
The RPC Calculus

Ezra E. K. Cooper Philip Wadler
University of Edinburgh

e.e.k.cooper@sms.ed.ac.uk wadler@inf.ed.ac.uk

Abstract
Several recent language designs have offered a unified language
for programming a distributed system, with explicit notation of lo-
cations; we call these “location-aware” languages. These languages
provide constructs allowing the programmer to control the location
(the choice of host, for example) where a piece of code should run,
which can be useful for security or performance reasons. On the
other hand, a central mantra of WWW system engineering pre-
scribes that web servers should be “stateless”: that no “session
state” should be maintained on behalf of individual clients—that
is, no state that pertains to the particular point of the interaction at
which a client program resides. Many implementations of location-
aware languages are not at home on the web: they hold some kind
of client-specific state on the server. We show how to implement a
symmetrical location-aware language on top of a stateless server.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages] Language Constructs and Features

General Terms Languages, Theory

1. Introduction
Designing a web server requires thinking carefully about user state
and how to manage it. Unlike a desktop application, which deals
with one user at a time, or a traditional networked system, which
may handle multiple simultaneous requests but in a more controlled
environment, a modest web system can expect to deal with tens
or hundreds of thousands of users in a day, each one can have
multiple windows open on the site simultaneously—and these users
can disappear at any time without notifying the server. This makes
it infeasible for a web server to maintain state regarding a user’s
session. The mantra of web programming is: Get the state out!—
get it out of the server and into the client. An efficient web server
will respond to each request quickly and then forget about it even
quicker.

Nonetheless, several recent high-level programming language
designs [15, 17, 16] allow the programmer the illusion of a persis-
tent environment encompassing both client and server; let us call
these “location-aware languages.” This allows the programmer to
move control back and forth freely between client and server, us-
ing local resources on either side as necessary, but still expressing
the program in one language. This paper shows how to implement

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
PPDP’09, September 7–9, 2009, Coimbra, Portugal.
Copyright c© 2008 ACM 978-1-60558-568-0/09/09. . . $10.00

a location-aware language in an environment with a stateful client
and a stateless server.

The term stateless server, as it is applied by web engineers,
means not that the server has strictly no storage, but rather that
the server should not hold state pertaining to every thread of con-
trol on every one of its clients, which indeed may terminate with-
out notifying the server. Typically, web servers do store persistent
data—in a database, for example—but this data represents lasting,
important information, rather than the ephemeral data supporting
the immediate state of a particular client process. The challenge,
then, is to support a location-aware language, where control state is
maintained as transparently as in any programming language, even
though the stateless-server substrate requires explicitly managing
this state.

Our technique involves three essential steps: defunctionaliza-
tion à la Reynolds, CPS translation, and a trampoline [10] for tun-
nelling server-to-client requests within server responses.

CPS translation and defunctionalization were used by Matthews
et al. [13] for a similar end, that of writing web interactions in
direct style, rather than CPS. We adapt these techniques, adding a
trampoline to the toolbox, to support RPC calls in a location-aware
language.

A version of this feature is built into the Links language [5].
In the current version, only calls to top-level functions can pass
control between client and server. Here we show how to relax the
top-level restriction. In particular, the current, limited version re-
quires just a CPS translation and a trampoline; defunctionalization
is needed in implementing nested remote-function definitions.

The only form of state modeled by this calculus is the control
state, or call stack. This is a very pure view of state; but the
techniques used here could be expanded to handle other forms,
as discussed in Section 6. In fact, in the Links language, there is
no other form of state, although its utility is recovered through the
use of multiple concurrent processes, as championed by the Erlang
community. In particular, mutable cells can be simulated in such a
language by a process that holds data in its local variables.

This paper We present a simple higher-order λ-calculus enriched
with location annotations, allowing the programmer to indicate the
location where a fragment of code should execute. The semantics
of this calculus indicates where each computation step is allowed
to take place. This can be seen as a semantics of a language with
Remote Procedure Call (RPC) features built in.

We then give a translation from this calculus to a first-order
calculus that models an asymmetrical client–server environment,
and show that the translation preserves the locative semantics of
the source calculus.

2. The RPC Calculus
The RPC calculus, λrpc, is defined in Figure 1. It is like an ordinary
call-by-value calculus, but with location tags on λ-abstractions,
denoting the location where the function body executes. We use

Syntax

constants c
variables x
locations a, b ::= c | s

terms L, M, N ::= LM | V
values V, W ::= λax.N | x | c

evaluation contexts E ::= [] | V E | EN

Semantics
M ⇓a V

V ⇓a V (VALUE)

L ⇓a λbx.N M ⇓a W N{W/x} ⇓b V

LM ⇓a V
(BETA)

Figure 1. The RPC calculus, λrpc.

the location set {c, s} because we are interested in the client-server
setting, but the calculus would be undisturbed by any other choice
of location set. Constants are assumed to be universal, that is, all
locations treat them the same way, and they contain no location
annotations.

The semantics is defined by a big-step reduction relation M ⇓a

V , which is read, “the term M , evaluated at location a, results in
value V .” The reader can verify that the lexical body N of an a-
annotated abstraction λax.N is only ever evaluated at location a,
and thus the location annotations are honored by the semantics.
During evaluation, however, that body may invoke other functions
that evaluate at other locations. We write N{V/x} for the capture-
avoiding substitution of a value V for the variable x in the term
N .

The semantics is equipped with a (partial) function δ which
gives the action δ(a, c, W) at location a of a primitive function
c on argument W . When δ is undefined, such an application is
stuck. We do not require that the constants agree with themselves
across locations—they might produce different values for the same
arguments at different locations. This models the way, for example,
fetching the time at different machines can give different values. In
the calculus as it stands, however, such overloading is unobservable
since every function application has a single execution location,
dictated by the a on the nearest enclosing λ. (We also wish to study
a variant where execution locations can be non-deterministic, but
this is deferred for now.)

Example An example will illustrate the function of all these
location annotations. For readability, this example avails of the
syntactic sugar leta x = M in N for (λax.N)M .

letc getCredentials = λcprompt.
letc y = print prompt in
read

in
letc authenticate = λsx.
lets creds = getCredentials "Enter name, password:" in
if (equal(creds, "ezra:opensesame")) then
"the secret document"

else "Access denied"
in authenticate()

Here let print and read be client-side functions, while equal is
server-side Also imagine that we have extended the calculus with
boolean constants and a conditional construct, ifM thenNtelseNf .

Syntax

function names f, g
constructor names F ,G

values U, V, W ::= x | c | F (~V)

terms L, M, N, X ::= x | c | f(~M)

| F (~M) | case M of A
| req f (~M)

alternative sets A a set of A items
case alternatives A ::= F (~x) ⇒ M

evaluation contexts E ::= [] | f(~V , E, ~M)

| F (~V , E, ~M)
| case E of A
| req f (~V , E, ~M)

configurations K ::= (M ; ·) | (E; M)
function definitions D ::= f(~x) = M

definition set D, C,S ::= letrec D and · · · and D

continuation values J, K ::= k | App(V, W, K) | F (~V , K)

Semantics
K −→C,S K′

Client: (E[f(~V)]; ·) −→C,S (E[M{~V /~x}]; ·)
if (f(~x) = M) ∈ C

(E[case (F (~V)) of A]; ·) −→C,S (E[M{~V /~x}]; ·)
if (F (~x) ⇒ M) ∈ A

Server: (E; E′[f(~V)]) −→C,S (E; E′[M{~V /~x}])
if (f(~x) = M) ∈ S

(E; E′[case (F (~V)) of A]) −→C,S (E; E′[M{~V /~x}])
if (F (~x) ⇒ M) ∈ A

Communication:
(E[req f (~V)]; ·) −→C,S (E; f(~V))

(E; V) −→C,S (E[V]; ·)

Figure 2. The client-server calculus (λcs).

This example begins on the client and invokes the server-side
function authenticate . This server-side function begins by calling
the client function getCredentials , thus moving control back to
the client, where getCredentials prints a prompt and reads back
the credentials (username and password, say) from the client. The
fact that getCredentials is defined by a λc abstraction means that
its body will run at the client, and so the calls to print and read
can take place locally, rather than with a move across the network
for each call.

Furthermore, the fact that authenticate is defined by a λs

abstraction means that its code should not be available to the client.
Hence the constant "ezra:opensesame", corresponding to the
correct username and password, will not be revealed.

3. Client/server calculus
Our target, λcs, defined in Figure 2, models a pair of interacting
agents, a client and a server, each a first-order calculus.

Being first-order, the application form f(~M) is n-ary and al-
lows only a function name, f , in the function position. The cal-
culus also introduces constructor applications of the form F (~M),
which can be seen as a tagged tuple. Constructor applications are
destructed by the case-analysis form case M of A. A list A of
case alternatives is well-formed if it defines each name only once.

Call to f (server)

Call to g (client)

Return r from g

Return s from f

{Call f}

{Call g, k}

{Continue r, k}

{Return s}

main Client Server

Source language:
call/return style

Implementation:
request/response style

f g

Figure 3. Simulation of λrpc calls by λcs requests.

The client may make requests to the server, using the form
req f (~M). The server cannot make requests and can only run in
response to client requests. Note that the req f (~M) form has no
meaning in server position; it may lead to a stuck configuration.

A configuration K of this calculus comes in one of two forms:
a client-side configuration (M ; ·) consisting of an active client
term M and a quiescent server (represented by the dot), or a
server-side configuration (E; M) consisting of an active server
term M and a suspended client context E, which is waiting for
the server’s response. Although the client and server are in some
sense independent agents, they interact in a synchronous fashion:
upon making a request, the client blocks waiting for the server, and
upon completing a request, the server is idle until the next request.

The construction of configurations visibly enforces the con-
straint that there be at most one request active between this pair
of client and server: there can be no back-and-forth call patterns,
no nested calls.

Reduction takes place in the context of a pair of definition sets,
one for each agent, thus the reduction judgment takes the form
K −→C,S K′. Each definition f(~x) = M defines the function
name f , taking arguments ~x, to be the term M . The variables ~x are
thus bound in M . A definition set is only well-formed if it uniquely
defines each name. This does not preclude the other definition set,
in a pair (C,S), from also defining the same name.

The reflexive, transitive closure of the relation−→C,S is written
with a double-headed arrow −�C,S , where the definition-sets are
fixed throughout the sequence.

3.1 Translation from λrpc to λcs

While the λrpc calculus allows arbitrarily deep nesting of control
contexts between locations, λcs allows only for one frame of control
to be waiting on the client while the server is running. To simulate
arbitrarily nested control contexts, the translation uses the pattern
seen in Figure 3. The left-hand diagram shows a sequence of calls
between client and server functions. The solid line indicates the
active line of control as it enters these calls, while the dashed line
indicates a control context which is waiting for a function to return.
In this example, main is a client function which calls a server
function f which in turn calls a client function g.

The right-hand diagram shows the same series of calls as they
occur at the low level. The dashed line again indicates a suspended
control context. During the time when g has been invoked but
has not yet returned a value, the server does not store the con-
trol context—or for that matter anything else about the ongoing
computation—though at the high level f is still waiting on the

(−)◦− : Vλrpc → Vλcs

(λax.N)◦ = pλax.Nq(~y) ~y = FV(λax.N)

x◦ = x

c◦ = c

(−)∗ : Mλrpc → Mλcs|c

V ∗ = V ◦

(LM)∗ = apply(L∗, M∗)

(−)†(−) : Mλrpc → Vλcs → Mλcs|s

V †[] = cont([], V ◦)

(LM)†[] = L†(pMq(~y, [])) where ~y = FV(M)

Figure 4. Term-level translations from λrpc to λcs.

server for the value from g. But the server’s state is encapsulated in
the value k, which it sends to the client along with a specification of
the client-side call to perform, including a function reference and
any arguments.

To orchestrate this interaction, the translation takes the single
source program to two targets, one each for client and server. In
so doing, each side’s non-local functions are replaced by a stub
function, which, rather than implementing the function directly,
implements it by an RPC call to the other location. On the client
side, this is easy: the client simply makes a request (with req)
indicating the function and its arguments.

On the server side, the stub function tunnels its request through
the response channel. It returns from its existing request context a
representation of the call and the server-side continuation.

The client keeps a trampoline function on the stack underneath
any server request, capable of recognizing the tunneled call and
carrying it out. Upon completing this, it places a new request to
the server, sending the call’s result and the server continuation. The
server resumes its computation by applying the continuation to the
result.

Figures 4–7 give the translation. Figure 4 gives term-level trans-
lations (−)◦, (−)∗ and (−)†, which construct values, client terms,
and server contexts, respectively. The (−)† translation produces a
context, which is expected to be filled by a continuation (which is
a server value), so we will write N†K for the translation of N to a
server term with continuation K. The functions (−)∗ and (−)†(−)
are only defined for λrpc client and server terms, respectively. Func-
tions J−Kc,top (Fig. 6) and J−Ks,top (Fig. 7) translate a source term
to a definition set, making use of the generic traversal function coll
(Fig. 5), which computes the union of the images under f of each
subterm of a given term.

The function definitions for apply , cont and tramp are pro-
duced by the top-level translations, J−Kc,top and J−Ks,top, defined
in Figures 6–7. The former two, apply and cont , handle the de-
functionalized dispatch to the appropriate function or continua-
tion, while tramp is the trampoline, which tunnels server-to-client
requests through responses. Let arg and k be special reserved
variable names not appearing in the source program. The generic
traversal function coll f M of Figure 5 computes the union of the
images under f of all the subterms M .

Rather than treating functions as if they already carry unique
labels (as in typical formalizations of defunctionalization), we as-
sume an injective function that maps source terms into the space
of constructor names. We write pMq for the name assigned to the
term M by this function. An example is the function that collects

coll f (LM) = f(LM) ∪ coll f L ∪ coll f M

coll f (λax.N) = f(λax.N) ∪ coll f N

coll f V = f(V) if V 6= λax.N

Figure 5. Generic traversal function for λrpc terms.

J−Kc,top : Mλrpc → Dλcs

JMKc,top = letrec apply(fun, arg) = case fun of JMKc,fun

and tramp(x) = case x of

| Call(f, x, k) ⇒
tramp(req cont (k, apply(f, x)))

| Return(x) ⇒ x

Jλcx.NKc,fun,aux = {pλcx.Nq(~y) ⇒ N∗{arg/x}}
where ~y = FV(λx.N)

Jλsx.NKc,fun,aux =

{pλsx.Nq(~y) ⇒ tramp(req apply (pλsx.Nq(~y), arg, Fin()))}
where ~y = FV(λx.N)

JMKc,fun,aux = {} if M 6= λax.N

JMKc,fun = coll (J−Kc,fun,aux) M

Figure 6. Top-level translation, λrpc to λcs (client).

the names assigned to immediate subterms and uses a hash func-
tion to digest these into a new name; issues of possible hash col-
lisions would have to be treated delicately. We highlight the idea
of using a function of the term itself because we wish for the la-
bels to be robust in the face of server reboots—essential in the web
environment—and even, perhaps, changes to unrelated parts of the
code.

The bodies of the two apply functions will have a case for each
abstraction appearing in the source term, regardless of location.
For a location’s own abstractions it gets a full definition but for
the other’s abstractions the case will be a mere stub. This stub
dispatches a request to the other location, to apply the function to
the given arguments.

The cont function is defined only on the server, because it arises
from the CPS translation, which is only applied on the server side;
it has a case for each continuation produced. This includes one for
evaluating the argument subterm of each server-located application,
one called App for applying a function to an argument, and one
called Fin which returns a value to the client.

Recall the classic CPS translation for applications:

(LM)cpsK = Lcps(λf. Mcps(λx. fxK)).

The outer underlined term corresponds to a continuation that is
defunctionalized as pMq. The inner one is defunctionalized as
App(f, K). Finally, recall that CPS always requires a “top-level”
continuation, usually λx.x, to extract a value from a CPS term; this
corresponds to Fin .

The tramp function implements the trampoline. Its protocol is
as follows: when the client first needs to make a server call, it makes
a request wrapped in tramp. The server will either complete this
call itself, without any client calls, or it will have to make a client
call along the way. If it needs to make a client call, it returns a
specification of that call as a value Call(fun, arg , k), where fun

J−Ks,top : Mλrpc → Dλcs

JMKs,top = letrec apply(fun, arg, k) = case fun of JMKs,fun

and cont(k, arg) = case k of

JMKs,cont

| App(fun, k) ⇒ apply(fun, arg , k)

| Fin() ⇒ Return(arg)

Jλcx.NKs,fun,aux =

{pλcx.Nq(~y) ⇒ Call(pλcx.Nq(~y), arg , k)}
where ~y = FV(λx.N)

Jλsx.NKs,fun,aux = {pλsx.Nq(~y) ⇒ (N†k){arg/x}}
where ~y = FV(λx.N)

JMKs,fun,aux = {} if M 6= λax.N

JMKs,fun = coll (J−Ks,fun,aux) M

JLMKs,cont,aux = {pMq(~y, k) ⇒ M†(App(arg , k))}
where ~y = FV(M)

JNKs,cont,aux = {} if N 6= LM

JMKs,cont = coll (J−Ks,cont,aux) M

Figure 7. Top-level translation, λrpc to λcs (server).

and arg specify the call and k is the current continuation. The
tramp function recognizes these constructions and evaluates the
necessary terms locally, then places another request to the server to
apply k to whatever value resulted, again wrapping the request in
tramp. When the server finally completes its original call, it returns
the value as the argument of the Return constructor; the tramp
function recognizes this as the result of the original server call, so
it simply returns x. As an invariant, the client always wraps its
server-requests in a call to tramp. This way it can always handle
Call responses.

To relate the two calculi, we use a reverse translation, from
λcs to λrpc, given in Figure 8. All of the functions used in this
translation are parameterized on the definition sets C and S. The
function (−)•C,S takes λcs values to λrpc values. Next (−)?

C,S and
(−)‡C,S take client-side and server-side λcs terms (respectively) to
λrpc terms. And (−)$C,S takes λcs values representing continuations
to λrpc evaluation contexts. The function (−)• hits every value and
(−)? and (−)‡(−) hit every λrpc term.

These functions are defined only on λcs terms and definitions
in the range of the corresponding forward translation. In particular,
M‡

C,S and M?
C,S are not defined unless both definition sets C and S

define all the constructors appearing in M .
Provided (C,S) are in the image of (J−Kc,top, J−Ks,top), then

K$
C,S is a term context for λrpc; by a simple inductive argument we

can see that it is always an evaluation context: it meets the grammar
E ::= [] | V E | EM .

To extract the alternatives of case-expressions from function
bodies, we use a function cases, defined as follows:

Definition 1. The function cases is defined by the rule:

(f(x, ~y) = case x of A) ∈ D
cases(f,D) = A

(−)•−,− : Vλcs → Dλcs → Dλcs → Vλrpc

c•C,S = c

x•C,S = x

(F (~V))•C,S = λcx.(N{x/arg})?
C,S{~V •

C,S/~y}
if (F (~y) ⇒ N) ∈ cases(apply , C) and N 6= tramp(req · ·)

where x fresh for ~y, ~V

(F (~V))•C,S = λsx.(N{x/arg})‡C,S{~V •
C,S/~y}

if (F (~y) ⇒ N) ∈ cases(apply ,S) and N 6= Call(·, ·, ·)
where x fresh for ~y, ~V

(−)?
−,− : Mλcs|c → Dλcs → Dλcs → Mλrpc

V ?
C,S = V •

C,S

(apply(L, M))?
C,S = L?

C,SM?
C,S

(−)‡−,− : Mλcs|s → Dλcs → Dλcs → Mλrpc

(cont(K, V))‡C,S = K$
C,S [V •

C,S]

(apply(V, W, K))‡C,S = K$
C,S [V •

C,SW •
C,S]

(−)$−,− : Vλcs → Dλcs → Dλcs → (Mλrpc → Mλrpc)

k$
C,S [] = []

(App(V, K))$C,S [] = K$
C,S [V •

C,S []]

(F (~V , K))$C,S [] = K$
C,S [[](M{~V •

C,S/~y})]
if (F (~y, k) ⇒ M†(App(arg , k))) ∈ cases(cont ,S)

and F 6= Fin , F 6= App

Figure 8. Reverse translation, λcs to λrpc.

This relies on the fact that each of our special functions dis-
patches on the first of its arguments, whether that be the argument
fun for apply , or k for cont ; the dispatching argument is conve-
niently always the first.

3.2 Correctness
During reduction we may lose subterms which would have given
rise to defunctionalized definitions; thus the reduction of a term
does not have the same definition-set as its ancestor. Still, all the
definitions it needs were generated by the original term; we for-
malize this as follows. The containment holds just when the names
defined in the right-hand side are all defined in the left-hand side
and upon inspecting corresponding function definitions, either the
bodies are identical or they are both case analyses where the left-
hand side contains all the alternatives of the right-hand side.

Definition 2 (Definition containment). We say a definition set D
contains D′, written D > D′, iff for each definition f(~x) = M ′ in
D′ there is a definition f(~x) = M in D and either M = M ′ or
cases(f,D) ⊇ cases(f,D′).

Lemma 1. For any subterm M ′ of M , if C > JMKc,top then
C > JM ′Kc,top and if S > JMKs,top then S > JM ′Ks,top.

Definitions produced by the top-level translations are closed:
for each term that we find translated on the right-hand side of

a definition case, all of that term’s definitions can also be found
amongst the definitions. More precisely:

Lemma 2 (Closure, definition sets). Let C and S be in the range
of J−Kc,top and J−Ks,top respectively.

• If N∗{arg/x} is the right-hand side of an element of
cases(apply , C) then C > JNKc,top.

• If (N†k){arg/x} is the right-hand side of an element of
cases(apply ,S) then S > JNKs,top.

• If M†(App(arg , k)) is the right-hand side of an element of
cases(cont ,S) then S > JMKs,top.

Proof. Let X be the term such that (C,S) = (JXKc,top, JXKs,top).
Each element of cases(apply , C) that has a right-hand side of the
form N∗{arg/x} is produced by a term λcx.N , a subterm of X .
As N is a subterm of X , then, C > JNKc,top. A similar argument
holds for the other two consequents.

Lemma 3 (Retraction). When C > JMKc,top and S > JMKs,top,
we have for each M

(i) (M◦)•C,S = M provided M is a value,
(ii) (M∗)?

C,S = M , and
(iii) (M†K)‡C,S = K$

C,SM for each K in λcs.

Proof. By induction on the structure of M .

The reverse translation commutes with substitution.

Lemma 4 (Substitution). Given definition sets C, S

V •
C,S{W •

C,S/x} = (V {W/x})•C,S

M‡
C,S{W

•
C,S/x} = (M{W/x})‡C,S and

M?
C,S{W •

C,S/x} = (M{W/x})?
C,S .

Proof. By induction on V or M as appropriate.

Now we show the soundness result, which is fairly routine.

Lemma 5 (Soundness). For any term M and substitution σ in λrpc,
together with definition sets C and S such that C > JMKc,top and
S > JMKs,top, we have the following for all V and K:

(i) M∗σ −�C,S V
implies Mσ•

C,S ⇓c V •
C,S and

(ii) tramp([]); (M†K)σ −�C,S tramp([]); cont(K, V)
implies Mσ•

C,S ⇓s V •
C,S .

Proof. By induction on the length of the λcs reduction sequence.
Throughout the induction, σ is kept general.

When using the inductive hypothesis, the preconditions that
C > JMKc,top and S > JMKs,top will be maintained because we
will only use the inductive hypothesis on subterms of the M and on
terms N whose translations are part of the rhs of definitions in C,S
and thus for which C,S > JNKc,top and JNKs,top (by the closure
of definition-sets).

In this proof we omit the subscripts C, S on reductions, because
they are unchanged throughout reduction sequences, and on the
reverse-translation functions, because they are unchanged through-
out the recursive calls thereof.

Take cases on the structure of the starting term, either (i) M∗σ
or (ii) (M†K)σ, and split the conclusion into cases for (i) and (ii);

• Case LM for (i).
By hypothesis, we have (LM)∗σ −� V . By definition,
(LM)∗σ = apply(L∗σ, M∗σ).
In order for the reduction not to get stuck, it must be that

L∗σ −� F (~V) with (F (~V))• = λax.N{~V •/~y} for fresh
x and some a and N .
M∗σ reduces to a value; call it W .

The freshness of x will allow us to equate simultaneous and
sequential substitutions involving x.
The reduction begins as follows:

(LM)∗σ = apply(L∗σ, M∗σ)

−� apply(F (~V), M∗σ)

−� apply(F (~V), W)

Applying the inductive hypothesis twice, using Lemma 2 to
obtain the containment condition, we get

Lσ• ⇓c (F (~V))• = λcx.N{~V •/~y},
Mσ• ⇓c W • and

We now show, by cases on a, the third leg of BETA, namely
N{~V •/~y}{W •/x} ⇓a V •.
If a = c then N is such that (F (~y) ⇒ N∗{arg/x}) ∈
cases(apply , C), by definition of (−)•.
Now the reduction finishes as:

apply(F (~V), W)

−� N∗{~V /~y, W/x} = N∗{~V /~y}{W/x}
−� V

So by the inductive hypothesis (invoking Lemma 2),

N{~V •/~y}{W •/x} ⇓c V •.

If a = s then N is such that

(F (~y) ⇒ (N†k){arg/x})) ∈ cases(apply ,S) and
(F (~y) ⇒ tramp(req apply (F (~y), arg ,Fin())))

∈ cases(apply , C).

Now the reduction finishes as

apply(F (~V), W)

−� tramp(req apply (F (~V), W,Fin()))

−� tramp([]); apply(F (~V), W,Fin())

−� tramp([]); (N†(Fin())){~V /~y, W/x}
= (N†(Fin())){~V /~y}{W/x}
−� tramp([]); cont(Fin(), V)

−� V

So by the inductive hypothesis (invoking Lemma 2),

N{~V •/~y}{W •/x} ⇓c V •.

The judgment (LM)σ• ⇓c V • follows by BETA. huzzah!
• Case LM for (ii).

By hypothesis, we have for some K

tramp([]); ((LM)†K)σ −� tramp([]); cont(K, V).

By definition, (LM)†K = L†(pMq(~z, K)), letting ~z =
FV(M).
In order for the reduction not to get stuck, it must be that:
1. pMq(~z, k) ⇒ M†(App(arg , k)) is in cases(cont ,S)

2. (M†K)σ reduces to a term of the form cont(K, W) and
3. (L†K)σ reduces to a term of the form cont(K,F (~y)), with

(F (~y))• = λax.N for fresh x and some a and N .

The reduction begins as follows:

tramp([]); ((LM)†K)σ

= tramp([]); (L†(pMq(~z, K)))σ

−� tramp([]); cont((pMq(~z, K))σ,F (~V))

= tramp([]); cont(pMq(~zσ, K),F (~V))

−→ tramp([]); (M†(App(F (~V), K))){(~zσ)/~z}
= tramp([]); (M†k){App(F (~V), K)/k, (~zσ)/~z}
−� tramp([]); cont(App(F (~V), K), W)

−→ tramp([]); apply(F (~V), W, K)

Applying the inductive hypothesis twice, we get

Lσ• ⇓s (F (~V))• = λsx.N{~V •/~y} and

Mσ• ⇓s W •

Now we show the third leg of BETA, namely
N{~V •/~y}{W •/x} ⇓a V •, by taking cases on a.
If a = s then N is such that (F (~y) ⇒ (N†k){arg/x})) ∈
cases(apply,S). So the reduction continues as

tramp([]); apply(F (~V), W, k)

−→ tramp([]); (N†k){~V /~y, W/x}
= (N†k){~V /~y}{W/x}

−� tramp([]); cont(k, V)

So by the inductive hypothesis (invoking Lemma 2),

N{~V •/~y}{W •/x} ⇓s V •.

If a = c then N is such that
(F (~y) ⇒ N∗{arg/x}) ∈ cases(apply , C) and

(F (~y) ⇒ Call(F (~y), arg , k)) ∈ cases(apply ,S).

So the reduction continues as:

tramp([]); apply(F (~V), W, k)

−→ tramp([]); Call(F (~V), W, k)

−→ tramp(Call(F (~V), W, k))

−→ tramp(req cont (k, apply(F (~V), W)))

−→ tramp(req cont (k, N∗{~V /~y, W/x}))
= tramp(req cont (k, N∗{~V /~y}{W/x}))
−� tramp(req cont (k, V))

−� tramp([]); cont(k, V)

So by the inductive hypothesis (invoking Lemma 2),

N{~V •/~y}{W •/x} ⇓s V •.

The judgment (LM)σ• ⇓s V • follows by BETA. huzzah!
• Case V for (i) and (ii). Write W for M , which must also be a

value.
Because the starting term is a value, the reduction is of zero
steps: In the client case: M∗σ = V −� V . We have that
M∗ = W ◦ so W ◦σ = V .
In the server case: (M†K)σ = cont(K, V) −� cont(K, V).
We have that M†K = cont(K, W ◦) so W ◦σ = V .
Using the substitution lemma (Lemma 4) and the inverseness of
(−)• to (−)◦, we get (W ◦σ)• = Wσ•. Now (W ◦σ)• = V •

so V • = Mσ•. And so the reduction Mσ• ⇓a V follows by
VALUE. huzzah! �

We turn to the completeness of the translation. First we show
that continuations K in λcs are closely related to evaluation con-
texts E in λrpc. Using this we show the possible forms of λcs terms
that map to λrpc application terms.

Lemma 6. Given definition-sets C,S and a continuation K, one
of the following holds:

(a) The form of K$
C,S is [] and K = k.

(b) The form of K$
C,S is V E and there exist J, V ′ such that

K = J{App(V ′, k)/k},
V ′•

C,S = V and

J$
C,S = E.

(c) The form of K$
C,S is EM and there exist J, M ′, F, ~V such that

K = J{F (~V , k)/k},
(F (~y, k) ⇒ M ′{App(arg , k)/k}) ∈ cases(cont ,S),

(M ′{~V /~y})‡C,S = M and

J$
C,S = E.

Proof. The proof is by induction on K. Take cases on its form:

• Case k. By def., K$
C,S = [], proving (a). huzzah!

• Case App(U, K′). By definition, K$
C,S = K′$

C,S [U•
C,S []].

If K′ = k, then we prove (b). By def., K′$
C,S = []. Letting

J = k and E = [] we get K = J{App(U, k)/k} and
J$
C,S = E as needed.

If K′ is not k then the induction hypothesis gives us one of
the cases (b) or (c); we prove the same case. The IH pro-
vides J ′ and E′ with J ′$

C,S = E′. Let J = App(U, J ′) and
E = E′[U•

C,S []]. By def., J$
C,S = E. The required relation

between K and J follows by manipulation of substitutions. The
other needed items (V ′, or F and M ′) carry through from the
inductive hypothesis. huzzah!

• Case G(~W, K′). By definition of (−)$C,S , we have N such that

(G(~y, k) ⇒ N†(App(arg , k))) ∈ cases(cont ,S)

which gives us K$
C,S = K′$

C,S [[](N{ ~W •
C,S/~y})].

If K′ = k, then we prove (c). By def., K′$
C,S = [].

Let F be G. Letting J = k and E = [] we get K =

J{G(~W, k)/k} and J$
C,S = E as needed. Let M ′ be N†k.

Then (M ′{ ~W/~y}))‡C,S = M ′‡
C,S{ ~W •

C,S/~y}) = N{ ~W •
C,S/~y}

as needed.
If K′ is not k then the induction hypothesis gives us one of
the cases (b) or (c); we prove the same case. The IH pro-
vides J ′ and E′ with J ′$

C,S = E′. Let J = G(~W, J ′) and
E = E′[[](N{ ~W •

C,S/~y})]. By def., J$
C,S = E. The required

relation between K and J follows by manipulation of substitu-
tions. The other needed items (V ′, or F and M ′) carry through
from the inductive hypothesis. huzzah! �

Lemma 7 (Applications’ (−)‡-preimage). Given a λcs term N ′

and λrpc terms L and M with N ′‡
C,S = LM , then at least one of

the following hold:

(a) there exist λcs terms L′, M ′, ~V and name F s.t.:

N ′ = L′{F (~V , k)/k},
L′‡

C,S = L

(M ′{~V /~y})‡C,S = M and

(F (~y, k) ⇒ M ′{App(arg, k)/k}) ∈ cases(cont ,S).

(b) L is a value and there exist λcs terms V ′ and M ′ s.t.:

N ′ = M ′{App(V ′, k)/k},
V ′•

C,S = L and

M ′‡
C,S = M.

(c) L and M are values and there exist λcs terms V ′ and W ′ s.t.:

N ′ = apply(V ′, W ′, k) and

V ′•
C,S = L and W ′•

C,S = M.

Proof. Define two terms, K and Q, as follows: Consider the possi-
ble forms of N ′: either cont(K, U ′) or apply(U ′, W ′, K). In the
first case, let Q = U ′•

C,S , and in the other let Q = U ′•
C,SW ′•

C,S .
In each case, by def., N ′‡

C,S = K$
C,S [Q].

Take cases on the structure of K$
C,S as enumerated by Lemma 6.

• Case K$
C,S = []. We show consequent (c).

Take cases on the form of N ′:
Case cont(K, U ′). Here N ′‡

C,S = U ′•
C,S ; but this is not an

application, a contradiction. huz.
Case apply(U ′, W ′, K)

Here N ′‡
C,S = U ′•

C,SW ′•
C,S = LM . By structural equality,

then, U ′•
C,S = L and W ′•

C,S = M . huzzah!
• Case K$

C,S = V E. We show consequent (b). We have L = V
and E[Q] = M . From Lemma 6 we have J and V ′ such that
K = J{App(V ′, k)/k} with J$

C,S = E and V ′•
C,S = V .

Let M ′ be the one of cont(J, U ′) or apply(U ′, W ′, J) that
matches the form of N ′. Then N ′ = M ′{App(V, k)/k}.
Calculate that M ′‡

C,S = J$
C,S [Q] = E[Q] = M , as needed.

huzzah!
• Case K$

C,S = EN . We show consequent (a). We have E[Q] =

L and N = M . From Lemma 6 we have terms J , M ′ and ~V
and name F so that K = J{F (~V , k)/k},

(F (~y, k) ⇒ M ′{App(arg , k)/k}) ∈ cases(cont ,S),

and (M ′{~V /~y})‡C,S = M and J$
C,S = E; this supplies the

needed F , ~V and M ′. Let L′ be the one of cont(J, U ′) or
apply(U ′, W ′, J) that matches the form of N ′. Then N ′ =

L′{F (~V , k)/k}, as needed. Calculate that L′‡
C,S = J$

C,S [Q] =
E[Q] = L, as needed. huzzah! �

Notation 1. Write M ⇀⇀C,S V for

tramp([]); M −�C,S tramp([]); cont(k, V).

The next lemma shows that the behavior of terms in λcs follows
that of the corresponding λrpc terms.

Lemma 8 (Completeness). Given any λcs terms M , V and defini-
tions C and S,

(i) If M?
C,S ⇓c V then there exists V ′ with V ′•

C,S = V and
M −�C,S V ′, and

(ii) if M‡
C,S ⇓s V then there exists V ′ with V ′•

C,S = V and
M ⇀⇀C,S V ′

Proof. By induction on the derivation of the given M?
C,S ⇓c V or

M‡
C,S ⇓s V . Take cases on the final step of the derivation:

• Case VALUE. The low-level reduction is of zero steps. The
initial low-level term must be a value, V ′, since its image
under the reverse translation is a value. The initial and final
low-level terms are the same because V ′?

C,S = V ′•
C,S and

V ′‡
C,S = V ′•

C,S on values. huzzah!
• Case BETA. Recall the rule:

L ⇓a λbx.N M ⇓a W N{W/x} ⇓b V

LM ⇓a V

Take cases on a, the location where the reduction takes place.
Case a = c.
Because the starting λcs term maps to LM under (−)?, it
must be of the form apply(L′, M ′) with L′?

C,S = L and
M ′?

C,S = M .
By IH we have normal forms

L′ −� F (~V) and M ′ −� W ′

satisfying

(F (~V))•C,S = λbx.N and W ′•
C,S = W

So the term reduces as follows:

apply(L′, M ′) −� apply(F (~V), W ′)

To finish the reduction, take cases on b.
If b is c then we have N ′ such that

(F (~y) ⇒ N ′) ∈ cases(apply , C)

Therefore

(N ′{x/arg})?
C,S{~V •

C,S/~y} = N (def. of (F (~V))•)

(N ′{x/arg}{~V /~y})?
C,S = N

(N ′{x/arg}{~V /~y})?
C,S{W ′•

C,S/x}
= N{W/x}
= (N ′{x/arg}{~V /~y}{W ′/x})?

C,S

And so by IH

N ′{x/arg}{~V /~y}{W ′/x} −� V ′

with V ′•
C,S = V.

Now we can finish the reduction:

apply(F (~V), W ′)

−→ N ′{~V /~y}{W ′/arg}
−� V ′

which was to be shown.
If b is s then we have N ′ such that

(F (~y) ⇒ tramp(reqapply(F (~y), arg ,Fin())))
∈ cases(apply , C)

and (F (~y) ⇒ N ′) ∈ cases(apply ,S)

Therefore

(N ′{x/arg})‡C,S{~V •
C,S/~y} = N (def. of (F (~V))•)

(N ′{x/arg}{~V /~y})‡C,S = N

(N ′{x/arg}{~V /~y})‡C,S{W
′•
C,S/x}

= N{W/x}
= (N ′{x/arg}{~V /~y}{W ′/x})‡C,S

And so by IH

N ′{x/arg}{~V /~y}{W ′/x} ⇀⇀C,S V ′

with V ′•
C,S = V.

Now we can finish the reduction:

apply(F (~V), W ′)

−� tramp(req apply (F (~V), arg ,Fin()))

−→ tramp([]); apply(F (~V), arg ,Fin())

−→ tramp([]); N ′{~V /~y}{W ′/arg , Fin()/k}

−� tramp([]); cont(Fin(), V ′)

−� tramp(Return(V ′))

−→ V ′

which was to be shown. huzzah!
Case a = s. Let X be the term such that X‡

C,S = LM .
Lemma 7 nominates the possible forms of X .
First consider the case of Lemma 7(a). This gives us terms
L′ and M ′ such that

X = L′{G(~U, k)/k}
L′‡

C,S = L,

(M ′{~U/~z})‡C,S = M and

(G(~z, k) ⇒ M ′{App(arg , k)/k}) ∈ cases(cont ,S).

By IH we have these normal forms:

L′ ⇀⇀C,S F (~V) and M ′{~U/~y} ⇀⇀C,S W ′

satisfying

(F (~V))•C,S = λbx.N and W ′•
C,S = W

And so we can trace the reduction of our term:

tramp([]); L′{G(~U, k)/k} (a)

−� tramp([]); cont(G(~U, k), F (~V))

−� tramp([]); M ′{App(F (~V), k)/k} (b)

−� tramp([]); cont(App(F (~V), k), W ′)

−� tramp([]); apply(F (~V), W ′, k) (c)

To finish the reduction, take cases on b.

If b is c then

(F (~y) ⇒ Call(F (~y), arg , k)) ∈ cases(apply ,S)
and (F (~y) ⇒ N ′) ∈ cases(apply , C)

Therefore

(N ′{x/arg})?
C,S{~V •

C,S/~y} = N (def. of (F (~V))•)

(N ′{~V /~y}{x/arg})?
C,S = N

(N ′{~V /~y}{x/arg})?
C,S{W ′•

C,S/x}
= N{W/x}
= (N ′{~V /~y}{x/arg}{W ′

C,S/x})?
C,S

And so by IH

N ′{~V /~y}{x/arg}{W ′
C,S/x} −� V ′

with V ′•
C,S = V

Now we can finish the reduction:

tramp([]); apply(F (~V), W ′, k)

−� tramp([]); Call(F (~V), W ′, k)

−→ tramp(Call(F (~V), W ′, k))

−� tramp(req cont (k, apply(F (~V), W ′)))

−→ tramp(req cont (k, N{~V /~y, W ′/arg}))
−� tramp(req cont (k, V ′))

−→ tramp([]); cont(k, V ′)

which was to be shown.
If b is s then we have N ′ such that

(F (~y) ⇒ N ′) ∈ cases(apply ,S)

Therefore

(N ′{x/arg})‡C,S{~V •
C,S/~y} = N (def. of (F (~V))•)

(N ′{x/arg}{~V /~y})‡C,S = N

(N ′{x/arg}{~V /~y})‡C,S{W
′•
C,S/x}

= N{W/x}
= (N ′{x/arg}{~V /~y}{W ′/x})‡C,S

And so by IH

N ′{x/arg}{~V /~y}{W ′/x} ⇀⇀C,S V ′

with V ′•
C,S = V

Now we can finish the reduction:

tramp([]); apply(F (~V), W ′, k)

−� tramp([]); N ′{~V /~y, W ′/arg}
−→ tramp([]); cont(k, V ′)

which was to be shown.
Now consider the other cases from Lemma 7, either (b) or
(c). Then we use the above reduction sequence but begin-
ning from the correspondingly marked line. huzzah! �

At last we can state the full correctness result concisely:

Proposition 1. For any closed λrpc term M , value V and defini-
tions (C,S) = (JMKc,top, JMKs,top),

M ⇓c V ⇐⇒ exists V ′ s.t. M∗ −�C,S V ′ and V ′• = V

Proof. The (⇐) implication is immediate from Lemma 5. To infer
the (⇒) implication from Lemma 8 we need to show that the given
M has an M ′ such that M ′?

C,S = M . We can construct M ′ = M∗

and the needed relationship follows directly from the retraction
lemma.

4. A richer calculus
The calculus λ〈〉 in Figure 9 adds location brackets 〈·〉a to λrpc and
allows unannotated λ-abstractions. The interpretation of a brack-
eted expression 〈M〉a in a location-b context is a computation that
evaluates every computation step lexically within M at location a
and returns the value to the location b. Unannotated λ-abstractions
are not treated as values: we want all values to be mobile, and yet
the body of an unannotated abstraction should inherit its required
location from the surrounding lexical context. Thus, to become a
value, the abstraction itself must become tagged with this location,
and the ABSTR rule attaches this annotation when it is not already
provided.

Syntax

constants c
variables x
locations a, b

terms L, M, N ::= 〈M〉a | λx.N | LM | V
values V, W ::= λax.N | x | c

Semantics
M ⇓a V

V ⇓a V (VALUE)

λx.N ⇓a λax.N (ABSTR)

L ⇓a λbx.N M ⇓a W N{W/x} ⇓b V

LM ⇓a V
(BETA)

M ⇓b V

〈M〉b ⇓a V
(CLOTHE)

Figure 9. The bracket-located lambda calculus, λ〈〉 .

J〈M〉bKa = (λbx.JMKb)() x fresh
Jλx.NKa = λax.JNKa

Jλbx.NKa = λbx.JNKb

JxKa = x

JcKa = c

Figure 10. Translation from λ〈〉 to λrpc.

Figure 10 gives a translation from λ〈〉 to λrpc. Bracketed terms
〈M〉a are simply treated as applications of located thunks; and as
expected, unannotated abstractions λx.N inherit their annotation
from their lexical context.

The relationship between this calculus and the λcs calculus is
looser than the one previously shown. The forward translation this
time is not injective, so there can be no exact reverse translation as
before. (For example, 〈M〉b and (λbx.M)() go to the same term.)
As a result, we would need to use a simulation relation.

Location brackets such as these may be an interesting language
feature, allowing programmers to designate the location of compu-
tation of arbitrary terms.

5. Related Work
Location-aware languages Although this the first work we’re
aware of that shows how to implement a location-aware language
on top of a stateless server model, there is much work in the theory
and implementation of location-aware languages.

Lambda 5 [15, 14] is a location-aware calculus with con-
structs for controlling the location and movement of terms and val-
ues. Lambda 5 offers fine control over these runtime movements,
whereas our calculus uses the usual scope discipline of λ-binding
and is profligate with data movements. Like ours, the translation of
Lambda 5 to an operational model also involves a CPS translation;
and where we have used defunctionalization, it uses the similar
technique of closure conversion; it uses a stateful-server approach
and hence no trampoline is necessary.

Neubauer and Thiemann [17] give an algorithm for splitting
a location-annotated sequential program into separate concurrent
programs that communicate over channels. By default the system
requires that the two systems be equal peers, rather than an asym-
metrical client-server pair. They note that “Our framework is ap-
plicable to [the special case of a web application] given a suitable
mediator that implements channels on top of HTTP.” The trampo-
line technique we have given provides such a mediator. They use
session types to show that the various processes’ use of channels
are type-correct over the course of the interaction, in contrast to the
always-receptive, stateless server of the present work.

Ohori and Kato [19] describe a locative language where the
program is separated by the programmer into files for locations and
locations can import values via a global name table. They translate
this to a lower-level language with explicit RPC calls, which are
restricted to act on concrete types communicable over a network.
Like Neubauer and Thiemann’s work, and unlike ours, at the low
level the locations are all mutually accessible.

In a security context, Zdancewic, et al. [24] developed a calculus
with brackets, which served as the model for our λ〈〉 . Their results
show how a type discipline, with type translations taking place at
the brackets, can be used to prove that certain principals (analogous
to locations) cannot inspect certain values passed across an inter-
face. Such a discipline could be applied to our calculus, to address
information-flow security between client and server. Matthews and
Findler [12] give a nearly identical semantics which models multi-
language programs; here languages act like principals or locations
in the other systems.

Defunctionalization After first being introduced in a lucid but
informal account by John Reynolds [22], defunctionalization has
been formalized and verified in a typed setting in several papers [3,
2, 21, 18, 1]. We have formalized defunctionalization in an untyped
setting, which is slightly easier because we need not segregate
the application machinery by type. Danvy and Nielsen [8] and
Danvy and Millikin [7] explore a number of uses and properties
of defunctionalization.

Defunctionalization is very similar to lambda-lifting [11], but
lambda-lifting does not reify a closure as an inspectable value.
Thus it would not be applicable here, where we need to serialize
the function to send across the wire.

Murphy [14] uses closure-conversion in place of our defunc-
tionalization; the distinction here is that the converted closures still
contain code pointers, rather than using a stable name to identify
each abstraction. These code pointers are only valid as long as the
server is actively running, and thus it may be difficult to achieve
statelessness with such an approach.

Continuation-Passing The continuation-passing transformation
has a long and storied history [23], going back to the 1970s [9, 20].

Trampolined style Ganz et al. [10] introduced the trampolined
style of tail-form programs, whereby every tail call is replaced with
the construction of a value containing a thunk for the tail call. In-
stead of performing the call, then, the program is returning a rep-
resentation of the next tail call to be made. The program is then to
be invoked from a loop, called the trampoline, which might treat
the thunk in various ways, perhaps invoking it immediately, inter-
jecting other actions, juggling several thunks or other possibilities.
A program in trampolined style only does a bounded amount of
work before returning the next thunk. The authors give a transla-
tion taking any program in tail form (which includes CPS) to one
in trampolined style.

The system presented here is an instance of trampolined style
in the sense that each remote call from the client is wrapped in a
trampoline, and all remote calls from the server to the client are

transformed to trampoline bounces. The fact that local function
calls take place directly is a departure from earlier work.

Extensions Corcoran, et al. [6] have extended the location-aware
language Links with a type system that identifies data items with
security policies, and ensures statically that the policies are not
violated by the program’s runtime behavior, in view of the low-
level locative semantics of Links.

6. Conclusions and Future Work
We’ve shown how to compile a location-aware language to an
asymmetrical, stateless, client-server calculus by using a CPS
transformation and trampoline to represent the server’s call stack as
a value on the client. We hope to extend this in several directions.

This work uses a source calculus with location annotations,
but writing the annotations may burden the programmer. It may
be possible to automatically assign location annotations so as to
optimize communication costs, perhaps by applying the work by
Neubauer [16]. Because the dynamic location behavior of a pro-
gram may be hard to predict, and because there are a variety of
possible communication and computation cost models, and per-
haps other issues to consider, such as security, the problem is mul-
tifaceted.

We hope to extend the source calculus by adding language
features including exceptions, and generalizing by allowing each
annotation to consist of a set of permissible locations (rather than a
single one). We also hope to implement the λ〈〉 calculus in Links.

As noted in the introduction, this calculus treats only a simple
form of state, namely control state. We might wish to add a store
with mutable references, in the fashion of ML. References could
be treated as located, for example at the location where they are
created. Statelessness could be preserved by serializing the store
but encrypting server-located data so that only the server can read
them. A security-conscious type system such as that of Corcoran,
et al. [6] might be particularly useful here.

Other kinds of state can also be problematic, for example on-
going transactions with other services (disk, databases, and so on).
These are more difficult since they don’t admit serialization. Future
work might accommodate limited statefulness on the server, with a
facility for managing this state.

7. Acknowledgements
Sam Lindley and Ian Stark provided invaluable insights and discus-
sions in the development of this work. We also thank the ICFP ’08
and ’09 and PPDP ’09 reviewers.

References
[1] Anindya Banerjee, Nevin Heintze, and Jon G. Riecke. Design

and correctness of program transformations based on control-flow
analysis. In TACS ’01, volume 2215 of Lecture Notes in Computer
Science, pages 420–447. Springer, 2001.

[2] Jeffrey M. Bell, Françoise Bellegarde, and James Hook. Type-driven
defunctionalization. SIGPLAN Not., 32(8):25–37, 1997.

[3] Jeffrey M. Bell and James Hook. Defunctionalization of typed
programs. Technical report, Oregon Graduate Institute, 1994.

[4] Andrew D. Birrell and Bruce Jay Nelson. Implementing remote
procedure calls. ACM Trans. Comput. Syst., 2(1):39–59, 1984.

[5] Ezra Cooper, Sam Lindley, Philip Wadler, and Jeremy Yallop. Links:
Web programming without tiers. In FMCO ’06, 2006.

[6] Brian J. Corcoran, Nikhil Swamy, and Michael Hicks. Cross-
tier, labeld-based secuirty enforcement for web applications. In
Proceedings of the ACM SIGMOD International Conference on
Management of Data, June 2009. To appear.

[7] Olivier Danvy and Kevin Millikin. Refunctionalization at work.
Technical Report RS-08-4, BRICS, June 2008.

[8] Olivier Danvy and Lasse R. Nielsen. Defunctionalization at work. In
PPDP ’01, pages 162–174. ACM, 2001.

[9] Michael J. Fischer. Lambda calculus schemata. SIGACT News,
(14):104–109, 1972.

[10] Steven E. Ganz, Daniel P. Friedman, and Mitchell Wand. Trampolined
style. In ICFP ’99. ACM Press, September 1999.

[11] Thomas Johnsson. Lambda lifting: transforming programs to
recursive equations. In Proc. of a conference on Functional
programming languages and computer architecture, pages 190–203,
New York, NY, USA, 1985. Springer-Verlag New York, Inc.

[12] Jacob Matthews and Robert Bruce Findler. Operational semantics for
multi-language programs. In POPL ’07, pages 3–10, New York, NY,
USA, 2007. ACM.

[13] Jacob Matthews, Robert Bruce Findler, Paul Graunke, Shriram
Krishnamurthi, and Matthias Felleisen. Automatically restructuring
programs for the web. Automated Software Engineering, 11:337–364,
10 2004.

[14] Tom Murphy, VII. Modal Types for Mobile Code. PhD thesis,
Carnegie Mellon University, 2007.

[15] Tom Murphy, VII, Karl Crary, Robert Harper, and Frank Pfenning.
A symmetric modal lambda calculus for distributed computing.
In LICS ’04, pages 286–295, Washington, DC, USA, 2004. IEEE
Computer Society.

[16] Matthias Neubauer. Multi-Tier Programming. PhD thesis, Universität
Freiburg, 2007.

[17] Matthias Neubauer and Peter Thiemann. From sequential programs
to multi-tier applications by program transformation. In POPL ’05,
pages 221–232, New York, NY, USA, 2005. ACM Press.

[18] Lasse R. Nielsen. A denotational investigation of defunctionaliza-
tion. Technical Report BRICS RS-00-47, DAIMI, Department of
Computer Science, University of Aarhus, December 2000.

[19] Atsushi Ohori and Kazuhiko Kato. Semantics for communication
primitives in a polymorphic language. In POPL ’93, pages 99–112,
New York, NY, USA, 1993. ACM.

[20] Gordon Plotkin. Call-by-name, call-by-value, and the lambda
calculus. Theoretical Computer Science, 1:125–159, 1975.

[21] François Pottier and Nadji Gauthier. Polymorphic typed defunction-
alization. In POPL ’04, pages 89–98, New York, NY, USA, 2004.
ACM.

[22] John C. Reynolds. Definitional interpreters for higher-order
programming languages. In ACM ’72: Proceedings of the ACM
annual conference, pages 717–740, New York, NY, USA, 1972.
ACM Press.

[23] John C. Reynolds. The discoveries of continuations. LISP and
Symbolic Computation, 6(3):233–247, 1993.

[24] Steve Zdancewic, Dan Grossman, and Greg Morrisett. Principals in
programming languages: a syntactic proof technique. In ICFP ’99,
pages 197–207, New York, NY, USA, 1999. ACM Press.

