Information Protection via Environmental Data Tethers

Matt Beaumont-Gay
mattb@cs.ucla.edu

Kevin Eustice
kfe@cs.ucla.edu

_ Peter Reiher
reiher@cs.ucla.edu

Laboratory for Advanced Systems Research
UCLA Computer Science

ABSTRACT

Faced with an increasing number of incidents involving leaks
of confidential data, it is clear that new data protection
strategies are needed. We propose Data Tethers, a new
paradigm which uses policies based on environmental fac-
tors to determine when sensitive data may be stored on a
machine and when it must be encrypted or removed from the
machine entirely. We discuss a number of example scenarios
where existing data protection systems provide insufficient
protection and Data Tethers would prevent data exposure.
We also discuss a proposed implementation of Data Tethers,
including a number of different environmental inputs.

1. INTRODUCTION

Several high-profile data exposure incidents in recent years
have brought attention to the need for better protection of
sensitive information. In 2006 alone, the list of such inci-
dents included the theft of a laptop containing confidential
data on 382,000 Boeing employees [28], the theft of a lap-
top holding personal information on 2400 residents of a Ma-
rine Corps base [2], the discovery during a drug raid of a
flash drive containing sensitive data from Los Alamos Na-
tional Laboratory [30], and the discovery of flash drives with
U.S. military data for sale at a bazaar in Afghanistan [17].
These events occurred, in large part, because a legitimate
user of the data gained access to the data, presumably in
a secure environment such as a private office building, and
then brought it into an environment where it was vulnerable
to theft.

There are two key observations we take from these incidents.
The first is that existing access controls on the data were
insufficient to protect it. Any access controls that were in
place did not provide sufficiently strong binding between the
user and the user’s access rights, so the attacker was able
to gain access to the data. While full disk encryption may
have offered adequate protection in some of these cases, it
did not protect the data which was exposed via removable
media.

The second key observation is that the data should never
have left the secure environment in the first place—or at
least not in plaintext. No office worker should be working
on truly sensitive data in a public space. Perhaps it was
truly necessary to transport the data on a laptop or flash
drive from one secure location to another, but regardless,
while it was in transit, the user did not need access to it.

These observations clearly demonstrate the need for a new
means of data protection, which we propose in this paper:
Data Tethers. Our thesis is that by restricting the environ-
ment in which data is accessible, data owners can be sure
that the data will be protected by the more traditional se-
curity measures in place in that environment. One obvious
question, then, is what exactly is included in our notion of
an environment? A slightly less obvious, but very important
question is what happens when the environment suddenly
becomes insecure?

As a simple example (to be expanded upon below), con-
sider sensitive data on a laptop. Policy specifies that the
data may only be accessed in one particular physical loca-
tion. What happens when the user picks up the laptop and
walks out of the secure location? Worse, what happens if
the laptop is put to sleep in the secure location and wakes
up somewhere else? What if the sensitive data has been
read into memory by some application and displayed on the
screen? Engineering a system to deal with these issues will
take some care.

2. RELATED WORK

Using environmental factors to control the accessibility of
data is not a new idea. In fact, time of day as an access con-
trol input is used as an example in Saltzer and Schroeder’s
classic 1975 paper [29]. However, that work puts it in the
category of arbitrary user-defined sharing controls, or “pro-
tected subsystems,” an idea which never gained much trac-
tion.

Moyer and Ahamad revisit environments and access con-
trol in [23], which introduces Generalized Role-Based Access
Control (GRBAC). They use an environmental role as part
of their generalization of traditional access-control schemes.
GRBAC is a step in the right direction; however, Moyer
and Ahamad do not discuss access revocation, which is a
significant concern in dealing with dynamic environments.

One of the most closely related works is by Covington et al.



on access control in the Aware Home [9]. Building on GR-
BAC, Covington et al. give a number of example situations
where the environmental context, filling an “environment
role,” is important to allowing or disallowing an action in
the Aware Home. They discuss the problems of environment
role revocation and secure and efficient capture of environ-
mental data, which are directly relevant to Data Tethers.

We intend to leverage the GRBAC model of environmen-
tal roles in Tethers, as Covington et al. did in the Aware
Home. However, the engineering challenges of applying en-
vironmental constraints to data protection are substantially
different than the work accomplished by Covington et al. In
particular, environment role revocation in the Aware Home
is viewed as a performance concern, with a tradeoff between
ease of revocation and more frequent checks of environmen-
tal factors. In Tethers, taking action when (or before) the
environment becomes insecure is a key aspect.

Durfee et al. present a system related to Tethers in [12].
Posture-Based Data Protection (PBDP) only makes data
available on a mobile device when the device can prove to
a server that its security posture is acceptable. PBDP is
also similar to network admission control [7], but adds an
element of continuous monitoring such that if the device’s
security posture changes for the worse, data is made unavail-
able. The proposed mechanism for PBDP, a cryptographic
file system with keys stored on a secure server, is very sim-
ilar to the mechanism we propose for Tethers. One major
difference between PBDP and Tethers is that Durfee et al.
explicitly ignore the problem of users copying data out of
protected files, thus eliminating any protection offered by
the system. We take it as an assumption that users will do
so, and so we design Tethers to include guards against such
copying. In addition, PBDP does not take measures to pre-
vent information leakage via other system mechanisms, such
as sensitive data still being displayed on the screen after it
should be unavailable. In Tethers, we consider that threat
and others beyond just whether the data is readable on disk.

Corner and Noble’s Zero-Interaction Authentication (ZIA)
[8] is also a very closely related work. In ZIA, a user carries
a short-range radio-frequency token, which stores a crypto-
graphic key which is used to encrypt the keys that protect
the user’s data. When the computer wants to access an en-
crypted file, it must request that the token decrypt the ap-
propriate key, which can only happen if the token is within
radio range. The computer also polls the token so that when
it moves out of range, data in memory is re-encrypted. Cor-
ner and Noble share many of the same concerns that we
have, such as the weakness of traditional disk encryption
systems and the difficulty of getting users to fully cooperate
with security measures. In addition, they address a number
of efficiency issues which are relevant to Tethers.

We consider ZIA to be a special case of a data tether. In fact,
we may implement ZIA with Tethers as a means of showing
the generality of our approach. ZIA’s token proximity is an
example of an environmental input as used in Tethers, and
data encryption, as provided by ZIA, is one of the possible
actions which may be specified by a Tethers policy. We also
note that ZIA only protects files on disk; once the data is
in memory, they note that it should be protected by some

other means. While ZIA is certainly an important precursor
to Data Tethers, the generality of Tethers is a significant
conceptual improvement over ZIA.

A major class of security systems against which Data Teth-
ers competes is full-disk encryption (FDE). The core idea
behind FDE, and related OS-integrated systems like Bit-
Locker [21] and FileVault [1], is to encrypt all data before it
is written to the disk, and transparently decrypt it after the
user has presented appropriate authentication credentials.
The fundamental problem with FDE systems is that once
the user has authenticated, often simply by entering a pass-
word at boot time, the only protection offered is against the
hard drive being removed from the machine. An attacker
who gains access to the user’s login session will have com-
plete access to the data. In addition, vulnerabilities have
been found in specific implementations [38]. However, we
note that FDE could be a component in a Tethers system,
given a sufficiently powerful interface. Tethers could pro-
vide a key to the FDE system while the computer is in a
secure environment, and tell the FDE system to forget the
key when the computer leaves the secure environment.

Several companies have begun offering data leakage preven-
tion products, including McAfee [19], Vontu [35], Verdasys
[34], Reconnex [27], and Websense [37]. The fact that there
is a competitive market in this space is a strong indicator
that there is demand for systems which address the prob-
lem of data leakage. To the best of our knowledge, though,
there is no public, objective information on the technology
underlying these products, so we cannot evaluate how they
might meet the goals of Data Tethers.

3. THREAT MODEL AND CRITICAL

ASSUMPTIONS

The threat addressed by Data Tethers is an attacker who
has access to the computer while the computer is in an inse-
cure environment, and who wants to gain access to the data
stored on the computer. One of our primary threats, and
in fact the original motivation for the Tethers concept, is is
an attacker who has physical access to the computer, and
moreover has access to the user’s session; e.g. the user left
the screen unlocked, or the attacker has learned the user’s
login credentials via social engineering [16]. Attacks like
this are at least as much of a concern as the laptop thefts
cited in Section 1. The thieves in those instances probably
did not have the user’s login credentials. We also consider
an attacker who has remote access to the computer, pos-
sibly with the user’s credentials, but again only when the
computer is in an insecure environment. Finally, since data
exposure via removable media is a real concern, we consider
means of preventing such exposure.

This threat model brings with it the assumption that an
environment deemed secure is actually secure. Beyond just
physical security, we also assume that there are strong net-
work admission control [14, 7] and anti-virus measures in
place on the network in the secure environment. That is, an
attacker should not be able to access sensitive data by intro-
ducing malware into the secure environment, but enforcing
this constraint is beyond the scope of Data Tethers.

A further assumption that informs our design is that our



users are cooperative, but not necessarily security-minded.
Conventional wisdom holds that most users, if asked to make
a computer security decision, will make the decision that
gets them back to doing their work the fastest. We assume
that the users of our system will not actively try to sub-
vert the system—if the user is the attacker, there is little
that can be done. But even given that the user is friendly,
we must further assume that he might thoughtlessly com-
promise security for the sake of convenience. For instance,
if there are simple ways to work around the protections of-
fered by Tethers, thus offering more convenient access to the
data, he will use these workarounds. Likewise, if the system
requires him to take explicit action for purely security rea-
sons, for instance unplugging a USB key when he walks away
from the computer, he is unlikely to actually do so. Clearly,
there is a continuum between the most careful and security-
conscious user and the most malicious and diabolical one.
We are not designing for either extreme of this continuum,
but rather for the user that we consider to be the common
case, somewhere in the middle.

For several of the proposed mechanisms of the Tethers im-
plementation, we assume that the computer is connected to
the network while in the secure environment. There are of
course policies which make this untrue, so we discuss ways
of relaxing this assumption in Section 6.

3.1 Motivating Examples

We illustrate the operation of Data Tethers with a few ex-
amples. These examples show particularly important sce-
narios, but do not set the boundaries of the system’s goals.
Our primary motivating example for Data Tethers is laptop
theft. Alice uses the laptop at work, copying sensitive data
onto it. She puts the laptop to sleep and goes to the air-
port, where Bob steals it. Bob has somehow acquired Alice’s
password (concordant with the above assumptions), so even
if the screen is locked, he now has complete access to the
data.

None of the various flavors of drive encryption do anything
to prevent this attack. Because Bob doesn’t reboot the lap-
top, he has effectively bypassed boot-time authentication.
Likewise, because Bob can access Alice’s login session, an
OS-based disk encryption system will happily continue to
transparently decrypt the data after Bob steals the laptop.

With Tethers, the data will remain protected. When Alice
puts the laptop to sleep, the system assumes that it will
be woken up in an insecure environment, so it encrypts the
data with a key not stored on the machine, or possibly even
removes the data entirely. Bob can get access to the data
in the former case only by brute-forcing the key, and in the
latter case, the data will of course be removed in such a way
as to prevent forensic recovery.

Consider another scenario: Alice is working with the sen-
sitive data in her office, and leaves the application running
with the sensitive data on screen when she puts the laptop
to sleep. When she opens up the laptop in the airport, Bob
passively observes the data by looking over Alice’s shoulder.
This, in particular, is an attack against which FDE is pow-
erless. Our intended design for Tethers will note that the
application has read the sensitive data into memory, and

will thus suspend the application (encrypting its suspended
state) and tell the window manager to hide its windows.

Yet another scenario is after-hours data access. Suppose
the secure environment is only really secure while there are
workers in the office, during business hours. After hours, it
is much easier for an attacker to sneak in and gain access
to sensitive data. If the time of day is incorporated into the
environmental constraint, Data Tethers will make the data
unavailable after the end of the business day, for instance by
encrypting it with a key stored off-site. This provides the
digital equivalent of a time-locked safe.

Finally, suppose Alice wants to copy some files to a USB
flash drive so she can work with them at home. She plugs in
the drive and copies over the entire directory containing the
files she wants. Unfortunately, that directory also contains
some sensitive files. If Alice later loses the flash drive, she
has unknowingly compromised the sensitive data. A Data
Tethers policy could specify that the sensitive data be inac-
cessible whenever removable media is present, thus keeping
it from being copied to the flash drive in the first place.

4. SYSTEM DESCRIPTION

In this section we describe some specific functionality that
we envision as the core of a Data Tethers implementation.
Data Tethers is a new operating system service, so much
of the implementation will happen on the host that is ac-
tually running Tethers. However there are also some auxil-
iary components that will be external to that system. We
consider the following particular subsystems to be particu-
larly important: a cryptographic file system, a mechanism
to identify and protect processes with sensitive data in their
memory spaces, a component which interacts with the com-
puter’s power-management system, a policy engine, a user
interface, a network server which provides various security
services, and a component which gathers environmental in-
formation.

In the following discussion, we consider this scenario. Sup-
pose there is a file f containing sensitive data d. f will be
encrypted on host H’s disk under a key K, and associated
with some policy p regarding what environment E is con-
sidered secure for d. K will be kept only in memory on H,
and will be erased when H leaves E. However, K will be
stored on some other host S, for instance, a server in the
secure environment. S will provide K to H when H returns
to the secure environment. (This is one of the primary rea-
sons why, in Section 3, we assume a network connection.)
This is not the only possible model of operation for Data
Tethers, but we will use it as a starting point for discussing
an implementation.

4.1 System Components

Cryptographic Filesystem. To avoid modifying applica-
tions, the cryptographic operations necessary to read or
write the cleartext of f must be implemented in the file
system. This is not terribly difficult; cryptographic file sys-
tems have been used for many years [4], and modern cryp-
tographic file systems do not impose an undue performance
penalty [39]. The most substantial challenge is gracefully
revoking access when K is removed. It may be the case that



K is copied to various locations in memory, e.g., multiple
file descriptors; in that case, Tethers must ensure that all
copies of K are removed when necessary.

Process Management. When H decides that d may no
longer reside on the system, part of the cleanup process must
involve taking action against running processes which have
accessed d. Determining which processes have accessed d
is a matter of information flow tracking [24, 13, 41]. That
is, if a process has read data from f, and then communi-
cates with another process, the latter process is considered
to have had access to d. Once the system knows that set
of processes, it must somehow make them inaccessible. The
naive approach is simply to kill them off. A less extreme
technique is to suspend each process and encrypt all of its
state with a key that will only be accessible from the secure
environment (for instance, with K). This approach will ob-
viously involve hooking into the operating system’s process
control and memory management subsystems. Finally, in
an ideal world, Tethers could send each process a message
through some high-level IPC mechanism, asking it nicely to
clean any sensitive data from its internal state; this of course
would require changes to the applications. In addition, for
this approach to work, we would need some assurance that
the application actually did the requested cleaning, perhaps
by only allowing signed, audited applications to access d.

Power Management. Because laptops are one of our ma-
jor use cases, we consider it important to interact with the
operating system’s power management features. Particu-
larly, Tethers needs to know when the system has been in-
structed to go to sleep, because it must assume that the
computer will wake up in a minimally secure environment,
and thus must take proactive steps to protect whatever sen-
sitive data is present. In addition, any sensitive information
or cryptographic keys stored in memory must be appropri-
ately handled if memory is written to disk as part of the
sleep process.

Policy Engine. We want to allow a wide range of policies
for Data Tethers, both in the set of allowed environmental
inputs and in the actions that the system can take upon
moving into a new environment. As discussed in Section
4.2, the environmental input system will be pluggable; part
of the plugin interface will be a definition of the values of
the environmental input that can be used in policies. A plu-
gin may provide some indication of how confident it is in its
determination of environmental state; this confidence level
can be used as part of a policy. Policies should specify what
should happen when an environmental input is unavailable;
for instance, the system could assume that the environment
is insecure, or it could use a different input or set of inputs
in place of the unavailable one. While allowing arbitrary ac-
tions may also prove useful, we will likely define a particular
set of actions, such as encryption or removal. We may use
XACML [18] or Ponder [10] as the policy language.

User Interface. We want Data Tethers to be usable by
people who are not computer or security experts. Thus,
some consideration must be given to its user interface. The
major problem we foresee is those times when data is made
suddenly inaccessible by some environmental change not ob-
vious to the user. There should be a clear notification that
the data is inaccessible due to Tethers, the particular envi-
ronmental condition that changed, and some description of
the secure environment E, so the user can try to reenter E
if she wants to regain access to the data. For the latter part
of the notification, it may not be desirable to give a full de-
scription of F, so as not to give too much information away
to the attacker. The detail in which the secure environment
is described may be a component of the policy.

Security Server. For a number of purposes, we find it con-
venient to assume an external server S to which H has a
mutually authenticated, confidential channel while H is in
E. Tt is not necessary that all of these purposes be served by
a single physical machine (and in fact it may be undesirable
for reasons of reliability), but we will assume that case for
simplicity of discussion.

Connections to S should be restricted such that when H
attempts to authenticate to S, it can be assumed that H is
within some security perimeter. Likewise, H may be able to
use the reachability of S as an environmental input. Ideally,
the data that H uses to authenticate to S should be tightly
bound to H, as by a trusted platform module (TPM) [33].
A TPM could also provide attestations to S: for instance,
an attestation that H is running unmodified Tethers code,
or that H executed a virus-scanning program provided by

S.

One major purpose for S is to act as a key escrow service for
the keys which H cannot hold outside of E. As discussed
in Section 6, one possible mechanism we consider is wiping
sensitive data from H entirely; S can serve as the backing
store for the data such that it can be restored to H when
appropriate. Clearly, if S is performing either of these du-
ties, it must be protected commensurate with the value of
the data.

Other Components. There are other low-level components
that we consider desirable for a complete data protection
system. These mostly fall under the category of informa-
tion leakage protection, and thus may be provided by ex-
isting work in that area [25]. If possible, Tethers should
have some control over the swap system, to prevent sen-
sitive data from being swapped out unless encrypted [26].
Another memory-related concern is direct memory address-
ing (DMA); we want to protect against a process writing
to removable media via DMA. Likewise, IEEE 1394’s OHCI
standard allows DMA from devices into host memory, which
obviously could lead to an information leak or other attack
[11]. Tt is also desirable that sensitive data not be sent over
arbitrary network connections, so some controls on the net-
work stack or the socket API may be necessary.



4.2 Environmental Inputs

A crucially important component of Data Tethers is the sys-
tem that gathers environmental information. This system
will have a pluggable design, to make it simple to add ar-
bitrary environmental inputs. It will be tightly integrated
with the policy engine, taking from it a set of environmen-
tal inputs which are relevant to active policies and reporting
back the state of those inputs.

We propose a number of environmental inputs which we
foresee as useful for expressing common Tethers policies.
We consider particular implementations with an eye towards
making it difficult for an attacker to wrongly convince the
system either that it is in a secure environment (allowing
access to data), or that it is in an insecure environment
(causing a denial of service).

One crucial input is physical location. Securely and accu-
rately determining a mobile device’s location is a difficult
problem; we hope to use techniques from the literature to
provide location information to Tethers. While many re-
searchers have tackled the problem of localization, fewer
have looked at the problem with an adversary in mind. Cap-
kun and Hubaux have proposed distance-bounding methods
[5, 6], but these require significant infrastructure and special
hardware. Another set of approaches uses location-limited
sideband channels such as a temporary physical connection
[31], infrared communication [3], or audio or visual channels
[15, 20]. While some of these approaches may be vulnerable
to repeater attacks, those attacks are generally mitigated by
our assumption of physical security in the secure environ-
ment. Depending on the technique used, Tethers policies
that involve physical location may need to map a region in
an absolute coordinate system to a semantically meaningful
location, such as an office.

Another useful environmental input is the current time. Ver-
sion 4 of the Network Time Protocol can use the Autokey
protocol [22] to provide cryptographic authentication for
time synchronization messages. In addition, for mobile de-
vices, location information should be used as a sanity check
for the time zone setting; without secure time zone informa-
tion, time of day cannot be a secure environmental input.

As mentioned in Section 2, Zero-Interaction Authentication
is a special case of a data tether. The presence of the user, as
signified by the presence of a specific hardware token with
short communication range, is the environmental input in
this case. The notion can be generalized somewhat: for
instance, it may be useful to allow some data to be acces-
sible only when a supervisor is in the office, or only when
two users are present (the “four-eyes principle”). An ex-
ternal system, such as a physical access-control system or a
personnel location system such as Active Badge [36], may
provide this information to Tethers.

The set of currently running applications is another pos-
sible environmental input. For instance, peer-to-peer file-
sharing applications are a concern for some enterprises, as a
user may install such an application and unwittingly share
the entire contents of his hard drive. A Data Tethers pol-
icy could include a whitelist of acceptable applications, and
running an application not on this list would cause sensitive

data to become inaccessible.

We might also be interested in using the presence of a spe-
cific peripheral device or type of peripheral to be used as an
input. A secure “dongle” or specific USB key might serve
as an enabling token, letting data be accessed or written.
Conversely, we may wish to make sensitive data unavailable
while any removable storage device is present, thus prevent-
ing the data from being written to the device. An active
802.11 or Bluetooth interface may be considered a security
risk, and so the presence of such could be used as an envi-
ronmental input.

There are many other types of environmental characteris-
tics that could be used as input to Data Tethers. For ex-
ample, the identity of the hosting infrastructure network is
an interesting input. Many environments may wish to re-
strict data access only to devices connecting via a specific
network. More generally, the presence or absence of a spe-
cific network entity, for instance a service or a specific node,
could be used as input to Tethers. This could allow data
only to be accessed when used in conjunction with a specific
network service or other computer.

4.3 Feasibility of Implementation

We intend to build a working Data Tethers system in or-
der to show that the engineering issues are tractable and to
examine the usability issues. Our list of possible implemen-
tation platforms can be divided into two categories: com-
modity operating systems and experimental operating sys-
tems. Specifically, in the former category we place Linux,
Windows, and the various flavors of BSD. The free oper-
ating systems have the advantage of being open-source and
thus easily modifiable, while Windows is a more realistic tar-
get for getting non-computer experts to use the system. In
the latter category, we particularly consider Asbestos [13]
and HiStar [41]. We consider these experimental operat-
ing systems because they are designed around information
flow tracking, which we consider one of the largest engineer-
ing challenges of Data Tethers. However, these operating
systems are not suitable for day-to-day use, especially by
non-expert users.

Given the above considerations, we conclude that augment-
ing a commodity operating system with information flow
tracking, while nontrivial, will suit our purposes best. One
of the major contributions of Security-Enhanced Linux [25]
is a set of mechanisms for defining and enforcing static con-
straints on information flow, which Tethers could certainly
leverage. However, static information flow tells us where
sensitive data could have ended up; for our purposes, we
want dynamic information flow tracking to determine where
the data actually did end up. We may be able to use the
techniques in [32] or [40] to accomplish this.

A major challenge to making a truly secure Tethers sys-
tem is obtaining accurate and secure environmental data.
As discussed in Section 4.2, there are methods for securing
all of the various environmental inputs which we consider.
However, some of these methods require special hardware
or infrastructure support. With only commodity hardware,
certain environmental inputs may be less accurate or impos-
sible to implement securely.



S. TESTING

There are several important properties of a Data Tethers
implementation that must be tested as the system is built.
In particular, there are several areas of performance that
are important for the usability of the system. One is the
overhead associated with maintaining accurate knowledge of
the current environment. This overhead must be measured,
and ways found to reduce it if it turns out to be exces-
sive. Another performance measure is the overhead due to
cryptography during file accesses. This overhead should be
commensurate with that found in existing cryptographic file
systems. The last major performance concern is the amount
of time required to put the system in a secure state when it
moves out of a secure environment. If this amount of time
is too large, a laptop might take significantly longer to go
to sleep, and worse, there will be a larger window for an at-
tacker to gain access to the data we are trying to protect. In
general, since Tethers is a security system which introduces
a new set of security-related behaviors, we must test its se-
curity properties—for instance, by assigning a “Red Team”
to develop attacks against it.

6. OPEN ISSUES

We foresee encountering a number of issues in the process
of turning Data Tethers into a working system. Consider a
laptop which leaves a secure environment, thus causing some
data to be wiped from the disk. When the laptop returns to
the secure environment, should the data be restored as soon
as possible, or should the system wait until the user actually
tries to access the data? There are clearly cases where one
approach will perform better than the other; it may be the
case that the best control over this behavior is a heuristic
or a per-file policy.

Consider a case where an application is displaying some sen-
sitive data on the screen when the computer leaves the se-
cure environment. Even if the application is (for instance)
suspended and encrypted, the sensitive data will still be res-
ident in the video buffer. Tethers may need to communicate
with the display manager in order to truly clean up the data.
This observation can also be applied to other output devices,
though in practical terms, the video buffer is likely to be the
main problem.

We now revisit the assumption that the computer is con-
nected to the network when it is in a secure environment.
While many of the use cases we envision have as their secure
environment a network-friendly setting such as an office, we
would like the system to be flexible enough to accommo-
date partially or completely disconnected operation. This
presents a challenge. Without a way to send cryptographic
keys to another computer, encrypting sensitive data risks ei-
ther data destruction, if the keys are stored only in memory,
or data compromise, if the keys are stored on disk.

Storing the keys on removable media would seem to be a
straightforward solution, but our assumptions about user
behavior suggest that the user will just leave the storage de-
vice attached to the computer, making the stored keys ac-
cessible to an attacker. The approach used by ZIA, storing
keys on a device worn by the user, would also be viable for
Tethers. We mention earlier that a possible protection mech-
anism is to remove the data from the disk entirely. For this

technique to be useful, the data must be stored elsewhere—
for instance, on the secure server—and restored to the host
when the computer is back in secure environment E and
has a network connection. The advantage of this approach
is that the computer doesn’t need a network connection to
make data secure when it leaves F, though it does need to
use the network to make the data available again when it
reenters F. This approach can also be used for external
data encryption key storage. Furthermore, it can be used
for a technique using public-key cryptography: generate a
keypair, giving the Tethers host the public key and the se-
cure server the private key; when the computer leaves F,
encrypt the data encryption keys under the public key, and
when the computer returns to F, send the encrypted keys
to the secure server to be decrypted with the private key.

7. CONCLUSION

In this work we present an overview of Data Tethers, a sys-
tem designed to protect data against disclosure. We observe
that existing data security protection systems, such as tra-
ditional access-control systems and full-disk encryption, are
insufficient in many real-world cases. We argue that by only
allowing sensitive data to be accessible in a secure environ-
ment (defined by policy), we can guard against many data
exposure risks. By allowing arbitrary environmental inputs,
Tethers can be used to deploy a number of interesting se-
curity policies. Implementing Tethers will not be trivial.
Potential difficulties include securely gathering environmen-
tal information and carefully managing keys and decrypted
data.

Acknowledgements
We thank all of the NSPW participants for their invaluable
comments and discussion. We also thank Matt Schnaider

for early discussions surrounding this idea and for helpful
feedback.

8. REFERENCES

[1] Apple. FileVault: Increased security for your
computer. http:
//www.apple.com/macosx/features/filevault/.
Visited 2007/5/4.

[2] Marine base seeks missing laptop. Associated Press,
Oct 2006.

[3] D. Balfanz, D. K. Smetters, P. Stewart, and H. C.
Wong. Talking to strangers: Authentication in ad-hoc
wireless networks. In Proc. NDSS, Feb 2002.

[4] M. Blaze. A cryptographic file system for UNIX. In
Proc. CCS, pages 9-16, Nov 1993.

[5] S. Capkun and J.-P. Hubaux. Secure positioning of
wireless devices with application to sensor networks.
In Proc. INFOCOM, pages 1917-1928, Mar 2005.

[6] S. Capkun and J.-P. Hubaux. Secure positioning in
wireless networks. JSAC, 24(2):221-232, Feb 2006.

[7] Cisco Systems. Cisco Network Admission Control
(NAC) solution executive overview. http:
//www.cisco.com/application/pdf/en/us/guest/
netsol/ns466/c654/cdccont_0900aecd80557152. pdf,
2006. Visited 2007/5/4.

[8] M. D. Corner and B. D. Noble. Zero-Interaction
Authentication. In Proc. MOBICOM, pages 1-11, Sep
2002.



[9]

[21]

[22]

M. J. Covington, W. Long, S. Srinivasan, A. K. Dey,
M. Ahamad, and G. D. Abowd. Securing
context-aware applications using environment roles. In
Proc. Symposium on Access Control Models and
Technologies, pages 10-20, May 2001.

N. Damianou, N. Dulay, E. Lupu, and M. Sloman.
The Ponder policy specification language. In Proc.
Policies for Distributed Systems and Networks, LNCS,
pages 18-39, Jan 2001.

M. Dornseif, M. Becker, and C. N. Klein. FireWire:
All of your memory are belong to us.
http://md.hudora.de/presentations/firewire/
2005-firewire-cansecwest.pdf, May 2005. Visited
2007/5/4.

G. Durfee, D. K. Smetters, and D. Balfanz.
Posture-Based Data Protection. Technical report,
PARC, 2007.

P. Efstathopoulos, M. Krohn, S. VanDeBogart,

C. Frey, D. Ziegler, E. Kohler, D. Mazieres,

F. Kaashoek, and R. Morris. Labels and event
processes in the Asbestos operating system. In Proc.
SOSP, pages 17-30, Oct 2005.

K. Eustice, V. Ramakrishna, S. Markstrum, P. Reiher,
and G. Popek. WiFi nomads and their unprotected
devices: The case for Quarantine, Examination, and
Decontamination. In Proc. NSPW, pages 123128,
Aug 2003.

M. T. Goodrich, M. Sirivianos, J. Solis, G. Tsudik,
and E. Uzun. Loud and Clear: Human-verifiable
authentication based on audio. In Proc. International
Conference on Distributed Computing Systems, pages
10-17, 2006.

Infosecurity Europe. Two thirds of workers reveal
passwords for chocolate and a pretty smile.
http://www.infosec.co.uk/page.cfm/Action=
Press/PressID=640, Apr 2007. Visited 2007/5/4.

J. Leyden. Afghan market sells US military flash
drives. The Register, Apr 2006.

M. Lorch, S. Proctor, R. Lepro, D. Kafura, and

S. Shah. First experiences using XACML for access
control in distributed systems. In Proc. Workshop on
XML Security, pages 25-37, Oct 2003.

McAfee. Data Loss Prevention.
http://wuw.mcafee.com/us/enterprise/products/
data_loss_prevention/. Visited 2007/10/29.

J. M. McCune, A. Perrig, and M. K. Reiter.
Seeing-is-believing: Using camera phones for
human-verifiable authentication. In Proc. Symposium
on Security and Privacy, pages 110-124, May 2005.
Microsoft. Windows BitLocker Drive Encryption.
http://www.microsoft.com/windows/products/
windowsvista/features/details/bitlocker.mspx.
Visited 2007/5/4.

D. L. Mills. The Autokey security architecture,
protocol and algorithms. Technical Report 06-1-1,
University of Delaware Electrical and Computer
Engineering, January 2006.

23]

M. J. Moyer and M. Ahamad. Generalized Role-Based
Access Control. In Proc. International Conference on
Distributed Computing Systems, pages 391-398, Apr
2001.

A. C. Myers. JFlow: Practical mostly-static
information flow control. In Proc. POPL, pages
228-241, January 1999.

National Security Agency. Security-Enhanced Linux.
http://wuw.nsa.gov/selinux/. Visited 2007/5/4.
N. Provos. Encrypting virtual memory. In Proc.
USENIX Security, Aug 2000.

Reconnex. http://www.reconnnex.net/. Visited
2007/10/29.

L. Rosencrance. Boeing laptop with data on 382,000
employees stolen. Computerworld, Dec 2006.

J. H. Saltzer and M. D. Schroeder. The protection of
information in computer systems. Proc. of the IEEE,
63(9):1278-1308, Sep 1975.

J. Seper. FBI eyes contractor in Los Alamos leak. The
Washington Times, Oct 2006.

F. Stajano and R. Anderson. The resurrecting
duckling: Security issues for ad-hoc wireless networks.
In Proc. International Workshop on Security
Protocols, LNCS, pages 172—-182, 1999.

G. E. Suh, J. W. Lee, D. Zhang, and S. Devadas.
Secure program execution via dynamic information
flow tracking. In Proc. Architectural Support for
Programming Languages and Operating Systems,
pages 85—96, Oct 2004.

Trusted Computing Group.
https://www.trustedcomputinggroup.org/. Visited
2007/5/4.

Verdasys. Digital Guardian.
http://www.verdasys.com/digital_guardian.php.
Visited 2007/10/29.

Vontu. http://www.vontu.com/. Visited 2007/10/29.
R. Want, A. Hopper, V. Falcao, and J. Gibbons. The
Active Badge location system. Transactions on
Information Systems, 10(1):91-102, Jan 1992.
Websense. Content Protection Suite. http://www.
websense.com/global/en/ProductsServices/CPS/.
Visited 2007/10/29.

R.-P. Weinman and J. Appelbaum. Unlocking
FileVault: An analysis of Apple’s disk encryption
system. http://events.ccc.de/congress/2006/
Fahrplan/attachments/1244-23C3VileFault.pdf,
Dec 2006. Visited 2007/5/4.

C. P. Wright, J. Dave, and E. Zadok. Cryptographic
file systems performance: What you don’t know can
hurt you. In Proc. Security in Storage Workshop,
pages 47+, Oct 2003.

W. Xu, S. Bhatkar, and R. Sekar. Taint-enhanced
policy enforcement: A practical approach to defeat a
wide range of attacks. In Proc. USENIX Security,
pages 121-136, August 2006.

N. Zeldovich, S. Boyd-Wickizer, E. Kohler, and

D. Mazieres. Making information flow explicit in
HiStar. In Proc. OSDI, Nov 2006.



