
ar
X

iv
:c

s/
06

01
08

4v
1 

 [
cs

.D
S]

  1
9 

Ja
n 

20
06

Randomized Fast Design of Short DNA Words⋆

Ming-Yang Kao, Manan Sanghi, and Robert Schweller

Department of Computer Science
Northwestern University
Evanston, IL 60201, USA

{kao,manan,schwellerr}@cs.northwestern.edu

Abstract. We consider the problem of efficiently designing sets (codes)
of equal-length DNA strings (words) that satisfy certain combinato-
rial constraints. This problem has numerous motivations including DNA
computing and DNA self-assembly. Previous work has extended results
from coding theory to obtain bounds on code size for new biologically
motivated constraints and has applied heuristic local search and genetic
algorithm techniques for code design. This paper proposes a natural op-
timization formulation of the DNA code design problem in which the
goal is to design n strings that satisfy a given set of constraints while
minimizing the length of the strings. For multiple sets of constraints, we
provide high-probability algorithms that run in time polynomial in n and
any given constraint parameters, and output strings of length within a
constant factor of the optimal. To the best of our knowledge, this work
is the first to consider this type of optimization problem in the context
of DNA code design.

1 Introduction

In this paper we study the problem of efficiently designing sets (codes) of DNA
strings (words) of near optimal length that fulfill certain combinatorial con-
straints. Many applications have emerged in recent years that depend on the
scalable design of such words. One such problem is in DNA computing where
inputs to computational problems are encoded into DNA strands for the purpose
of computing via DNA complementary binding [1]. Another application involves
implementing Wang tile self-assembly systems by encoding glues of Wang tiles
into strands of DNA [17]. DNA words can also be used to store information at
the molecular level [4], act as molecular bar codes for identifying molecules in
complex libraries [4, 5, 13], or implement DNA arrays [3].

For a set of DNA words to be effective for the above applications, they must
fulfill a number of combinatorial constraints. Of particular importance is the
need for specific hybridization between a given word and its unique Watson-
Crick complement. That is, we need to make sure that hybridization does not
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Word Length and Time Complexity for DNA Word Design

Word Length Time Complexity
Lower Bound Upper Bound Lower Bound Upper Bound

DWD1,2,3,4,5,6,7 Θ(ℓ) Θ(nℓ)
(Thm. 1) (Thm. 3) (Thm. 1) (Thm. 3)

DWD1,2,3,7,8 Θ(ℓ) Θ(nℓ)
(Thm. 1) (Thm. 4) (Thm. 1) (Thm. 4)

DWD1,2,3,4,5,6,9 Θ(ℓ) Ω(nℓ) O

(

min

{

ℓ1.5 log0.5 ℓ+ nℓ,
nℓ log ℓ

})

(Thm. 1) (Thm. 6) (Thm. 1) (Thm. 6)

Table 1. This table summarizes our results regarding the efficient design of DNA
words. Here n is the number of words; k denotes the maximum of the constraint
parameters for constraints 1 through 6 (see Section 2); and ℓ = Θ(k + log n) denotes
the optimal achievable word length for the listed word design problems (see Theorems 1,
3, 4 and 6).

occur among a word and the complement of a different word in the set, or
even of any word with any other word in the set. For this requirement Marathe
et al. [12] have proposed the basic Hamming constraint, reverse complement
Hamming constraint, and self-complementary constraint. We further consider the
more restricting shifting Hamming constraint which requires a large Hamming
distance between all alignments of any pair of words [6].

We also consider three constraints not related to Hamming distance. The
consecutive base constraint limits the length of any run of identical bases in any
given word. Long runs of identical bases are considered to cause hybridization
errors [6, 14]. The GC content constraint requires that a large percentage of
the bases in any given word are either G or C. This constraint is meant to give
each string similar thermodynamic properties [14–16]. The free energy constraint
requires that the difference in free energy of any two words is bounded by a
small constant. This helps ensure that each word in the set has a similar melting
temperature [6, 12].

In addition to the above constraints, it is desirable for the length ℓ of each
word to be as small as possible. The motivation for minimizing ℓ is evident from
the fact that it is more difficult to synthesize longer strands. Similarly, longer
DNA strands require more DNA to be used for the respective application.

There has been much previous work in the design of DNA words [4, 6, 9–
13, 15, 16]. In particular, Marathe et al. [12] have extended results from coding
theory to obtain bounds on code size for various biologically motivated con-
straints. However, most work in this area has been based on heuristics, genetic
algorithms, and stochastic local searches that do not provide provably good
words provably fast.



In this work we provide algorithms with analytical guarantees for combina-
torial structures and time complexity. In particular, we formulate an optimiza-
tion problem that takes as input a desired number of strings n and produces n
length-ℓ strings that satisfy a specified set of constraints, while at the same time
minimizing the length ℓ. We restrict our solution to this problem in two ways.
First, we require that our algorithms run in time only polynomial in the number
of strings n as well as any given constraint parameters. Second, we require that
our algorithms produce sets of words that achieve word length ℓ that is within a
constant multiple of the optimal achievable word length, while at the same time
fulfilling the respective constraints with high probability. For various subsets of
the constraints we propose, we provide algorithms that do this. We thus provide
fast algorithms for the creation of sets of short words.

Paper Layout: In Section 2, we describe the different biologically motivated
combinatorial constraints we use. In Section 3 we solve the design problem with
subsets of constraints including the Hamming constraints, the consecutive bases
constraint, and the GC content constraint. In Section 4 we extend our algorithms
to deal with the free energy constraint.

2 Preliminaries

2.1 Notations

Let X = x1x2 . . . xℓ be a word where xi belongs to some alphabet Π . In this
paper we deal with two alphabets, namely, the binary alphabet ΠB = {0, 1} and
the DNA alphabet ΠD = {A,C,G,T}. The elements of an alphabet are called
characters. We will use capital letters for words and small letters for characters.
Our goal is to design DNA words but some of our algorithms generate binary
words in intermediate steps.

The reverse of X , denoted by XR, is the word xℓxℓ−1 . . . x1. The complement
of a character x is denoted by xc. The complements for the binary alphabet are
given by 0c = 1, 1c = O, and for the DNA alphabet we have Ac = T , Cc = G,
Gc = C, T c = A.

The complement of a word is obtained by taking the complement of each
of the characters in the word, i.e., XC = xc

1x
c
2 . . . x

c
ℓ. The reverse complement

of X is the complement of XR, XRC = xc
ℓx

c
ℓ−1 . . . x

c
1. The Hamming distance

H(X,Y ) between two words X and Y is the number of positions where X differs
from Y .

We are interested in designing a set W of n words over ΠD each of length ℓ
which satisfy the constraints defined in Section 2.2 below.

2.2 Constraints

The constraints we consider can be classified into two categories: non-interaction
constraints and stability constraints. Non-interaction constraints ensure that un-
wanted hybridizations between two DNA strands are avoided, and stability con-
straints ensure that the DNA strands are stable in a solution. The first six



constraints below are non-interaction constraints while the remaining three are
stability constraints.

C1(k1): Basic Hamming Constraint (k1) = for any words Y,X ∈ W , H(Y,X)
≥ k1.
This constraint limits non-specific hybridizations between the Watson-Crick
complement of some word Y with a distinct word X .

C2(k2): Reverse Complementary Constraint (k2) = for any words Y,X ∈
W , H(Y,XRC) ≥ k2.
This constraint is intended to limit hybridization between a word and the
reverse of another word.

C3(k3): Self Complementary Constraint (k3) = for any word Y ,H(Y, Y RC) ≥
k3.
This constraint prevents a word from hybridizing with itself.

C4(k4): Shifting Hamming Constraint (k4) = for any two words Y,X ∈ W ,

H(Y [1..i], X [(ℓ− i+ 1)..ℓ]) ≥ k4 − (ℓ− i) for all i.

This is a stronger version of the Basic Hamming Constraint.
C5(k5): Shifting Reverse Complementary Constraint (k5) = for any two

words Y,X ∈ W ,

H(Y [1..i], X [1..i]RC) ≥ k5 − (ℓ− i) for all i; and

H(Y [(ℓ − i+ 1)..ℓ], X [(ℓ− i+ 1)..ℓ]RC) ≥ k5 − (ℓ− i) for all i.

This is a stronger version of the Reverse Complementary Constraint.
C6(k6): Shifting Self Complementary Constraint (k6) = for any word Y ∈

W ,
H(Y [1..i], Y [1..i]RC) ≥ k6 − (ℓ− i) for all i; and

H(Y [(ℓ− i+ 1)..ℓ], Y [(ℓ − i+ 1)..ℓ]RC) ≥ k6 − (ℓ − i) for all i.

This is a stronger version of the Self Complementary Constraint.
C7(γ): GC Content Constraint (γ) = γ percentage of bases in any word

Y ∈ W are either G or C.
The GC content affects the thermodynamic properties of a word [14–16].
Therefore, having the same ratio of GC content for all the words will assure
similar thermodynamic characteristics.

C8(d): Consecutive Base Constraint (d) = no word has more than d consec-
utive bases for d ≥ 2.
In some applications, consecutive occurrences (also known as runs) of the
same base increase the number of annealing errors.

C9(σ): Free Energy Constraint (σ) = for any two words Y,X ∈ W , FE(Y )−
FE(X) ≤ σ where FE(W ) denotes the free energy of a word defined in
Section 4.
This constraint ensures that all the words in the set have similar melting
temperatures which allows hybridization of multiple DNA strands to proceed
simultaneously [13].



For each of the given constraints above we assign a shorthand boolean func-
tion Ci(t) to denote whether or not a given set of words W fulfills constraint Ci

with respect to parameter t. For a given integer n, the goal of DNA word design
is to efficiently create a set of n length-ℓ words such that a given subset of the
above constraints are satisfied, while trying to minimize ℓ. That is, for a given
subset of constraints {Cπ1

, Cπ2
, . . . , Cπr

} ⊆ {C1, C2, . . . , C9}, the corresponding
DNA word design (DWD) optimization problem is as follows.

Problem 1 (DWDπ1,π2,...,πr
).

Input: Integers n, t1, t2, . . . , tr.

Output: A set W of n DNA strings each of the minimum length such that for
all 1 ≤ i ≤ r the constraint Cπi

(ti) is satisfied over set W .

For this problem we have the following trivial lower bounds for time com-
plexity and the word size ℓ when any one of the first six constraints is applied.

Theorem 1. Consider a set W of n DNA words each of length ℓ.

1. If W fulfills any one of the constraints C1(k), C2(k), C3(k), C4(k),C5(k), and
C6(k), then ℓ = Ω(k + logn).

2. The time complexity of producing a set W that fulfills any one of the con-
straints C1(k), C2(k), C3(k), C4(k), C5(k), and C6(k) is Ω(nk + n logn).

The goal of DNA word design is to simultaneously satisfy as many of the
above nine constraints as possible while achieving words within a constant factor
of the optimal length ℓ for the given set of constraints. In Section 3 we show how
to accomplish this goal for various subsets of the constraints.

3 Algorithms for DNA Word Design

In this section we develop randomized algorithms to generate sets of length-ℓ
DNA words that satisfy certain sets of constraints while keeping ℓ within a con-
stant of the optimal value. In particular, we first show how simply generating
a set of n words at a specific length ℓ = O(k + logn) uniformly at random
is sufficient to fulfill constraints 1, 2, 3, 4, 5, and 6 simultaneously with high
probability. We then propose three extensions to this algorithm to fulfill differ-
ent subsets of constraints within a constant factor of the optimal word length.
The first extension yields an algorithm for fulfilling the GC content constraint
while the second yields one for the consecutive base and GC content constraints
at the cost of the shifting constraints. Finally, we extend the basic randomized
algorithm to fulfill the free energy constraint. The first is thus an algorithm for
simultaneously fulfilling constraints 1, 2, 3, 4, 5, 6, and 7, the second simultane-
ously fulfills constraints 1, 2, 3, 7, and 8, and the last one fulfills constraints 1,
2, 3, 4, 5, 6 and 9.



Algorithm FastDWD1,2,3,4,5,6(n, k1, k2, k3, k4, k5, k6)

1. Let k = max{k1, k2, k3, k4, k5, k6}.
2. Generate a set W of n words over ΠD of length ℓ = 9·max{k, ⌈log4 n⌉} uniformly

at random.
3. Output W.

Fig. 1. A randomized algorithm for generating n DNA strings satisfying constraints
C1(k1), C2(k2), C3(k3), C4(k4), C5(k5), and C6(k6).

3.1 A Simple Randomized Algorithm

Problem 2 (DWD1,2,3,4,5,6).

Input: Integers n, k1, k2, k3, k4, k5, k6.

Output: A set W of n DNA strings each of the minimum length such that the
constraints C1(k1), C2(k2), C3(k3), C4(k4), C5(k5), C6(k6) hold.

The next theorem shows that Algorithm FastDWD1,2,3,4,5,6 (n, k1, k2, k3, k4,
k5, k6) in Figure 1 yields a polynomial-time solution to the DWD1,2,3,4,5,6 prob-
lem with high probability. We omit the proof in the interest of space.

Theorem 2. Algorithm FastDWD1,2,3,4,5,6 produces a set W of n DNA words of
optimal length Θ(k+log n) in optimal time Θ(n·k+n· logn) satisfying constraints
C1(k1), C2(k2), C3(k3), C4(k4), C5(k5) and C6(k6) with probability of failure
o(1/(n+ 4k)), where k = max{k1, k2, k3, k4, k5, k6}.

Proof (Sketch). The probability that two random words violate any of the con-
straints C1(k1), C2(k2), C4(k4), and C5(k5), can be bounded using Chernoff type
bounds. Similarly, we can bound the probability of a random word violating any
of the constraints C3(k3) and C6(k6).

We can then apply the Boole-Bonferroni Inequaltities to yield a bound on the
probability that any pair of words in a set of n random words violates constraints
C1(k1), C2(k2), C4(k4), or C5(k5); or that any single word violates constraints
C3(k3) or C6(k6). ⊓⊔

3.2 Incorporating the GC Content Constraint into

FastDWD1,2,3,4,5,6

Now we show how to modify Algorithm FastDWD1,2,3,4,5,6 so that it produces a
set of words that also satisfies the GC content constraint. That is, we will show
how to solve the following problem.

Problem 3 (DWD1,2,3,4,5,6,7).

Input: Integers n, k1, k2, k3, k4, k5,k6, γ.

Output: A set W of n DNA strings each of the minimum length such that the
constraints C1(k1), C2(k2), C3(k3), C4(k4), C5(k5), C6(k6), C7(γ) hold.



Algorithm FastDWD1,2,3,4,5,6,7(n, k1, k2, k3, k4, k5, k6, γ)

1. Let k = max{k1, k2, k3, k4, k5, k6}.
2. Generate a set W of n words over the binary alphabet ΠB of length ℓ =

10·max{k, ⌈log2 n⌉} uniformly at random.
3. For each word W ∈ W, for any ⌈γ·ℓ⌉ characters in W , replace 0 by G and 1 by C.

For the remaining characters replace 0 by A and 1 by T to get W ′. Let W ′ be the
set of all words W ′.

4. Output W ′.

Fig. 2. A randomized algorithm for generating n DNA strings satisfying constraints
C1(k1), C2(k2), C3(k3), C4(k4), C5(k5), C6(k6), and C7(γ).

Wemodify Algorithm FastDWD1,2,3,4,5,6 to get Algorithm FastDWD1,2,3,4,5,6,7

shown in Figure 2. The next theorem shows that FastDWD1,2,3,4,5,6,7 yields a
polynomial-time solution to DWD1,2,3,4,5,6,7 with high probability. We omit the
proof in the interest of space.

Theorem 3. Algorithm FastDWD1,2,3,4,5,6,7 produces a set W of n DNA words
of optimal length Θ(k + logn) in optimal time Θ(n·k + n· logn) satisfying con-
straints C1(k1), C2(k2), C3(k3), C4(k4), C5(k5), C6(k6), and C7(γ) with proba-
bility of failure o(1/(n+ 2k)), where k = max{k1, k2, k3, k4, k5, k6}.

3.3 Incorporating the Consecutive Bases Constraint into

FastDWD1,2,3,4,5,6,7

Now we modify Algorithm FastDWD1,2,3,4,5,6,7 so that it produces a set that
satisfies both the GC content constraint and the consecutive base constraint
at the cost of the shifting constraints. That is, we will show how to solve the
following problem.

Problem 4 (DWD1,2,3,7,8).
Input: Integers n, k1, k2, k3, γ, d.
Output: A set W of n DNA strings each of the minimum length such that the
constraints C1(k1), C2(k2), C3(k3), C7(γ), C8(d) hold.

We use Algorithm BreakRuns shown in Figure 3 to break long runs for a
binary word so that it satisfies the consecutive bases constraint with parameter
d. Intuitively what this algorithm does is for a given word X , it outputs X ′ by
inserting characters at intervals of d− 1 from the left and the right in a manner
such that there are no consecutive runs of length greater than d. We need to add
characters from both ends to ensure that H(X,Y RC) ≤ H(X ′, Y ′RC) where X ′

and Y ′ are the respective outputs for X and Y from BreakRuns.
We modify Algorithm FastDWD1,2,3,4,5,6,7 to get Algorithm FastDWD1,2,3,7,8

shown in Figure 3. The next theorem shows that FastDWD1,2,3,7,8 yields a
polynomial-time solution to DWD1,2,3,7,8 with high probability. We omit the
proof in the interest of space.



Algorithm BreakRuns(X,d)

1. Let X = x1x2 . . . xℓ. For 0 < i ≤ ⌈ ℓ
2(d−1)

⌉−1, let x′
ℓi

= xc
i(d−1) and x′

ri
= xc

ℓ−i(d−1).

Let x′
mid = xc

⌊ℓ/2⌋.
2. Output X ′ = x1 . . . xd−1x

′
ℓ1
xd . . . x⌊ℓ/2⌋x

′
midx⌊ℓ/2⌋+1 . . . xℓ−(d−1)−1x

′
r1xℓ−(d−1) . . .

xℓ.

Algorithm FastDWD1,2,3,7,8(n, k1, k2, k3, γ, d)

1. Let k = max{k1, k2, k3}.
2. Generate a set W of n words over the binary alphabet ΠB of length ℓ =

10·max{k, ⌈log2 n⌉} uniformly at random.
3. For each word W ∈ W, let W ′ = BreakRuns(W,d). Let W ′ be the set of all words

W ′.
4. For each word W ′ ∈ W ′, for any ⌈γ·ℓ⌉ characters in W ′, replace 0 by G and 1 by

C. For the remaining characters replace 0 by A and 1 by T to get W ′′. Let W ′′ be
the set of all words W ′′.

5. Output W ′′.

Fig. 3. Algorithms for generating n DNA strings satisfying constraints C1(k1), C2(k2),
C3(k3), C7(γ), and C8(d).

Theorem 4. Algorithm FastDWD1,2,3,7,8 produces a set W of n DNA words of
optimal length Θ(k+log n) in optimal time Θ(n·k+n· logn) satisfying constraints
C1(k1), C2(k2), C3(k3), C7(γ), and C8(d) with probability of failure o(1/(n+2k)),
where k = max{k1, k2, k3}.

4 Incorporating the Free Energy Constraint into

FastDWD1,2,3,4,5,6

Now we give an alternate modification of Algorithm FastDWD1,2,3,4,5,6 such that
the free energy constraint is satisfied. The free-energy FE(X) of a DNA word

X = x1x2 . . . xℓ is approximated by FE(X) = correction factor +
∑ℓ−1

i=1 Γxi,xi+1
,

where Γx,y is the pairwise free energy between base x and base y [7]. For sim-

plicity, we denote the free energy as simply the sum
∑ℓ−1

i=1 Γxi,xi+1
with respect

to a given pairwise energy function Γ . Let Γmax and Γmin be the maximum and
the minimum entries in Γ respectively. Let D = Γmax − Γmin.

We now show how to satisfy the free energy constraint C9(σ) for a constant
σ = 4D + Γmax, while simultaneously satisfying constraints 1, 2, 3, 4, 5, and 6.
That is, we show how to solve the following problem.

Problem 5 (DWD1,2,3,4,5,6,9).
Input: Integers n, k1, k2, k3, k4, k5, k6.
Output: A set W of n DNA strings each of the minimum length such that the
constraints C1(k1), C2(k2), C3(k3), C4(k4), C5(k5), C6(k6), C9(4D+Γmax) hold.

We modify Algorithm FastDWD1,2,3,4,5,6 to get Algorithm FastDWD1,2,3,4,5,6,9

shown in Figure 4 for solving DWD1,2,3,4,5,6,9 . The following lemmas identify the prop-



Algorithm FastDWD1,2,3,4,5,6,9(n, k1, k2, k3, k4, k5, k6)

Let Ŝ1, Ŝ2, . . . , Ŝ4m be all possible sequences of length m = 2ℓ where ℓ is as defined in
Step 2 below such that FE(Ŝ1) ≤ FE(Ŝ2) ≤ · · · ≤ FE(Ŝ4m ). For two strings X and Y
of respective lengths ℓX and ℓY where ℓY is even, let X ⊗Y be the string Y [1..(ℓY /2)]
X[1..ℓX ] Y [(ℓY /2 + 1)..ℓY ]. Let ∆ = maxi{FE(Ŝ

i+1)− FE(Ŝi)}.

1. Let k = max{k1, k2, k3, k4, k5, k6}.
2. Generate a set W of n DNA words of length ℓ = 9·max{k, ⌈log4 n⌉} uniformly at

random.
3. Let Wmax = maxX∈W{FE(X)} and Wmin = minX∈W{FE(X)}.

if Wmax −Wmin ≤ 3D, then output W.
else

4. Let α = Wmax + Ŝ1 and β = α + ∆. For each Si ∈ W, find Ŝj such that α ≤
FE(Si) + FE(Ŝj) ≤ β. Let W ′

i = Si ⊗ Ŝj .
5. output W ′ = {W ′

1, . . . ,W
′
n}.

Fig. 4. A randomized algorithm for generating n DNA strings satisfying constraints
C1(k1), C2(k2), C3(k3), C4(k4), C5(k5), C6(k6), and C9(4D + Γmax).

erties of symbols ∆,W,Wmax,Wmin, Si, Ŝj , α, β, and W ′
i defined in Figure 4 and are

used for proving the correctness of Algorithm FastDWD1,2,3,4,5,6,9 .

Lemma 1. ∆ < 2D.

Lemma 2. If Wmax −Wmin > 3D, then Wmax −Wmin + 2D ≤ FE(Ŝ4m)− FE(Ŝ1).

Lemma 3. For each Si ∈ W, there exists Ŝj such that α ≤ FE(Si) + FE(Ŝj) ≤ β.

Lemma 4. For all i, α−D ≤ FE(W ′
i ) ≤ β +D + Γmax.

Section 4.1 discusses the details for Step 4 of the algorithm. Finally, Section 4.2
establishes its correctness and time complexity.

4.1 Computing Strings with Bounded Energies

In Step 4 of Algorithm FastDWD1,2,3,4,5,6,9 we need to produce a set of n DNA strings
Ŝ1, Ŝ2, . . . Ŝn, each of a given length L = m, such that Ai ≤ FE(Ŝi) ≤ Bi for some Ai,
Bi such that Bi − Ai ≤ ∆. That is, we need to solve the following problem.

Problem 6 (Bounded-Energy Strand Generation).
Input:

1. Integers Ai and Bi for i = 1 to n such that
(a) Ai ≥ Wmin;
(b) Bi ≤ Wmax;
(c) Bi − Ai ≤ ∆.

2. Length L.

Output: Strings Ŝ1, Ŝ2, . . . Ŝn each of length L and respective energy Ei such that
Ai ≤ Ei ≤ Bi.



Algorithm ConstructStrings({Ai}, {Bi}, L)

1. Let Φ← Build(L).

2. if n ≥
√

L
logL

, then Ψ ← SlowBuild(L), else Ψ ← NULL.

3. For each i = 1 to n, find a nonzero coefficient ζEi
of XEi in some polynomial

fa,b
L (x) ∈ Φ such that Ai ≤ Ei ≤ Bi.

4. For i = 1 to n, set Ŝi = Extract(Ei, Φ, Ψ).

Fig. 5. This algorithm solves the Bounded Energy Strand Generation Problem (Prob-
lem 6).

Our solution to this problem involves transforming the blunt of the computational
task into the problem of polynomial multiplication. Consider the following polynomial.

Definition 1. For any integer ℓ ≥ 1, let fℓ,a,b(x) be the polynomial
∑ℓ·m

z=0 ζzx
z where

coefficient ζz is the number of length-ℓ strings whose first character is a, last character
is b, and free energy is z.

For fℓ(x) =
∑

∀a,b∈Π fℓ,a,b(x) the coefficient of xi denotes the number of strings of
length ℓ and free energy i. As a first step towards our solution, we use a subroutine
BUILD(L) which computes Φ, the polynomials fL,a,b(x), f⌊L/2⌋,a,b(x), . . . , f1,a,b(x), for
all a, b ∈ Π in O(L logL) time. The efficient computation of these polynomials relies
on the following recursive property.

Lemma 5. For any integers ℓ1, ℓ2 ≥ 1,

fℓ1+ℓ2,a,b(x) =
∑

d1,d2∈Π

fℓ1,a,d1(x) · fℓ2,d2,b(x) · x
Γd1,d2 .

The problem of determining the number of strings of length L and free energy E is
considered in [12] and a dynamic programming based O(L2)-time algorithm is provided.
However, exploiting the recursive property of Lemma 5 and Fast Fourier Transforms
[8] for polynomial multiplication the subroutine BUILD solves this problem in faster
O(L logL) time and may be of independent interest.

Our algorithm for Problem 6 has two phases, the build phase and the extract phase.
The build phase constructs a data structure that permits the extract phase to be
executed quickly. In the extract phase, an extraction routine is run n times to output
Ŝi for each i ∈ [1, n]. Since the extraction routine is executed n times and the build
routine only once, the phase that constitutes the bottleneck for our algorithm for
Problem 6 depends on the values of n and L. We thus provide two forks for the
algorithm to take, one with a fast build routine and a modestly fast extract routine,
and the other with a slower build routine but an optimally fast extract routine. In
particular, if n is sufficiently larger than L, our algorithm for Problem 6 calls a routine
SlowBuild(L) which improves the runtime of Extract. Otherwise, only a faster BUILD
function is called in the first phase, leading to a slower Extract routine. The algorithm
for Problem 6 is given in Figure 5.

Algorithm ConstructStrings makes use of three subroutines – Build, SlowBuild
and Extract. The procedure Build(L) computes Φ, a data structure containing for all
a, b ∈ Π and a given L, the polynomials fℓ,a,b(x) for ℓ = L, ⌊L

2
⌋, ⌊L

4
⌋, ⌊L

8
⌋, . . ., 1. This

permits Extract(E,Φ, Ψ) to obtain a length L string of energy E in time O(L logL).



A call to SlowBuild(L) of time complexity O(L1.5 log0.5 L) improves the complexity of
Extract(E,Φ, Ψ) to O(L) by computing Ψ , a data structure containing for every non-
zero term xi in f⌊ L

2a
⌋,a,b a corresponding pair of non-zero terms xj and xi−j−Γd1,d2 in

f⌊ L

2a+1
⌋,a,d1

and f⌊ L

2a+1
⌋,d2,b

respectively. This yields the following theorem.

Theorem 5. Algorithm ConstructStrings({Ai}, {Bi}, L) solves Problem 6 in time
O(min{nL logL, L1.5 log0.5 L+ nL}).

4.2 Putting it all together for DWD1,2,3,4,5,6,9

Theorem 6. Algorithm FastDWD1,2,3,4,5,6,9 produces a set of n DNA words of optimal
length Θ(k+ log n) in time O(min{nℓ log ℓ, ℓ1.5 log0.5 ℓ+nℓ}) satisfying the constraints
C1(k1), C2(k2), C3(k3), C4(k4), C5(k5), C6(k6), and C9(4D + Γmax) with probability
of failure o(1/(n+ 4k)), where k = max{k1, k2, k3, k4, k5, k6}.

Proof. From Theorem 2 we know that W satisfies constraints C1(k1), C2(k2), C3(k3),
C4(k4), C5(k5), and C6(k6) with probability of failure o(1/(n+4k)). IfWmax−Wmin ≤
3D, then FastDWD1,2,3,4,5,6,9 outputsW which satisfies C9(3D) and hence also satisfies
C9(4D+Γmax). Otherwise, it is easy to verify that sinceW satisfies these six constraints,
so does W ′. From Lemma 3 we know that there always exists a string Ŝj as required
in Step 4 of FastDWD1,2,3,4,5,6,9 . Further, Lemma 4 shows that W ′ satisfies C9(∆ +
2D+Γmax). Therefore,W

′ satisfies constraints C1(k1), C2(k2), C3(k3), C4(k4), C5(k5),
C6(k6), and C9(4D + Γmax) with the stated failure probability.

The length of any word W ′ ∈ W ′ is at most 3ℓ where ℓ = Θ(k + log n), which is
optimal from Theorem 1.

GeneratingW takes O(n·k+n· log n) time. The bulk of the time complexity for the
algorithm comes from Step 4, which is analyzed in Section 4.1 to get O(min{nL logL,
L1.5 log0.5 L+ nL}) (see Theorem 5) where L = O(ℓ). ⊓⊔

5 Future Work

A number of problems related to this work remain open. It is still unknown how to
generate words of optimal length that simultaneously satisfy the free energy constraint
and the consecutive bases constraint. We also have not provided a method for combining
the consecutive bases constraint with any of the shifting constraints.

Another open research area is the verification problem of testing whether or not
a set of words satisfy a given set of constraints. This problem is important because
our algorithms only provide a high-probability assurance of success. While verification
can clearly be done in polynomial time for all of our constraints, the naive method of
verification has a longer runtime than our algorithms for constructing the sets. Finding
faster, non-trivial verification algorithms is an open problem.

A third direction for future work involves considering a generalized form of the
basic Hamming constraint. There are applications in which it is desirable to design
sets of words such that some distinct pairs bind with one another, while others do not
[2, 14]. In this scenario, we can formulate a word design problem that takes as input
a matrix of pairwise requirements for Hamming distances. Determining when such a
problem is solvable and how to solve it optimally when it is are open problems.
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