add an edge to GQ iif N(v) ∩ Q already forms a clique, so only O(|Q|) equivalence classes

3

def search(S):
lseq = subsequence of vertices v with nonempty later(v)
while True:

output S
v = first vertex in lseq
N = first nonempty independent subset of later(v)
while True:

T = (S union N) \ (neighbors of N)
if T is maximal and parent(T) == S:

S = T # unfolded call to search(T)
break

while True:
if N != last nonempty independent subset of later(v):

N = next nonempty independent subset of later(v)
break

if v != last in lseq :
v = next in lseq
if v in S:

N = first nonempty independent subset of later(v)
break

if S == LFMIS:
return

P = parent(S)
v = first vertex from lseq in P \ S
N = S \ P
S = P # unfolded return to search(P)

Listing2. Nonrecursive reverse search for maximal independent sets.

fail to contribute an edge. Thus, if the number of equivalence classes could be an arbitrarily large
factor times |Q|, we could form arbitrarily dense minors GQ, contradicting the known bounds on
density of minor-closed graph families [14]. ⊓⊔

One can prove more directly that planar graphs have at most max(6|Q| − 9, 2|Q|) classes.
Our data structure consists of the vertices of G together with a linear number of additional

supervertices. To form the supervertices, we form a sequence of graphs G0 = G, G1, G2, . . . , as
follows. Let ∆ be a constant, depending on graph family F but not on the particular graph G. To
form Gi from Gi−1, let Qi be the set of vertices in Gi−1 with degree at least ∆. Partition Gi−1 \Qi

into the equivalence classes of
Qi∼ and form a single supervertex for each such class. Form the edges

of Gi from the induced subgraph for Qi, together with an edge from a supervertex s to h ∈ Qi

whenever a vertex v in the equivalence class corresponding to s is connected to h in Gi−1.
We can make the following observations and further definitions about this process.

– Each Gi is isomorphic to a subgraph of G (formed by choosing a representative vertex for each
supervertex and omitting edges between pairs of supervertices), so it belongs to F .

– By Lemma 1, |V (Gi)| = O(|Qi|), and by choosing ∆ sufficiently large we can make |Qi ≤
ǫ|V (Gi−1| for any constant ǫ > 0. Thus, we can ensure that each graph in the sequence is
smaller by a constant factor than the previous one.

– Each supervertex has degree at most ∆− 1, so each vertex in Qi is an original vertex of G.
– The sequence of graphs Gi terminates only when the remaining graph forms a single supervertex

of degree zero.

– Each equivalence class of
Qi∼ contains at most one supervertex of Gi−1 with the same degree.

item If a supervertex v of Gi contains a supervertex u of Gi−1, and has the same degree, we

4

consider the two to have the same identity, and represent them by the same object in the data
structure.

– Define the level of a vertex or supervertex v to be the largest i such that v ∈ V (Gi). Each
original vertex of G belongs to at most ∆ − 1 supervertices, which (if ordered by level) have a
decreasing sequence of degrees.

Our data structure consists of the following information.

– The graph G and set S to be maintained, and the set of vertices and supervertices in all graphs
Gi constructed as described above.

– For each vertex or supervertex v of level i, other than the degree-zero supervertex, a pointer
sv(v) to the supervertex corresponding to the equivalence class v belongs to in Gi+1.

– For each vertex or supervertex v of level i, a count nadj(v) of the number of adjacent original
vertices of G that belong to S and have level at most i.

– For each vertex of G with level i, a list nbr(v) of adjacent vertices and supervertices in Gi.

– For each vertex or supervertex, a number undom(v). For a vertex of G, undom(v) = 1 when
v ∈ V (G) \ S and undom(v) = 0 when v ∈ S. For a supervertex,

undom(v) =
∑

{w | sv(w)=v∧ nadj(w)=0}

undom(w).

Theorem 1. For any minor-closed graph family F and graph G ∈ F , the data structure above

requires O(n) space and can be constructed in O(n) time. We can query the number of undominated

vertices in G in O(1) time, and insert or delete vertices in S in O(1) time per update. All constants

of proportionality in these bounds depend only on F and not on G.

Proof. The only nontrivial step in the construction of each graph Gi is finding the equivalence

classes of
Qi∼, which can be done by bucket sorting in O(n) time. The times for constructing the

whole sequence of graphs Gi add in a geometric series to O(n).

To query the number of undominated vertices, return undom(z) where z is the degree-zero
supervertex. We say that supervertex v is reachable from vertex u if u == v or v is reachable from
sv(u); z is reachable from every vertex. If v is undominated, nadj(w) = 0 for each w reachable
from v, and v contributes one to each reachable supervertex. If v is in S, it contributes zero to
each reachable supervertex. If v is not in S, but is dominated by a neighbor u ∈ S, let w be the
supervertex containing v at the same level as u; then nadj(w) > 0 and v does not contribute to any
supervertices reachable from w. Therefore, undom(z) is the number of undominated vertices in G.

To insert a vertex v to S, increment nadj(w) for every w in nbr(v), and (if this causes nadj(w) to
change from 0 to nonzero) update undom(x) for every x reachable from w. Also update undom(v)
and undom(u) for every v reachable from v. Each update takes constant time and a constant number
of updates are performed, so the total time is constant. Deletions are handled similarly. ⊓⊔

5 Sparse Domination

We now consider domination data structures for more general sparse graph families. We say that
graph G is k-orientable if we can orient the edges of G in such a way that each vertex has out-degree
at most k. Equivalently (by Hall’s theorem), this condition asserts that every subgraph H ⊂ G has
at most k|V (H)| edges. Any subgraph-closed family of graphs with O(n) edges per n-vertex graph
is k-orientable for some constant k; for instance, planar graphs are 3-orientable, and a 3-orientation
of a planar graph may be found in linear time [6].

5

Our data structure for domination in sparse graphs resembles that for minor-closed graph
families, but differs in detail. Given k-oriented graph G and vertex set Q ⊂ V (G), define equivalence

relation
Q+∼ on V (G) by u

Q+∼ v if and only if N+(u) ∩Q = N+(v) ∩ S, where N+ maps a vertex to

its outgoing neighbors. If s is an equivalence class of
Q+∼ containing v, let N+(s) = N+(v) ∩Q. We

choose a (nonconstant) value ∆, let Q be the set of vertices with degree at least ∆, and create a

supervertex for each equivalence class of
Q+∼ . In our data structure we store the following data:

– The dynamic set S for which we wish to maintain dominance information.
– For each vertex of G, the supervertex corresponding to its equivalence class.
– For each vertex v of G, the number lowdom(v) of edges uv where u belongs to S, and where

either uv is oriented from u to v or u has degree less than ∆.
– For each supervertex s, the number nundom(s) of vertices v in its equivalence class which are

not in S and for which lowdom(v) = 0.
– For each supervertex s, the number hidom(s) = |N+(s) ∩ S|.
– The sum of nundom(s), summed over those supervertices for which hidom(s) = 0.

Theorem 2. For any k-orientable graph G, the data structure above requires O(n) space and can

be constructed in polynomial time. We can query the number of undominated vertices in G in O(1)
time, and insert or delete vertices in S in O(n1−1/k) time per update.

Proof. The query answer is given by the overall sum of nundom(s).
To insert vertex v into S, increment the counts lowdom(v) of all outgoing neighbors of v, and

(if v has low degree) all incoming neighbors of v. Update nundom(s) for each supervertex s that
has an equivalence class containing v or one of these neighbors. If v has high degree, increment
hidom(s) for all supervertices s with v ∈ N+(s). Whenever we change nundom(s) or hidom(s) we
update the overall sum. The process of deleting a vertex is similar.

Inserting or deleting a low degree vertex takes time O(∆), and inserting or deleting a high
degree vertex takes time O((n/∆)k−1) since there are that many supervertices associated with a
fixed high degree vertex. By choosing ∆ = n1−1/k we achieve the stated bounds. ⊓⊔

Dominating sets in k-oriented graphs can be used to model other problems including inde-
pendent sets, matching, k-SAT, and constraint satisfaction. As an example we show how to test
independence in general graphs.

Corollary 1. We can maintain a set S of vertices in an arbitrary m-edge graph G, and test the

independence of S, by a dynamic data structure that takes time O(1) per test and O(
√
m) per

insertion or deletion in S, and uses linear space and preprocessing time.

Proof. Form a graph G′ having vertices corresponding to sets of 0, 1, or 2 vertices in G; we include
as 2-vertex sets in G′ only the sets of endpoints of edges in G. Connect two vertices in G′ by an
edge whenever the corresponding sets differ by a single element. Then G′ can be 2-oriented by
orienting all edges from larger sets to smaller sets. The subset S is independent in G if and only
if {∅} ∪ {{v} : v /∈ S} dominates all vertices of G′, so independence in G can be tested by our
domination algorithm for the 2-oriented graph G′. ⊓⊔

The same result can be achieved more directly: In any k-oriented graph, we can maintain the
number of adjacent pairs in a dynamic set S, and therefore determine the independence of S, by
a simple data structure that stores for each vertex the number of incoming edges from vertices in
S, in time O(k) per update. The corollary follows since any m-edge graph can be O(

√
m)-oriented.

However, the proof we have given for Corollary 1 provides some evidence that dominance is strictly
harder to maintain than independence, since any improvement to Theorem 2 for 2-orientable graphs
would lead to a corresponding improvement to Corollary 1 for arbitrary graphs.

6

6 Sparse Independent Sets

A graph G is k-degenerate [16,19] if its vertices can be ordered in such a way that, for each vertex,
the number of neighbors occurring later in the ordering is at most k. Equivalently, each subgraph
of G has a vertex with degree at most k. This parameter is also known as the inductiveness or
the Szekeres-Wilf number of G. A k-degenerate ordering of G, if one exists, can be found by a
simple greedy algorithm in linear time [16]. It is known [14] that all minor-free graph classes have
bounded degeneracy. A k-degenerate graph is clearly k-orientable (simply orient each edge from
the earlier to the later vertex in a k-degenerate ordering) and conversely a k-orientable graph must
be at most 2k-degenerate, so graphs of bounded degeneracy are the same as the graphs of bounded
orientability considered in the previous section.

Theorem 3. Let G be a k-degenerate graph in which we can maintain a dynamic set S and test

whether S dominates V (G) in time T (n) per insertion or deletion to S. Then, we can list all maximal

independent sets in G, in time O(nT (n)) per generated set and polynomial delay. The space required

by the algorithm is O(n) plus a single instance of the dynamic dominance data structure.

Proof. We use the k-degenerate ordering as the vertex ordering for our reverse search algorithm.
Therefore, each set later(v) will have at most k vertices, each vertex in G will participate in O(1)
sets N ⊂ later(v) throughout a call to search, and the sum of the numbers of neighbors of sets
N will be proportional to the number of edges in the graph, which is O(n). To save space, we
unfold the recursive calls of the search into a nonrecursive version of the algorithm, as described in
Listing 2. The delay bound follows since we can at most test O(n) potential children each at O(n)
levels of the recursion before outputting another set or exiting the search.

As the algorithm progresses, we maintain a dynamic dominance data structure for the current
set S, which we use to test each successive set T for maximality with a number of updates propor-
tional to the size of the set of neighbors of N ; thus, throughout a call to the recursive version of the
search algorithm, the number of data structure updates is O(n). In the nonrecursive search, we also
update the data structure whenever we change the set S by an unfolded recursive call or return;
the total number of data structure updates caused by these changes is again O(n) per output set.

Finally, we must consider the time taken to compute parent(T) for each potential child T
considered by the search algorithm. In these computations, parent(T) is the lexicographic maximal
independent superset of the independent set (T ∪ {v}) \ N . We also know (from the maximality
of T) that the only vertices that can be added in forming the lexicographic maximal independent
superset are neighbors of N . To perform this computation efficiently, we maintain a simple data
structure that stores a count in each vertex of the number of incoming edges from vertices in S.
Each change to S causes k counts to be updated, in time O(1). Then, we modify this data structure
to count incoming edges from T instead of S, and use it to compute the lexicographic maximal
independent superset of T in time proportional only to the number of neighbors of N . Therefore,
all parent computations can be done in time O(n) per generated set. ⊓⊔

Corollary 2. Let F be a minor-closed graph family, and let G be an n-vertex graph in F . Then

we can list all maximal independent sets in G, in time O(n) per set, space O(n), and polynomial

delay, where the constants of proportionality depend on F but not on G.

Corollary 3. We can list all maximal independent sets in any n-vertex k-oriented graph in time

O(n2−1/k) per set, space O(n), and polynomial delay.

7

7 Bounded Degree Independent Sets

We now briefly describe our algorithm for bounded degree graphs. The key observation in this case
is that, for a given maximal independent set S, vertex v ∈ S ∩ LFMIS, and N ⊂ later(v), the
associated set T is a child of S if and only if the following three conditions hold:

1. T is maximal.
2. S is the lexicographically first maximal independent superset of (T ∪ {v}) \N .
3. Vertex v is the earliest vertex of the sequence in LFMIS \ T .

The first two conditions depend only on the inclusion or exclusion in S of a constant number
of vertices within distance O(1) of v. In particular, T is non-maximal if and only if some vertex
within distance three of v can be added to T , which can be tested by examining all vertices
within distance four of v. If T is maximal, the computation of the lexicographically first maximal
independent superset of (T ∪ {v}) \N can be done by examining only vertices within distance two
of v.

We say that a pair (v,N) is fertile for a set S if the set T generated from S using v and N
passes the first two of the three conditions listed above. The third condition can be rephrased as
stating that v belongs to the initial common prefix of LFMIS and S. As our algorithm progresses,
we maintain the following information:

– The position of the last vertex in the initial common prefix of LFMIS and S.
– The set of all fertile pairs (v,N) where v occurs before the last initial common vertex, stored

as a dictionary mapping each vertex v to the sets N that form fertile pairs for it.

The pairs in the set maintained by the algorithm give exactly the children of the current maximal
independent set S. Each child differs from S in a constant number of vertices, and so the set of
fertile pairs for the child also differs by a constant. However, the position of the last vertex can
differ dramatically between S and its children. In order to keep the changes to the set of fertile
pairs gradual, we modify our search algorithm so that it processes the children of S in the reverse
of the vertex ordering on the vertices v.

Thus, the maximal independent sets in G can be generated by the algorithm described in
Listing 3. Each time we change S to form one of its children, we can potentially affect fertile pairs
for vertices within distance four of the change; for each such vertex w occurring no later than
last common in the vertex sequence, and each independent subset N of later(w), we test whether
the change to S has caused (w,N) to start or stop being a fertile pair, and if so add or remove N
to or from fertile pairs [w]. There are O(1) pairs (w,N) tested per change to S, so the total time
per child is O(1).

We have not described what order to use for the vertices, because any ordering will work for
the correctness of the algorithm and its asymptotic analysis. However, a k-degenerate ordering for
the minimum possible k may be preferable to other orderings, because it reduces the number of
subsets of later(v) that need to be considered for each v and thereby reduces the constant factors
in our analysis.

One complication with the analysis of the algorithm above is the question of how we maintain
or sort the vertices v considered by the outer loop, so that they are considered in reverse order. For
this analysis, we assume a simple comparison sorting algorithm that sorts these vertices in time
O(k log k), where k is the number of vertices to be sorted.

Lemma 2. If there are k vertices in the fertile pairs data structure for maximal independent

set S, then Ω(k) of the children of S have Ω(k) vertices in their respective fertile pairs data

structures.

8

def search(S, last common, fertile pairs):
output S
for v in fertile pairs , in reverse order by vertex sequence:

later subsets = fertile pairs [v]
delete v from fertile pairs
last common = predecessor of v in LFMIS
for N in later subsets :

S = (S union N) \ (neighbors of N)
update fertile pairs from changes to S
search(S, last common, fertile pairs)
S = LFMISS((S union {v}) \ N)
update fertile pairs from changes to S

initial call :
S = LFMIS
last common = last vertex in S
F = fertile pairs for S
search(S, last common, F)

Listing3. Reverse search for maximal independent sets in bounded degree graphs.

Proof. The changes in the maximal independent set from S to its children lead to O(1) changes to
the fertile pairs [w] data structure, and each time we consider a vertex v in the outer loop for S
we remove only that vertex from the data structure. So, for each of the first k/2 vertices considered,
there remain k/2−O(1) vertices in the data structure for the children. ⊓⊔

Theorem 4. Let G be a graph with maximum vertex degree O(1). Then, we can list all maximal

independent sets in G, in time O(1) per generated set, space O(n), and polynomial delay.

Proof. We use the recursive version of the algorithm described in Listing 3, which modifies the set
S and the data structure fertile pairs [w] in-place and shares the modified structures with each
recursive call. The space for these structures is O(n), the other space used by the algorithm per
call is O(1), and the call stack may be O(n) levels deep, so the total space is O(n). Polynomial
delay follows as before. As we have seen, the time per child is O(1), except for the time spent
sorting the vertices in the fertile pairs [w] data structure prior to looping over them. That time is
O(k log k), and we charge the time spent in this step equally to each of the Ω(k) children described
in Lemma 2. In this way, each recursive call gets charged O(log k) time, negligible compared to the
O(k) time the recursive call will spend on listing its own children. ⊓⊔

8 Conclusions

We have provided a general reverse search based framework for generation of all maximal indepen-
dent sets, and applied it to many important graph classes. Along the way we were led to study new
dynamic graph data structures for independence and domination.

One natural problem for additional research is to quantify and reduce the dependence of the
running time on the sparseness of the graphs in question. Our maximal set generation algorithms
depend in an exponential way on the sparseness parameter (orientability, degeneracy, or degree)
of the graphs we consider, due to the way we examine all independent subsets of the sets later(v).
Can this exponential dependence be reduced?

Also, to what other non-sparse graph classes can our results be extended? The class of graphs
that can be ordered so that | later(v)| = O(1) for all v contains non-sparse graphs, but it is not clear

9

how to perform the dominance or parent tests needed by our algorithms efficiently in such graphs.
However, we were able to extend our technique to some other graph classes where it did not improve
previous results. For chordal graphs, if we use an elimination ordering, each independent subsetN ⊂
later(v) has exactly one vertex, and (by techniques involving counting uniquely dominated vertices)
we were able to achieve O(m) time per independent set, matching a prior result of Leung [12].
Maximal independent sets for interval graphs may be translated to paths on an associated digraph
(connect intervals I and J by an edge if J is to the left of I and no interval K is between the
two), so all maximal independent sets or more general weighted k-best independent set generation
problems can be solved in constant time per set by a k-shortest paths algorithm [7] unrelated to the
present reverse search approach; a similar approach also works for generating chains and antichains
in two-dimensional dominance relations. For intersection graphs of disks, balls, squares, or cubes, if
we order the objects by size then each independent subset of later(v) must have a constant number
of objects, so our algorithm can be made to perform in polynomial time per output set, but the
polynomial appears larger than for general graph independent set enumeration algorithms.

References

1. D. Avis and K. Fukuda. A pivoting algorithm for convex hulls and vertex enumeration of arrangements and
polyhedra. Discrete Comput. Geom. 8(3):295–313, 1992.

2. D. Avis and K. Fukuda. Reverse search for enumeration. Discrete Appl. Math. 65:21–46, 1996.
3. I. M. Bomze, M. Budinich, P. M. Pardalos, and M. Pelillo. The maximum clique problem. Handbook of

Combinatorial Optimization, vol. 4, pp. 1–74. Kluwer Academic Publishers, 1999.
4. J. M. Byskov. Algorithms for k-colouring and finding maximal independent sets. Proc. 14th Symp. Discrete

Algorithms, pp. 456–457. ACM and SIAM, 2003.
5. N. Chiba and T. Nishizeki. Arboricity and subgraph listing algorithms. SIAM J. Comput. 14:210–223, 1985.
6. M. Chrobak and D. Eppstein. Planar orientations with low out-degree and compaction of adjacency matrices.

Theor. Comput. Sci. 86(2):243–266, 1991.
7. D. Eppstein. Finding the k shortest paths. SIAM J. Computing 28(2):652–673, 1998.
8. D. Eppstein. Small maximal independent sets and faster exact graph coloring. J. Graph Algorithms &

Applications 7(2):131–140, 2003, arXiv:cs.DS/0011009.
9. E. Jennings and L. Motycková. A distributed algorithm for finding all maximal cliques in a network graph.

Proc. 1st Latin Amer. Symp. Theoretical Informatics (LATIN ’92), pp. 281–293. Springer-Verlag, Lecture Notes
in Computer Science 583, 1992.

10. D. S. Johnson, M. Yannakakis, and C. H. Papadimitriou. On generating all maximal independent sets. Inform.
Proc. Lett. 27(3):119–123, 1988.

11. E. Lawler, J. K. Lenstra, and A. H. G. Rinnooy Kan. Generating all maximal independent sets: NP-hardness
and polynomial-time algorithms. SIAM J. Comput. 9(3):558–565, 1980.

12. J. Y.-T. Leung. Fast algorithms for generating all maximal independent sets of interval, circular-arc and
chordal graphs. J. Algorithms 5:22–35, 1984.

13. Y. D. Liang, S. K. Dhall, and S. Lakshmivarahan. On the problem of finding all maximum weight independent
sets in interval and circular-arc graphs. Proc. Symp. Applied Computing, pp. 465–470. IEEE, 1991.

14. W. Mader. Homomorphieeigenschaften und mittlere Kantendichte von Graphen. Math. Ann. 174:265–268, 1967.
15. K. Makino and T. Uno. New algorithms for enumerating all maximal cliques. Proc. 9th Scand. Worksh.

Algorithm Theory (SWAT 2004), pp. 260–272. Springer-Verlag, Lecture Notes in Computer Science 3111, 2004.
16. D. Matula and L. Beck. Smallest-last ordering and clustering and graph coloring algorithms. J. ACM

30:417–427, 1983.
17. N. Mishra and L. Pitt. Generating all maximal independent sets of bounded-degree hypergraphs. Proc. 10th

Conf. Computational Learning Theory (COLT ’97), pp. 211–217. ACM, 1997.
18. V. Stix. Finding all maximal cliques in dynamic graphs. Computational Optimization Appl. 27(2):173–186, 2004.
19. G. Szekeres and H. Wilf. An inequality for the chromatic number of a graph. J. Comb. Th. 4:1–3, 1968.
20. E. Tomita, A. Tanaka, and H. Takahashi. The worst-case time complexity for generating all maximal cliques.

Proc. 10th Int. Computing and Combinatorics Conf. (COCOON 2004), 2004.
21. S. Tsukiyama, M. Ide, H. Ariyoshi, and I. Shirakawa. A new algorithm for generating all the maximal

independent sets. SIAM J. Comput. 6(3):505–517, 1977.
22. C.-W. Yu and G.-H. Chen. Generate all maximal independent sets in permutation graphs. Internat. J.

Comput. Math. 47:1–8, 1993.

10

	All Maximal Independent Sets and Dynamic Dominance for Sparse Graphs

