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Abstract— We study a simple game theoretic model for the
spread of an innovation in a network. The diffusion of the innova-
tion is modeled as the dynamics of a coordination game in which
the adoption of a common strategy between players has a higher
payoff.

Classical results in game theory provide a simple condition
for an innovation to become widespread in the network. The
present paper characterizes the rate of convergence as a function
of graph structure. In particular, we derive a dichotomy between
well-connected (e.g. random) graphs that show slow convergence
and poorly connected, low dimensional graphs that show fast
convergence.

1. INTRODUCTION

How does a new behavior, a new technology or a new
product diffuse through a social network? The computer
science literature has addressed this question by studying
epidemic or independent cascade models (see for instance,
Kleinberg’s survey [Klein07]). In these models, the under-
lying assumption is that people adopt an innovation when
they come in contact with others who have already adopted,
that is, innovations spread much like epidemics.

The present paper studies a different class of models,
that has been originally proposed within evolutionary game
theory. The basic hypothesis here is that, when adopting a
new behavior, each individual makes a rational choice to
maximize his or her payoff in a game. This is more suitable
for modeling the diffusion phenomenon in scenarios where
the individuals’ behavior is the result of a strategic choice
among competing alternatives.

The social network is represented by a graph G = (V| E)
where each vertex represents an individual. The current
strategy (or behavior) adopted at vertex ¢ € V is described
by a variable x; € {+1, —1}. The strategy at i is revised at
the arrival times of a Poisson clock with rate one. The new
strategy is chosen according to the logit distribution [Blu93]:
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Here N (i) is the set of neighbors of ¢ and w;;(y;, ;) is the
utility function of a symmetric 2 x 2 game. We assume all
the games to be identical coordination games: w;;(y;, z;) =
u(y, ) with u(+,+) > u(—,+) and u(—, —) > u(+, —).
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The parameter § determines the amount of ‘noisiness’
of the dynamics. The limit 5 = oo corresponds to ‘best-
response’ dynamics: each player adopts the strategy that
maximizes its utility. The fixed points of this dynamics
coincide with Nash equilibria, whose number can grow
exponentially in the number of vertices.

In an influential paper, Kandori, Mailath and Rob
[KMRO3] pointed out that the noisy best-response dynamics
has a unique stationary distribution (being irreducible and
aperiodic) and that as 3 — oo the distribution converges
to one of the homogeneous equilibria: either all +1, or
all —1. Which of these equilibria is selected can be easily
determined from the payoff matrix u( -, -): this criterion is
called ‘risk dominance’. The risk dominant strategy is not
the one yielding the highest payoff if played by everybody
(‘payoff dominant’) but rather is the one yielding the highest
payoff when the adversaries play uniformly at random.

To be definite, let us assume that the risk-dominant
strategy is +1. By the above remarks, in the long run almost
everybody will play that strategy if [ is large enough. This
is therefore a promising model to describe the diffusion of a
new behavior, with +1 and —1 corresponding (respectively)
to the new and old behavior. In this paper we consider two
fundamental questions

(a) How quickly does the +1 strategy spread through the
network? How does the convergence time depend on
the network structure?

(b) What does a typical trajectory of the diffusion process
look like?

These questions are studied in the game theory liter-
ature mostly using Friedlin-Wentzell theory of randomly
perturbed dynamical systems. Most notably Ellison [E1193]
characterizes convergence times in complete graphs and one-
dimensional graphs.

Our result builds on ‘modern’ Markov chain theory in-
stead. We estimate the convergence time for specific graph
families through their isoperimetric function. We observe
that in graphs that can be embedded in low-dimensional
spaces, the dynamics converges in a very short time. On
the other hand, for well-connected graphs such as random
regular graphs, power-law graphs or certain small-world net-
works the convergence time may be as long as exponential



in the number of nodes.

Our result highlights an important difference between
game theoretic and epidemic models. In epidemic mod-
els, the innovation spreads very quickly in well-connected
networks. Moreover, high degree nodes expedite the rate
of diffusion significantly [BB+05]. The striking difference
between the behavior of these models and the result of our
analysis gives the first rigorous evidence that the aggregate
behavior of the diffusion is indeed very sensitive to the
dynamics of the interaction of individuals. This may suggest
that assuming that spread of viruses, new technologies,
and new political or social beliefs have the same “viral”
behavior may be misleading. Furthermore, this difference
should be taken into consideration in making predictions
about or developing algorithms for expediting or containing
such diffusions. (See also [Watts] for a related discussion).

For general graphs, our characterization is expressed in
terms of quantities that we name as tilted cutwidth and tilted
cut of the graph. They can be seen as duals of each other:
The former provides a path to the risk-dominant equilibrium
that gives an upper bound on the convergence time. The
latter corresponds to a bottleneck along the separating set
in the space of configurations with lowest probability. We
prove a duality theorem that shows that tilted cut and
tilted cutwidth coincide for the ‘slowest” subgraph. The
convergence time is exponential in this graph parameter.

The proof uses an argument similar to [DV76], [DSC93],
[JS89] to relate hitting time to the spectrum of an appropriate
transition matrix. The convergence time is then estimated in
terms of the most likely path from the worst-case initial
configuration.

A key technical contribution of this paper is in proving
that there exists a monotone increasing path with this prop-
erty. This indicates that the risk dominant strategy indeed
spreads through the network, i.e. an increasing subset of
players adopt it over time. In order to prove the characteriza-
tion in terms of tilted cut, we study the ‘slowest’ eigenvector
and show that it is monotone using a fixed point argument.
We then approximate the eigenvector with a characteristic
function.

1.1. Related work

Kandori, Mailath and Rob [KMR93] studied noisy best
response dynamics and showed that it converges to the
equilibrium in which every agent takes the same strategy.
Harsanyi and Selten [HS88] named this the risk dominant
strategy (see next section for definition).

The role of graph structure and its interplay with conver-
gence times was first emphasized by Ellison [Ell93]. In his
pioneering work, Ellison considered two typed of structures
for the interaction network: a complete graph, and a one-
dimensional network graph obtained by placing individuals

on a cycle and connecting all pairs of distance smaller
than some given constant. Ellison proved that, on the first
type of graph structure, convergence to the risk dominant
equilibrium is extremely slow (exponential in the number
of players) and for practical purposes, not observable. On
the contrary, convergence is relatively fast on linear network
and the risk dominant equilibrium is an important predictive
concept in this case. Based on this observation, Ellison
concludes that when the interaction is global the outcome
is determined by historic factors. In contrast, when players
“interact with small sets of neighbors,” we can assume that
evolutionary forces may determine the outcome.

Even though this result has received a lot of attention in
the economic theory (for example see detailed expositions
in books by Fudenberg [FL98] and by Young [YoungO1])
the conclusion of [El93] has remained rather imprecise.
The contribution of the current paper is to precisely derive
the graph quantity that captures the rate of convergence.
Our results make a different prediction on models of social
networks that are well-connected but sparse. We also show
how to interpret Ellison’s result by defining a geometric
embedding of graphs.

Most of our results are based on a reversible Markov chain
model for the dynamics. Blume [Blu93] already studied
the same model within a social science context rederiving
the results by Kandori et al. [KMR93]. In Section 4.3 we
consider generalizations to a broad family of non-reversible
dynamics.

Finally, we refer to the next two sections for a comparison
with related work within mathematical physics and Markov
Chain Monte Carlo theory.

2. DEFINITIONS

A game is played in periods ¢t = 1,2,3,... among a set
V' of players, with |V| = n. The players interact on an
undirected graph G = (V, E). Each player i € V has two
alternative strategies as x; € {41, —1}. The payoff matrix A
is a 2 x 2-matrix illustrated in the figure. Note that the game
is symmetric. The payoff of player 7 is 3,y ;) A(zi, z;),
where N (i) is the set of neighbors of vertex .

We assume that the game defined by matrix A is a
coordination game, i.e. the players obtain a higher payoff
from adopting the same strategy as their opponents. More
precisely, we assume a > d and b > c.

Let N, (¢) and N_ () be the set
of neighbors of ¢ adopting strategy a c
+1 and —1 respectively. The best
strategy for a node ¢ is +1 if (a —
d)N4 (i) > (b— ¢)N_(i) and it is d | b
—1 otherwise. For the convenience
of notation, let us define h = % and h; = h|N(3)|
where N (i) is the set of neighbors of 4. In that case, every




node ¢ has a threshold value h; such that the best response
strategy can be written as sign(h; + > ¢ n (i) %)

We assume that a—b > d —c, so that h; > 0 forallz e V
with non-zero degree. In other words, when the number of
neighbors of node ¢ taking action +1 is equal to the number
of its neighbors taking action —1, the best response for %
is +1. Harsanyi and Selten [HS88] named +1 the “risk-
dominant” action because it seems to be the best strategy
for a node that does not have any information about its
neighbors. Notice that it is possible for h to be larger than
0 even though b > a. In other words, the risk-dominant
equilibrium is in general distinct from the “payoff-dominant
equilibrium”, the equilibrium in which all the players have
the maximum possible payoff.

It is easy to verify that coordination games belong to the
class of potential games. As a consequence, best response
dynamics always converges to one of the pure Nash equi-
libria. In this paper, we study noisy best response dynamics.
In this dynamics, when the players revise their strategy they
choose the best response action with probability close to 1.
Still, there is a small chance that they choose the alternative
strategy with inferior payoff.

More formally, a noisy best-response dynamics is speci-
fied by a one-parameter family of Markov chains Pg{---}
indexed by (3. The parameter 5 € R determines how noisy
is the dynamics, with 8 = oo corresponding to the noise-free
or best-response dynamics.

We assume that each node ¢ updates its value at the
arrival time of an independent Poisson clock of rate 1. The
probabili Zy that node 1 take action y; is proportional to
ePVilhitdjenc 1) More precisely, the conditional distri-
bution of the new strategy is

ePuiKi(z)
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where K;(z) = hi+3_ ;¢ n(;) ;- Note that this is equivalent
to the best response dynamics y; = sign(h; + ZjeN(i) xj)
for § = oo. The above dynamics is called heat bath or
Glauber kernel for the Ising model. It is also known as
logit update rule which is the standard model in the discrete
choice literature [M74], [MS94], [MP95]. In this context,
this dynamics has been studied by Blume [Blu93].

Let z = {x; : i € V}. The corresponding Markov
chain is reversible with the stationary distribution pg(z) o

exp(—fH(x)) where
Z T;T; — Z hiz;, 3
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For large (3, the stationary distribution concentrates around
the all-(4+1) configuration. In other words, this dynamics
predicts that the 41 equilibrium or the Harsanyi-Selten’s
risk-dominant equilibrium is the likely outcome of the play
in the long run.

The above was observed in by Kandori et al. [KMR93]
and Young [Young93] for a slightly different definition of
noisy-best response dynamics. Their result has been studied
and extended as a method for refining Nash equilibria in
games. Also it has been used as a simple model for studying
formation of social norms and institutions and diffusion of
technologies. See [FL98] for the former and [YoungO1] for
an exposition of the latter.

Our aim is to determine whether the convergence to this
equilibrium is realized in a reasonable time. For example,
suppose the behavior or technology corresponding to action
—1 is the widespread action in the network. Now the tech-
nology or behavior +1 is offered as an alternative. Suppose
a > b and ¢ = d = 0 so the innovation corresponding
to +1 is clearly superior. The above dynamics predict that
the innovation corresponding to action +1 will eventually
become widespread in the network. We are interested to
characterize the networks on which this innovation spreads
in a reasonable time.

To this end, we let T’y denote the hitting time or con-
vergence time to the all-(4+1) configuration, and define the
typical hitting time for 41 as

7+(G; h) = sup inf{t >0: PH{T, > 1} < e—l} L@

For the sake of brevity, we will often refer to this as the
hitting time, and drop its arguments.

2.1. Relations with MCMC theory and statistical physics

The reversible Markov chain studied in this paper coin-
cides with the Glauber dynamics for the Ising model, and is
arguably one of the most studied Markov chains of the same
type. Among the few general results, Berger et al. [BK+05]
proved an upper bound on the mixing time for h = 0 in
terms of the cutwidth of the graph. Their proof is based a
simple but elegant canonical path argument. Because of our
very motivation, we must consider ~ > 0. It is important to
stress that this seemingly innocuous modification leads the a
dramatically different behavior. As an example, for a graph
with a d-dimensional embedding (see below for definitions
and analysis), the mixing time is exp{©(n(¢=1/d)1 for
h = 0, while for any h > 0 is expected to be polynomial.
This difference is not captured by the approach of [BK+05]:
adapting the canonical path argument to the case i > 0 leads
to an upper bound of order exp{0(n(?~1/%)} We will see
below that the correct behavior is instead captured by our
approach.

Studying Glauber dynamics in the 3 — oo limit has
been explored within mathematical physics to understand
‘metastability.” This line of research has lead to sharp esti-
mates of the convergence time (more precisely, of the con-
stant T',(G)) when the graph is a two- or three-dimensional
grid [NeS91], [NeS92], [BC96], [BMO02]. It is natural to ask



how robust these results are when the graph is perturbed:
we will answer to this question in several cases.

3. MAIN RESULT

The main result of this paper is to derive the graph
theoretical quantity that captures the low noise behavior of
the hitting time. In order to build intuition, we will start with
some familiar and natural models of social networks:

(a) Random graphs. Including random regular graphs of
degree k > 3, random graphs with a fixed degree se-
quence with minimum degree 3, and random graphs in
preferential-attachment model with minimum degree 2
[MPS06], [GMSO03].

(b) d-dimensional networks. We say that the graph G is
embeddable in d dimensions or is a d-dimensional
range-K graph if one can associate to each of its
vertices i € V a position & € RY such that, (1)
(1,7) € E implies dpa(&, &) < K (here dpa(---)
denotes Euclidean distance); (2) Any cube of volume
v contains at most 2 v vertices.

(c) Small-world networks. The vertices of this graph are
those of a d-dimensional grid of side n'/?. Two
vertices 4, j are connected by an edge if they are
nearest neighbors. Further, each vertex ¢ is connected
to k other vertices j(1), ..., j(k) drawn independently
with distribution P;(j) = C(n)|i — j|~".

Theorem 1. As 3 — oo, the convergence time is 7 (G) =
exp{206T.(G) + o(B)} where

(¢) If G is a random k-regular graph with k > 3,
a random graph with a fixed degree sequence with
minimum degree 3, or a preferential-attachment graph
with minimum degree 2, then for h small enough,
I.(G) = Q(n).

(i) If G is a d-dimensional graph with bounded range,
then for all h > 0, T',(G) = O(1).

(#i1) If G is a small world network with r > d, and h
is such that max; h; < k —d — 5/2, then with high
probability T'.(G) = Q(logn/loglogn).

() If G is a small world network with v < d, and h
is small enough, then with high probability T.(G) =

The basic implication of the above theorem is that if the
underlying interaction or social network is well-connected,
ie. if it resembles a random-regular graph or a power-
law graph, then the 41 action spreads very slowly in the
network. On the other hand, if the interaction is restricted
only to individuals that are geographically close, then con-
vergence to +1 equilibrium is very fast.

The proof of is based on relating the convergence time to
the isoperimetric function of G.

Lemma 1. Let G be a graph with maximum degree A.
Assume that there exist constants o and v < 1 such that for

any subset of vertices U CV, and for any k € {1,...,|U|}
min  cut(S,U\S) < «alS]|7. Q)
SCU,|S|=k

Then there exists constant A = A(a,v,h,A) such that
Ir.(G) < A

Conversely, for a graph G with degree bounded by A,
assume there exists a subset U C V(G), such that for i € U,
IN@)N(V\U)| < M, and the subgraph induced by U is
a (6,\) expander; i.e. for every k < §|U

’

min cut(S,U\ §) > A|[S]. (6)
SCU,|S|=k

Then T'.(G) > (A — hA — M)[5|U]).

In words, an upper bound on the isoperimetric function
of the graph leads to an upper bound on the hitting time.
On the other hand, highly connected subgraphs that are
loosely connected to the rest of the graph can slow down
the convergence significantly.

It is not hard to derive the proof of Theorem 1 (2), (4i7),
and (iv) from the above lemma. Random regular graphs,
preferential-attachment graphs, and small-world networks
with < d have constant expansion. Small-world networks
with r > d contain a small, highly connected regions of size
roughly O(logn). In fact, the proof of this part of theorem
is based on identifying an expander of this size in the graph.

For part (ii) of Theorem 1 note that, roughly speaking,
in networks with dimension d, the number of edges in
the boundary of a ball that contains v vertices is of order
O(v'~1/4). Therefore the first part of Lemma 1 should give
an intuition on why the convergence time is fast. The actual
proof is significantly less straightforward because we must
control the isoperimetric function of every subgraph of G
(and there is no monotonicity with respect to the graph).
The proof is presented in Section 5.

So far, we assumed that h; = h|N(d)|. This choice
simplifies the statements but is not technically needed. In
the next section, we will consider a generic graph G and
generic values of h; > 0.

4. RESULTS FOR GENERAL GRAPHS

Given h = {h; : i € V},and U C V, we let |U|, =
> icu hi. We define the tilted cutwidth of G as

I'(G;h) = S%li_l}lv max [cut(Se, V' \ St) — |St|n] - (7

Here the min is taken over all linear orderings of the vertices
i(1),...,i(n), with Sy = {i(1),...,i(t)}. Note that if for
all 4, h; = 0, the above is equal to the cutwidth of the graph.

Given a collection of subsets of V, Q C 2 such that
0 eQ V &Q, welet 9Q be the collection of couples



(S,S U{i}) such that S € Q and S U {i} & Q. We then
define the tilted cut of G, A(G;h), as

i t(S;, V \ Si) — |Siln] 8

max min o maxfeut(Si, V\ Si) = |Sils] ®)

the maximum being taken over monotone sets €) (i.e. such
that S € Q implies S’ € Q for all S’ C 5).

Theorem 2. Given an induced subgraph F C G, let ﬁF be
defined by hf = h; + |N(i)|c\p, where |N(i)|c\r is the
degree of i in G\ F. For reversible asynchronous dynamics
we have 71 (G5 h) = exp{20T(G; k) + o(3)}, where

. — Y g F
F*(G,b)—rgggF(F,h )—angagA(F,h ). )

Note that tilted cutwidth and tilted cut are dual quan-
tities. The former corresponds the maximum increase in
the potential function H(x) along the lowest path to the
+1 equilibrium. The latter is the lowest value of potential
function along the highest separating set in the space of
configurations. The above theorem shows that tilted cut and
cutwidth coincide for the ‘slowest’ subgraph of G provided
that the h;’s are non-negative. This identity is highly non-
trivial: for instance the two expressions in Eq. (9) do not
coincide for all subgraphs F'. The hitting time is exponential
in this graph parameter.

Monotonicity of the optimal path. The linear ordering in
Eq. (7) corresponds to an path leading to the risk-dominant
(all +1) equilibrium which characterizes characterizes the
trajectory of the diffusion. Such characterizations can pro-
vide insight on the typical process by which the network
converges to the +1 equilibrium [OVO04]. For instance, if
all optimal paths include a certain configuration x, then the
network will pass through the state x on its way to the new
equilibrium, with probability converging to 1 as § — oo.

It is remarkable that in Eq. (7) it is sufficient to optimize
over linear orderings instead of generic paths in {41, —1}V.
It implies that most likely trajectories are monotone in that
they only flip —1’s to +1. A similar phenomenon was
indeed proved in the case of two- and three-dimensional
grids [NeS91], [NeS92], [BC96]. Here we provide rigorous
evidence that it is indeed generic.

4.1. Comparison with results in the economics literature

Ellison [EII93] originally considered a Markov chain with
transition rates slightly different from the ones of Glauber
dynamics. At each time step, each node ¢ updates its
strategy to the best response one sign(h;+3_ ;¢ NG) x;) with
probability 1 —e~? and to the opposite one with probability
e~ P In other words, the probability of making a mistake is
independent of the loss in utility. In Section 4.3 we discuss
a class of general models including Ellison’s Markov chain.

On the other hand, it is worth mentioning that the cases
considered in [E1193] are very easy to analyze using Theorem

2. For the complete graph, with h; = h for all « € V, it is
sufficient to pay attention to F' = G and for that graph define
Q to be the family of all sets with cardinality at most n/2. By
evaluating Eq. (8) we get I'.(K,;h) > (n—h)?/4+ O(n).
The second example studied by Ellison is a 2k-regular graph
resulting from connecting all vertices of distance at most k
in a cycle. In that graph, the maximum is again achieved for
F = G, and the natural linear ordering of the cycle yields
[(G;h) < 4k2.

Young [Young06] studied instead Glauber dynamics,
and proved a sufficient condition for fast convergence
at large (. This work introduces a slightly different
notion of convergence time, and proves that
convergence to the risk dominant equilibrium is fast
for ‘close-knit’ families graphs. Namely, he defines
(for 0 a small positive constant) 7,(G,d;h) =
sup,, inf {t >0: Pe{d ey zi(t) > (1=0d)n} >1— (5} .
Further, graph G is said to be ‘(r,v)-close-knit’ if each
vertex belongs to at least one set of vertices S such that
|S| < v and, for every S’ C S:

d(S',8) =Y |IN(i), (10)
€S’
where d(S’,.5) is the number of edges between a vertex in
S’ and a vertex in S. A family F of graphs is said to be
close-knit if, for every r € (0,1/2) there exists a v = v(r)
such that every graph in the family is (r,v(r)) close-knit.

Theorem 3 (Young, 2006). Consider a symmetric 2x2 game
with a risk-dominant equilibrium, and let F be a close-knit
Sfamily of graphs. Then there exists [, and T.(3,0,v(-))
such that, for any 3 > (. and any graph in the family

TJr(Gv(S;h) ST*(ﬂ,(S,’U(')). (11)

Notice that the conclusions of this theorem are not directly
comparable with our results, in that it provides a finite-3
upper bound, but does not estimate the 5 — oo behavior.
Further, the definition of hitting time is slightly different
from ours and from the one of [ElI93]. On the other hand,
it is easy to use Theorem 4 to show that, for G' belonging
to a close-knit family 74(G;h) = exp{OT.(G) + o(8)}
with I',(G) upper bounded by a constant independent of
the graph size. Indeed, if G is (r,v) close-knit with r close
enough to 1/2, then there exists a sequence Si,..., ST C
V such that H(S;) = ming/cs, H(S") < 0 and |S;| <
v. By flipping vertices along this sequence and using the
submodularity of H(-), it follows that D(F; h'") < v2.

4.2. Approximating tilted cut and tilted cutwidth

The maximization over 2 in Eq. (8) for computing
tilted cut is highly non-trivial. Here we obtain a class of
lower bounds by restricting ) to essentially subsets with
a given cardinality. The following result shows the ‘loss’



resulting from this restriction is bounded, under appropriate
conditions. On the other hand, it implies that algorithms for
computing sparse cuts find approximately optimal orderings
corresponding to a tilted cutwidth. The proof of the follow-
ing theorem appears in the complete version of this paper
[MSO09].

Theorem 4. Assume that, for some L1, Lo, with Lo > hpax
and for every induced subgraph F C G, we have
min cut(S,V(F)\S)—|S <L, 12
i [et(SVENS) - [She] <L 12
where it is understood that § # S C V(F). If, for every
subset of vertices U, with |U|y, < Lo, the induced subgraph
has cutwidth upper bounded by C, then I'(G;4h) < C +
Ly + Lo.

It is interesting to compare this result with the analysis
of contagion models [MorrO0]. In that case contagion takes
place if there exists an ordering of the vertices i(1), i(2),
...such that, assuming x;1) = +1, @) = +1,...254) =
+1, the best response for i(¢t 4 1) is strategy +1. Theorem
4 allows to replace single vertices, by ‘blocks’ as long as
they have bounded size and bounded cutwidth.

Assuming that a ‘good’ path to consensus exists, can it
be found efficiently? By using a simple generalization of
Feige and Krauthgamer’s [FK02] O(log?n) approximation
algorithm for finding the sparsest cut of a given cardinality,
we have the following

Remark 1. If G = (V, E) satisfies equation (12), it is possi-
ble to find an ordering 11,13, ...,y of V in polynomial time
so that for every Sy = {i1,i2,...4t}, and L = L1+ Lo+ C

cut(Sy, V\ S;) = O(|S¢|nlog® n + Llogn).
4.3. Nonreversible and synchronous dynamics

In this section we consider a general class of Markov
dynamics over z € {+1,—1}V. An element in this class
is specified by p; g(yilzn ), with p; g(+1|zy(;)) a non-
decreasing function of the number jen(i) ©j- Further we
assume that p;(+1]zy ;) < e > when b+, n oy 25 <
0. Note that the synchronous Markov chain studied in KMR
[KMR93] and Ellison [El193] is a special case in this class.

Denote the hitting time of all (+1)-configuration in graph
G with 71 (G; h) as before.

Proposition 1. Let G = (V, E) be a k-regular graph of
size n such that for \,§ > 0, every S C V,|S| < én
has vertex expansion at least \. Then for any noisy-best
response dynamics defined above, there exists a constant
¢ = ¢(\ 0, k) such that 7, (G;h) > exp{Bcn} as long as
A > (3k/4) + (max; h;/2).

Note that random regular graphs satisfy the condition of
the above proposition as long as h;’s are small enough. This

proposition can be proved by considering the evolution of
one dimensional chain tracking the number of +1 vertices.

Proposition 2. Let G be a d-dimensional grid of size n and
constant d > 1. For any synchronous or asynchronous noisy-
best response dynamics defined above, there exists constant
¢ such that 74 (G; h) < exp{fc}.

The above proposition can be proved by a simple coupling
argument very similar to that of Young [Young06]. We
will leave its details to a more complete version of the
paper. Together, these two propositions show that for a large
class of noisy best-response dynamics including the one
considered in [Ell93], the degrees of vertices are not the
key property dictating the rate of convergence.

5. PROOF OF THEOREM 2

We start by proving Theorem 2. The first part of the
proof relates the hitting time of +1 to the evolution of the
potential function H. The main intuition of the lemma is as
follows: the dynamics has a tendency to decrease the value
of potential function H. However to reach the set A from z,
it may be necessary to go through configurations that have
high values of H. These configurations create a barrier and
the hitting time is related exponentially to the height the
path with the smallest barrier.

Lemma 2. Consider a Markov chain with state space S
reversible with respect to the stationary measure pg(z) =
exp(—BH(xz) + o(B)), and assume that, if pg(z,y) =
exp(—BV (z,y) + o(B))-

Let A={x: H(x) < Hy} be non-empty, and define the
typical hitting time for A as in Eq. (4), with + replaced by
A. Then 74 = exp{BT 4 + o(B)} where T 4 is

rglgajcwglglAtgr?LfL‘)El [H(we) + V(wg,wer1) — H(z)] , (13)
and the min runs over paths w = (wi,ws,...,wr) in
configuration space such that pg(wi,wi+1) > 0 for each
t.

The proof of this lemma can be obtained by building on
known results, for instance Theorem 6.38 in [OV04]. These
however typically apply to exit times from local minima
of H(z). We provide a simple proof based on spectral
arguments in a longer version of this paper.

For the sake of clarity, we split the proof of Theorem
2 in two parts: first the characterization in terms of tilted
cutwidth (i.e. the first identity in Eq. (9)); the one in terms
of tilted cut (second identity in Eq. (9)) appears in section
5.2.

5.1. Relating the rate of convergence to tilted cutwidth

Proof: (Theorem 2, Tilted cutwidth). Notice that
Glauber dynamics satisfies the hypotheses of Lemma 2,



with H(z) given by Eq. (3). In this case, for any allowed
transition z — v/, H(z)+V(z,y) = max(H(z), H(y)). As
a consequence, we can drop the factor V'(---) in Eq. (13).
We thus obtain 7 = exp(fmax, I'y(z) + o(3)) where

Ii(2) = S Tnax [H(w) — H(2)] - (14)
An upper bound is obtained by restricting the minimum
to monotone paths. It is not hard to realize that the result
coincides with 2I'(F; h™") where F is the subgraph induced
by vertices ¢ such that z; = —1. It is far less obvious to prove
equality, i.e., to prove that the optimal path can indeed be
taken to be monotone. The rest of the section is dedicated
to proving that.

It is convenient to use the representation of the path w =
(g = ZZyye s D1 = +1) as a sequence of subsets
of vertices: w = (Sp = S,51,...,S)u—1 = V). We will
consider a more general class of paths whereby S;\ S;_1 =
{v} or S; C Si_1, and let G(w) = max;[H (S;) — H(So)].

Let us start by considering the optimal initial configu-
ration. We claim that if B € argmaxgmin,.s—.yv G(w)
is such an optimal configuration, then for every A C B,
H(A) > H(B). Indeed, suppose H(A) < H(B). By
prepending B to any path w : A — V, we obtain a
path «’ B — V with G(w') < G(w). Therefore
min,. g v G(w') < min,.4_,v G(w) which is a contra-
diction.

Among all paths that achieve the optimum, choose the
path w that minimizes the potential function f(w) =
|w|?|V] - > s,cw [Sil. Intuitively, f puts a very high weight
on shorter paths and then paths with larger sets. We will
prove that, with this choice, w is monotone.

For the sake of contradiction, suppose w is not monotone.
Let Sk be the set with the smallest index such that Si; C
Sk Partition Sy, \ Sk41 into two subsets R = (S \ Sk+1)NSo
and T' = (Sk \ Sk+1)\ So. Without loss of generality assume
thatfor1 <i <k, S; = {1,2,"'i}USO. Letv; <wvg--- <
v; be the elements of 7" in the order of their appearance in
w.

For a subset A C T, and i < k define the marginal value
of subset A at position i to be M (4,1) = H(S;\A)—H(S;).
Since H is submodular, M (A, ) is non-decreasing with %
as long as A C S;. Because of our claim about the initial
condition, we have, in particular,

M(R,0) = H(So \ R) — H(S50) > 0. (15)

Lemma 3. One of the following two statements is correct:
Case (I) There exists a subset T' C T such that for all 1,
M(T',i) <0; Case (II) M(TU R, k) > 0.

Proof: Construct the following partitioning of 7" into
T = {vi,v, v} Too = {vig, V41,0 Vi1 }
T, = {v;,_,---vp} in such a way that for every

z}' = {vij_17"'v’i7‘—l} and ij—l <l < ij, M(er,’l)l —
1) = M({vi; ,--v_1},v —1) < 0 and for | = ij,
M(Tj,v; —1) > 0.

Such a partition can be obtained the following way. Start
with 7 = 1 and iteratively add v;’s to the current set 7. If
M (Tj,vi — 1) > 0, increment j and add v; and the next
vertices to the new subset.

Let T, = {vs,---,v;} be the last subset in the above
sequence. We claim that if M (7,,k) < 0 then M(T,,7) <
0 for all ¢+ > ws. For every s < j < t and every
i between v; and v;yq1 by supermodularity M(T,,i) =
M{v,---v;},4) < M{w, - v}, vj41 — 1) < 0. The
same argument goes for vy < ¢ < k. In that case the lemma
is correct for T’ = T,.

If M(T,,k) > 0, we will show that the second statement
of the lemma is true. For that, we need to write the H
function for all sets 77, --- T, explicitly. For a set T and
I = i4; M(T;,u — 1) is 2[cut(T},{1,2,-- v — 1}) —
cut(Ty, {vi, o0+ 1,---n}) + 32,cq, hi] which is at least 0.

One can write a similar equation j = [ by replacing v; —
1 with k. Equation (15) gives a similar inequality for R.
Adding up these inequalities for all j and R and noting that
the contribution of every edge with both ends in U;7; U R
cancels out, we get

-1
M(TUR, k) >y M(Tj,vi, — 1)+ M(T}, k) + M(R,0),
j=1

which is bigger than or equal to 0. |

We are now ready to finish the proof. Suppose the first
statement of the lemma is correct. We construct a new
path w’ by removing the vertices of 7’ from the sequence
1,2,--- ,t in the beginning of w and also removing 7" from
T. Since w’ is shorter than w, we only need to argue that
G(w') < G(w). This is obvious because for every i < k,
H(S;\T") — H(S;) = M(T",i) < 0.

In the second case, we construct another path by changing
Sk+1. First note that since w is minimizing the potential
function, Sj42 = Sky1 U {v} for some v that is not in S.
Now note that by replacing Sj11 with S, U {v} we obtain
a path with a higher value of the potential function and at
most the same barrier. This is because

H(Sp41U{v}) = H(SpU{v}) = H(Sk41) — H(Sk)
= M(TUR,k),

which is bigger than or equal to 0. u

5.2. The convergence rate in terms of tilted cut

The second part of the proof of Theorem 2 exploits the
well-known fact that Glauber dynamics is monotone for
the Ising model. Here by monotonicity we mean that give
initial conditions z(0) and z’(0) > z(0), the corresponding



evolutions can be coupled in such a way that z'(t) = z(¢)
after any number of steps.

Proof: (Theorem 2, Tilted cut). By monotonicity of
Glauber dynamics I',(G;h) > T, (F;h") for any induced
subgraph I C G. Theorem 2 implies T',(F;h") >
A(F;QF): indeed given a path w = (So, S1,...,S|u|-1 =
V') this must have at least one step in 0€2. Hence I'..(G; h) >
maxp A(F;ﬁF).

We need to prove I',(G;h) < A(F;h") for at least one
induced subgraph F'. Fix F' to be a subgraph which achieves
the maximum in Eq. (9) (i.e. argmaxF(F;QF)). Notice
that, to leading exponential order, the hitting time in F' is
the same as in G, i.e. F*(F;QF) =T, (G;h).

Let pg(z,y) be the transition probabilities of Glauber
dynamics on F, and pg (z,y) the kernel restricted to
{+1, -1}V \ {41}. By this we mean that we set
pE(Lﬂ) = pg(ﬂ, y) = 0. Denote by Pg the matrix
with entries pg,' (z,y) and by 1)y its eigenvector with largest
eigenvalue. By Perron-Frobenius Theorem, we can assume
o(z) > 0. We claim that ¢o(z) is monotonically decreasing
in z. Indeed consider the transformation ¢ — T(¢) =
P34 /||P5 4|25, This is a continuous mapping from the set
of unit vectors in L2 (1) onto itself. Further, if ¢ is monotone
and non-negative, 7'(¢)) is monotone an non-negative as
well (the first property follows from monotonicity of the
dynamics). The set of non-negative and monotone unit
vectors in L?(j1) is homeomorphic to a simplex. By Brouwer
fixed point theorem, 7" has at least one fixed point that is
non-negative and monotone, which therefore coincides with
19 by Perron-Frobenius.

Standard arguments (see the complete version of the
paper) imply that there exists 2 = {z € S : ¥o(z) > b},
such that

EQEQ M(&
Z(g,g)eaﬂ w(z)p

7 (F;pF) < 0, (14 ) (16)

(z,y)

)
+
B 14
for some [3-independent constant C,,. Using 74 (F; h') =
exp{208T.(F;h*) + o(3)} and the large 8 asymptotics of
p(z), pj(z,y), we get T (F; k") is at most

i t(S;, V'\ Si) — |S: 1).

s pin o max feut(S, VA 5i) — [Siln] + 0s(1)
Since p(z) is monotone, 2 is monotone as well and
therefore the last inequality implies the thesis. |

6. PROOF OF THEOREM 1

In this section, we present the proof of Theorem 1. The
first step is to relate the tilted cut and tilted cutwidth to
isoperimetric functions of the graph. Such a relation is
provided by Lemma 1

6.1. Isoperimetric functions, proof of Lemma 1

Proof: (Lemma 1). By Theorem 2, it is sufficient to find
an upper bound for F(F :hF ) for every induced subgraph F.
By monotonicity of I'(F; h) with respect to h, ['(F; ") <
['(F'; h). We will upper bound I'(F'; h) by showing Eq. (12)
holds for any induced subgraph F' C F.
Let Apmin = min; h; and Ay, = max; h; < hA. First
notice that, for any U and for any k, there exists S C U
such that |S| = k and

IA

1 _ 1
cut(S.U\ $) = ISl < ahyLISI] - {ISIn

A'(a,7) B/ (=)
where A'(«,y) = max(azY — x/4 : © > 0). Take L; =
Al(a, ) h;ﬂ?n/(kw and Ly = Ly + 2hnax. By the above

equation,

IN

1
min cut(S,V(F)\ S) — =|S|n| < Ly .
s, (S, VIEINS) = 71SIn| < Ln
Finally the cutwidth of any set S with |S|, < Lo is upper
bounded by «|S|” log|S| (using [LR99] and Eq. (5)) which
is at most C' = A" (ct, v, humax) hipt! @ log max(2, h2L).
The thesis thus follows by applying Theorem 4.

To prove the lower bound we use Theorem 2 again. Let F
be the subgraph induced by U. By monotonicity of A(G;h)
with respect to h, for t = |§|U]], we have

A(F;hT) > A(F; haax + M)
> |I;1in [AlS| — (RA 4+ M)|S]] .
=t
which implies the thesis. |

We notice in passing that the estimates in the second
part of this proof could be improved by using more specific
arguments instead of directly applying Theorem 2.

Finally, we need to estimate the isoperimetric function of
d-dimensional graphs. This can be done by an appropriate
relaxation.

Given a function f : V — R, i — f;, and a set of non-
negative weights w;, @ € V, we define

W=D wif2, IVeflP= Y 1fi— 17 aD

i€V (i,j)eE

We then have the following generalization of Cheeger in-
equality.

Lemma 4. Assume there exists two vertex sets 7 C Qg C
V and a function f : V. — R such that: (1) f; > |f;| for
any 1 € Qy and any j € V; (2) fi =0 forieV\ Qo (3)
Ly < |[lw < [Q0lw < Lo; (4) [[VafI® < M5 Then
there exists S C 'V with L1 < |S|, < Lo

cut(S,V\ S) < \/4)\ max{[N(0)|/hi} |Sln- (18)




Proof: Assume without loss of generality that

max{|fi| i€V} =1, whence f; =1 fori € ;. We
use the same trick as in the proof of the standard Cheeger
inequality

IVafll? = > (fi=f)

(i,5)€E
2
- (Z(m‘)eE 2 - ffl)
T Xagpeslfit fi)?
The denominator is upper bounded by

4 ING)| S §4max‘

eV

-
h”\ FE. a9

The argument in parenthesis at the numerator is 1nstead equal
to Z(”)EEIO [L(f? > 2)=1(f7 > 2) |dsz0 cut(S., V'\
S.)dz, where S, = {i € V : f? > z}. The quantity above
is lower bounded by

min cut(S:, V\ S:) / 1S, dz
0] S

which is equal to

. ocut(S,,V\ S,)
mm ——— .
o] |S:n 171l

Let S = S,, where z, realizes the above minimum (the
function to be minimized is piecewise constants and right
continuous hence the minimum is realized at some point).
Notice that ; C S, C Qg for all z € [0,1], and thus we
have in particular Ly < |S|,, < Lo. Further, form the above

IVafll> -1 . cut(S,V\ S)
A= > min |H ST } ¢

~ AR T4

which finishes the proof.

6.2. Rate of convergence for specific graph families, proof
of Theorem 1

Random graphs. It is well known that a random k-regular
graph is with high probability a £ — 2 — § expander for all
6 > 0 [Kah92]. Also, it is known that for small constant \,
random graphs with a fixed degree sequence with minimum
degree 3, and random graphs in preferential attachment
model with minimum degree 2 have expansion A with high
probability [GMS03], [MPS06]. The thesis follows from
Lemma 1.

d-dimensional networks. We need to prove that, for each
induced subgraph G, I‘(G’;QG/) = O(1). By Theorem 4,
it is sufficient to show that, for any induced and connected
subgraph F’, there exists a set .S of bounded size such that
cut(S, V(F) \ S) — i|S|(h)F < 0, with A, = h;/4. If

the original graph is embeddable, any induced subgraph is

embeddable as well. Since hf > h;, the thesis follows by
proving that for any embeddable graph G, we can find a set
of vertices S of bounded size with cut(S,V'\ S) < [S] 4.

We will construct a function f with bounded support such
that [V f|[* < AllfI[> with A = minev { xi ) In
order to achieve this goal, consider the d-dimensional of
G and partition R? in cubes C of side ¢ to be fixed later.
Denote by Cy the cube maximizing ;. . hi, and let Cj,
j = 1,...3% — 1 be the adjacent cubes. Let f; = (&),
where for € R%, we have

p(z) = [1—dE"d(m’C)L :

14
Notice that [V (z)| < 1/€ and |V(z)| > 0 only if z € C;,
j=1,...3%71 Since |f; — f;| < |Vl [|& — &]| we have
K\? a
IVarlP < () SV < ue)
eV
d \N )|
< 3 (g) ax T }Zh 1(e <)
K N
< 3 (6) {‘ : )‘}llﬂlh @

The thesis follows easily by choosmg { to be equal to
292 K max;cv {|N(3)|/hi}.

Small world networks with r > d. Let U be a subset of
vertices forming a cube of side ¢, and Gy a (¢, k—5/2), k-
regular expander with vertex set U. Such a graph exists for
all ¢ large enough and € small enough by [Kah92]. Call Ay
the event that the subgraph induced by long-range edges in U
coincides with Gy, and no long-range edge from i € V\ U
is incident on U.

Under Ay, the subgraph Gy satisfies the hypotheses of
Lemma 1, second part, with b = d. Therefore T'.(G;h) >
(k — 5/2 — hpax — d)|e€?/4]. The thesis thus follows
if we can prove the existence of U with volume (¢ =
Q(logn/loglogn) such that Ay is true.

Fix one such cube U. The probability that the long range
edges inside U induce the expander Gy is larger than
(C(n)¢=7)k*". On the other hand, for any vertex i € U, the
probability that no long range edge from V \ U is incident
on U is lower bounded as

) Y li—i7

II -cm — 171" > exp{—3kC(n

JEV\i JjeEV\L

where we used the lower bound 1 — z > ¢~3% valid for all
x < 1/2, together with the fact that C(n) < 1/2d (which
follows by considering the 2d nearest neighbors). From the
definition of C(n), the last expression is lower bounded by
e~3F, whence

P{Ay} > [Cn)e3e—]



Let S denote a family of (n/¢¢) disjoint subcubes, and
denote by Ng the number of such subcubes for which prop-
erty Ay holds. Then E[Ns] = (n/(?)P{Ay}. Using the
above lower bound together with the fact C(n) > C,.q >0
for r > d and C(n) > C, 4/logn for r = d, it follows
that there exists a,b > 0 such that E[Ng] = Q(n?) if
(% < blogn/loglogn.

The proof if finished by noticing that, for U N U’ =,
]P{AUQAU/} < ]P{AUQAU/}, whence VaI‘(NS) < E[NS]
The thesis follows applying Chebyshev inequality to Ng.

Small world networks with r < d. It is proved in [Fla06]
that these graphs are with high probability expanders. The
thesis follows from Lemma 1.
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