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Helly Theorems and Generalized Linear Programming

Nina Amenta *

Recent combhatorial algorithms for linear programming

also solve certain non-linear problems. We call these Gener-

alized Linear Programming, or GLP, problems. One way in

which convexity has been generalized by mathematicians is

through a collection of results called the Helly theorems. We
show that the every GLP problem implies a Helly theorem,

and we give two paradigms for constructing a GLP problem

from a Helly theorem. We give many applications, includlng

linear expected time algorithms for finding line transversals

and hyperplane fitting in convex metrics. These include GLP

problems with the surprising property that the constraints

are non-convex or even disconnected. We show that some

Helly theorems cannot be turned into GLP problems.

1 Introduction

It haa frequently been noted that recent linear pro-

gramming algorithms can be applied to various non-

linear problems as well. The randomized expected linear

time algorithms for fixed dimensional problems of [C90],

[S90] were applied to specific examples, including con-

vex programming. The deterministic fixed dimensional

algorithms of [D84] and [M83] were generalized to spe-

cific non-linear problems with rather more effort [D92],

[M89]. A major advance waa the sub-exponential algo-

rithm of [MSW92]. They defined an abstract framework

defining the combinatorial structure of a problem solved

by their algorithm, and showed a number of non-linear

problems which it solved. This same abstract frame-

work applies to [C90] as well, which, with an additional

assumption, can be derandomized to give deterministic

linear time algorithms for fixed dimensional problems

[CM93]. We may begin to wonder, then, what is the re-

lationship of this abstract framework to the vast body

of previous work in combinatorial geometry and math-

ematical programming? Does it merely restate some
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known characterization of “easy” non-linear problems,

such aa convex programming? We will call the class of

problems described by the abstract framework General-

ized Linear Programming, or GLP, problems.

In this paper we forge a connection to one relevant

area of combinatorial geometry, the class of results know
as Helly theorems. The archetype is

Helly’s Theorem Let K be a family of at least d + 1

convex sets in Ed, and assume K is jinite or that every

member of K is compact. Then if evey d + 1 members

of K have a point in common, there is a point common

to all the members of K.

This is one of the fundamental properties of convexity.

There are many similar theorems with the same logical

structure, for objects other than convex sets, for proper-

ties other than intersection, or for special caaes in which

d + 1 is replaced by some other constant k. These are

generically called Helly theorems. Combinatorial ge-

ometers collect Hell y theorems, in much the same way

that computer scientists collect NP-complete problems

[DGK63], [GPW93], [E93].

The algorithmic implications of Helly theorems has

been a question of some interest. For Helly’s theorem

itself, an algorithm given by [AH91] finds a point in

the intersection of n convex sets, if one exists, with

O(nd+l ) calls to a subroutine which finds some point

in the intersection of d + 1 convex sets. The GLP

algorithms find the minimum point in the intersection,

with respect to some convex objective function (this is

the convex programming problem), using only expected

O(n) calls to a stronger subroutine which also finds the

minimum. To apply GLP in an analogous way to other

Helly theorems, we need to come up with an objective

function.

Section 2 formally defines these notions. In section

3 we begin by showing that there is a Helly theorem
about the constraint family of every fixed dimensional

GLP problem; that is, the class of problems for which

there are Helly theorems includes the fixed dimensional

GLP problems. We can use this to produce new Helly

theorems from known GLP problems. For example, we

state a Helly theorem for line transversals of boxes in

E3.
In the following sections, we give two paradigms

for constructing a GLP objective function for a family

of constraints which has a Helly theorem, using some
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additional geometric assumptions about the constraints.

We use these paradigms to show that the following are

fixed dimensional GLP problems, giving expected linear

time algorithms:

1. Finding a line transversal of translates of a convex

(but possibly complicated) object in the plane,

2. Finding a line transversal in Ed for some special

classes of objects,

3. Finding the closest hyperplane to a family of points

under the weighted LW metn”c, in which every

coefficient of every point is equipped with a weight,

4. Finding the closest line to a family of points under

the weighted Lw metric,

5. Finding the closest hyperplane to a family of points

under a convex polygonal metric,

6. Finding, for a convex object C of constant complex-

it y and a family K of convex objects of constant

complexity, the largest homothet of C contained

in the intersection of K, or the smallest homothet

of C cent aining K, or the smallest homothet of C

intersecting every member of K,

7. Finding a point in the intersection of a family of
sets, each of which is the union of two convex sets,

given that the intersection never has more than two

connected components.

In the first paradigm, we introduce a scale parameter

into the constraints, and use this parameter as the ob-

jective function. For instance, to find a line transversal

for a family of translates we scale them down to points,

and then gradually grow them until we can fit a line

through them. In section 5 we show that this paradigm

is also useful for formulating certain non-linear opti-

mization problems as GLP. In the second paradigm,
we use a nested family of constraints as an objective

function. Our examples include problems in which the

constraints are non-convex and even disconnected; this

shows that the class of GLP problems strictly contains

the class of convex programming problems.

Finally, in section 7, we show that some additional

geometric assumption on the structure of the constraint

family is necessary, by exhibiting a set system with a

Helly theorem which does not become a fixed dimen-
sional GLP problem under any objective function.

Besides the applications presented here, we expect

this work will be useful in identifying and solving new

GLP problems, It is often difficult and sometimes

impossible to reduce a GLP problem to linear or convex

form; these results give some alternative approaches to

getting an efficient algorithm. In addition, it makes it

easier to implement programs for these problems, since

a single implementation of a GLP algorithm can be

equipped with specialized subroutines to solve any one

of them.

2 Definitions

Let C be a family of objects, and P a predicate on

subsets of C. A Helly-type theorem for the pair (C, T)

is something of the form:

There is a constant k such that for all finite H ~ C, H

has property P if and only if every B ~ H with IBI ~ k

has property P

The constant k is called the Helly number of (H, P).

Helly’s theorem proper is that convex sets in Rd have

Helly number d + 1 with respect to the intersection

property, but there are many other sets systems which

have Helly theorems [DGK63]. We call a pair (C, ‘P) a

Helly system if it has a Helly theorem.

Now we review the abstract framework for general-

ized linear programming from [MS W92]. A generalized

linear programming (or GLP) problem is a family H of

constraints and an objective function w from subfami-

lies of H to some totally ordered set S. The pair (H, w)

must obey the following conditions:

1. Monotonicity: For all F ~ G ~ H: w(F) ~ w(G)

2. Locality: For all F ~ G ~ H such that

w(F) = w(G) and for each h c H:

w(F + h) > w(F) if and only if w(G + h) > w(G)

The set S must contain a special maximal element Q;

for G ~ H, if w(G) = fl, we say G is infeasible; other-

wise we call G feasible. A basis for G ~ H is a minimal

subfamily B ~ G such that w(B) = w(G). Here min-

imal is to be taken in the sense that for every h ~ B,

w(B – h) < w(B). The combinatorial dimension d of

a GLP problem is the maximum size of any basis for

any fessible subfamily G; an infeasible subfamily G may

have a basis of size d + 1. A GLP problem is fized di-

mensional if d is constant.

A GLP algorithm takes a GLP problem (H, w) and

returns a basis B for H. Matou5ek, Sharir and Welzl

[MSW92] give a randomized GLP algorithm which uses
two primitive operations. A basis computation takes a

family G of at most d + 1 constraints and finds a bssis

for G. A violation test takes a basis B and a constraint

h, and returns true if B is a basis of B + h. Let tv be

the time required for a violation test and tb be the time

required for a basis computation. Their algorithm runs

in expected time linear in n and subexponential in d,

assuming that both tV and tb are polynomial in d.

In our applications, d will always be a constant

much smaller than n. With the dependence on d hidden

in the big-Oh notation, the algorithm takes expected
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O(t”n + t~ lg n) time. Thus to get an algorithm which

runs in expected linear time, to must be O(1), although

we can afford to spend up to O(n/ lgn) time per basis

computation.

3 Helly Theorems from GLP

Problems

We begin by showing that there is a Helly theorem about

the constraint family of every GLP problem.

Theorem 3.1 Let (H, w) be a GLP problem with com-
binatorial dimension k.

H has the property w(H) s m if and only if every

B G H with IBI ~ k + 1 has the property w(B) ~ m

Proofi Let w(H) ~ m. By the monotonicity

condition, every B ~ H must have w(B) ~ w(H) ~ m.

Going in the other direction, H must contain some

basis B with w(B) = w(H), with IBl < k + 1. So

if every B with IBI ~ k + 1 haa w(B) g m, then

w(H) = w(B) ~ m.
c1

It is interesting that this proof does not use the locality

condition of the abstract GLP framework. Notice that

when m is the special symbol 0, this means that every

infeasible family of constraints contains an infeasible

family of size < k + 1. We can use this theorem to

prove new Helly theorems.

Application 3.1 Line transversal of boxes in E3.

A line transversal of a family of objects is a line which

intersects every object. Let a positive line transversal

be one directed into the positive orthant of Ed. The

argument in [A92] implies that finding a positive line

transversal of a family of axis-aligned boxes in E3 is

a GLP problem with combinatorial dimension 4. This

gives the following Helly theorem: there is a positive

line transversal of a family of axis-aligned boxes in E3

if and only if there is a positive line transversal for every

subfamily B of boxes such that IB [ ~ 51

We can also show that certain problems are not GLP

using Theorem 3.1. This is useful in the same way as

a lower bound, in that it rules out a particular line of

attack.

Application 3.2 Line transversal of convex sets in E3.

In [AGPWl, they give an example of a linearly ordered

family A of n disjoint convex compact sets in E3 which

has no line transversal, although every n-2-element sub-
family of A has a line transversal consistent with the

1Nimod Me~idd~ hm since reduced this problem to line=

programnu “rig, but the Helly theorem follows from the fact that it
is GLP.

ordering. This tells us that we cannot hope to apply

GLP in this situation, even given a linear ordering.

4 First Paradigm

Now we turn to the question of constructing a GLP

problem, for a Helly system (C,?), to determine, for

any H G C, whether H has property P.

We begin by assuming a rather general geometric

context. Let X be a set, and C a family of subsets of X.

For G~C, wewrite nGfor{z EXlz E h, Vh~G}.

Let n, with no argument, be the property that (1 G # 0.

We say that a family of sets which has property n
intersects. Assume that (C, n) is a Helly system, with
some fixed Helly number k. We say that (C, n) is

embedded in X. For any H & C, we will construct an

algorithm which determines whether H has property fl

by actually exhibiting some m E X such that m c fl H,

if one exists.

There are many geometric Helly theorems that

fall into this context. For instance the theorem in

application 3.1 can be restated: Let A be the family

of all axis-aligned boxes in E3, and for any a c A, let

c(a) be the set of positive lines which intersect a. Let

C be the family {c(a) I a c A}. Then the system (C, n)
has Helly number 5.

We can define an objective function on subfamilies

G ~ H using some well-behaved ordering on the points

z c X, just ss we do in linear programming. Recall
that S is some totally ordered set.

Observation 4.1 Let C be a family of subsets of X,

and let w’ : .X - S be any function such that w(G) =

min{w’(m) I m E (l G} exists for any G ~ H with

flG # 0. Define w(G) = Q when f)G = 0. Then w

satisfies the monotonicity condition of the abstract GLP

framework.

It is also true that if the function WI has a unique value

on every element of z, then (H, w) also obeys the localit y

condition. However, such an (H, w) will not necessarily

have bases of fixed size.

We now define some additional structure on a Helly

system which produces a natural objective function w.

Let Z be an interval on the real line 7?. Define a nested

family ~ to be {h~ I ~ c Z}, where h~ C X for each A,

and hi C hj for i < j. NOW consider a collection ~ of

nested families ~, all indexed by the same parameter ~.

For ~ ~ ~, we write GA as shorthand for {h~ : ~ G ~}.

For a fixed value of A, we say that ~ intersects at J if

fl GA # 0. If ~ haa the property that (HA, n) is a~elly
system of dimension k, for every A, we say that (H, n)

is a parametrized Helly system with Helly number k.

Notice that if ~ ~ ~ does not intersect at some value

~z, then ~ also fails to intersect at all Al < ~2, and if



~ ~ ~ intersects at Al, then ~ also intersects at all
A2>A~.

A parameterized Helly system haa a natural objec-
tive function w. For ~ ~ ~, let w(~ be the minimum
value A* such that G intersects at J*, or $2 if @ doea

not intersect at any value of J. The only remaining

difficulty is that (1 GA. might consist of more than one

point, which is insufficient to establish the locality con-

dition. In the event, however, that (1 GA. consists of a

unique point for every ~ ~ ~, we get a GLP problem

of dimension k.

Theorem 4.1 If (~, n) is a parametrized Helly sys-

tem with Helly number k such that, for all ~ ~ ~,

1. 1“ = w(G) ezists, and

2. lnG~.1=1 when A*#Q

then (~, w) is a GLP problem of combinatom”al dimen-

sion k.

Proof: We can interpret the elements of ~ ss subsets

of the space Z x X, so that a point (i, Z) E Z x X is

in ~ if z E hi. Observe that the x are closed subsets
of Z x X, and the projection into Z is a function w’ on

the points of Z x X. Since we assume that 1* = w(G)

always exists, observation 4.1 tells us that the problem

(H, w) obeys the monotonicity condition.

We also assume that for any ~ G ~, (1 GA. consists
of a single point m G X. (~, w) therefore also obeys the

locality condition, since for ~_~ ~ wit~ w(~ = w(~

and any additional constraint h, w(~ + h) > w(~ only

when m @~, so that w(7 + ~) > w(~) as well.

To prove that (H, w) has combinatorial dimension
k, we have to show that the size of any basis is ~ k. Con-

sider any ~ ~ ~ and a basis ~ for ~. The definition of

a basis says that for any ~ c ~, w(3 – ~) < w~). Let
~maz = rnaz{w(~ – ~) I T c ~. The basis ~ does not

intersect at Jmoz, but for any ~ E ~, w(B —~) s Area=,

which means that ~ – ~ intersects at Am”’. Since

(H,raa=, (7) is a Helly system with Helly number k, ~

must contain some subfamily ~ with 1~1 ~_., such that

~ does not intersect at Am”’. Every ~ G B must be in

~, since otherwise it would be the case that ~ ~ (~–~)

for some ~. This must be false~becauae ~ does not in-
tersect at Am”= while every (B – ~) does. Therefore

~=~andl~l~k.
D

Application 4.1. Line transversal of translates in the

plane.

Let T be a family of disjoint translates of a single

convex object O in E2. Tverberg [T89] showed that
if every family B ~ H with IBI ~ 5 admits a line

transversal, then H also admits a line transversal.

Egyed and Wenger [EW89] gave a deterministic linear

time algorithm to find a line transversal. Showing that
the problem can be formulated as GLP gives a simpler,
although randomized, linear time algorithm.

We assume that the family of translates is in general
position (we will define general position in a moment);

if not, we use a standard perturbation argument. The

set X is the set of lines in the plane. We abuse notation

so that t refers both to a translate t ~ T and to the set

of lines intersecting t. So a subfamily G ~ T intersects

when there is a line which intersects every translate in

G. We pick a distinguished point q in the interior of the

object O. Consider the family ~ of homothets formed
by scaling translate t by a factor of A keeping the point

in t corresponding to q tlxed in the plane. Every line

which intersects the homothet Al t also intersects J2t for

any A2 > Al. So each ~ is a nested family of lines. For a

family G ~ T, let AG = {M I t G G}. If we let J range

over [0, 1], then the tA are always disjoint, every (JT, n)

is a Helly system with Helly number 5, and (~, n) is a

parameterized Helly system.

The natural objective function w(~) is the mini-

mum A such that GA intersects. In the case where
~ ~ ~ consists of a single translate, we define w(~ = O.

Notice that for certain degenerate placements of the

translates (see figure 1) it is possible for there to be two

or even three distinct line transversals at 1“ = w(c).

Figur~ 1: Degenerate input

The general position assumption is that the line

transversal at 1“ is always unique.

(~, w) is a GLP problem with combinatorial dimen-

sion 5. Either the GLP algorithm finds a line transver-

sal at some value of J ~ 1, or no line transversal of the

input exists.

When O is a polygon with a constant number of

sides, neither this algorithm nor Egyed and Wenger’s is
very interesting, since we can find a line transversal via

a constant number of tlxed dimensional linear program-

ming problems. Either algorithm is intended for more

complicated polygons, in which the number of sidea de-

pends on n, or for non-polygonal objects.

Recall that the algorithm described in section 2 runs

in 0(% n + tb lg n) time, where t“ is the time required for
a violation test and tb is the time required for a basis

computation. In this application, a violation test deter-

mines whether the current minimum line m intersects a
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new homothet At.For any m, there is a diameteral pair

of points on O such that m intersects a homothet At if

and only if m passes between the corresponding points

on M. We find such a diameteral pair during the basis

computation whenever we find a new minimum line m,

so t. is 0(1). The running time is then limited by tb;

when the complexity of O is such that tb is O(n/ lg n),

we get an expected linear time algorithm.

Notice that here the dimension of the space X of

lines in the plane is 2. If there were some afine structure

on X such that the constraints T were convex subsets

of X, then the Helly number of the system (T, n) would

be 3. But examples show that the bound of 5 is in

fact tight, which means that this is a GLP which is not

a convex program. This is also a natural example of

a GLP problem in which the minimal object does not

“touch” every constraint in the basis.

This paradigm may be profitably applied to many

other Helly theorems.

Application 4.2 Homothets spanning convex sets.

We use theorem 2.1 from [DGK63],

Theorem (Vincensini and Klee) Let K be a jinite

family of at least d+ 1 convex sets in Ed, and let C be

a convex set in Rd. Then there is some translate of C

which [intersects/ is contained injcontains] all members

of K if and only if there is such a translate for every

every d + 1 members of K.

We apply the paradigm by either growing or shrinking

the convex body C, to get an algorithm which takes aa

input a finite family K of at least d + 1 convex sets in

Ed and a convex set C and returns either the smallest

homothet of C which contains UK, the largest homo-

thet of C contained in n K, or the smallest homothet

of C which intersects every member of K. These prob-

lems can be seen a a generalization of Megiddo’s ball

spanning balls problem [M89]. The combinatorial di-

mension in each case is d + 1, and the running time

again depends on the complexity of the objects. When

C and all the elements of K are of constant complex-

it y we get an expected linear time algorithm. In other

cases, preprocessing can often be used to reduce the ob-

vious running times; see, eg. [KM91] for a development

of this idea in a different context.

Application 4.3 Special cases of line transversals in

Ed.

In general, finding line transversals is significantly more

difficult in dimension d > 2 than it is in the plane,

but there are a few special cases in which Helly the-

orems help us get a linear time algorithm. Theorems

5.6 and 5.7 in [DGK63], due to Grunbaum, concern, re-

spectively, a family of d – 1 dimensional polytopes, all

of which lie in a family of parallel hyperplanes, and a

family of spheres such that the distance between any

two is greater than the sum of their diameters. In both

these cases, if there is a line through every 2d– 1 objects

then there is a line through all of them. Again, the first

paradigm can be applied to give a linear time algorithm

to find a line transversal. 2

5 GLP Problems from other

GLP Problems

Notice that the line transversal algorithm for translates

finds a line which minimizes the maximum distance from

the family of fixed points, under the metric whose unit

ball is the object O. This mini-max property is useful in

and of itself. We can apply the first paradigm to known

GLP problems much as we would apply parametric

search, to find the minimum value of A at which the

problem is feasible. While parametric search usually

adds an additional logarithmic factor to the running

time, the expected time here remains linear.

Application 5.1 Weighted Lm linear interpolation.

The input to this problem is a family of n points in Rd,

with an axis-aligned rectangle TP centered at each point

p. Note that each TP may have different dimensions.

The distance from a hyperplane h to p is the smallest
nonnegative real value ~ such that TP intersects h when

scaled by A. We call this the weighted L* metric.

The linear interpolation problem is to find the h which

minimizes the maximum distance to any point.

This problem arises when we want to fit a hyper-

plane to a family of points, and each coefficient of each

point is given a weight, producing box-shaped error re-

gions. This occurs, for example, when the coefficients

are calculated and error is bounded using interval arith-

metic, or when complicated error regions are approxi-

mated by bounding boxes. The general-dimensional ver-

sion of the problem haa been considered in [R89], [D91],

and in [PR92], where it is shown to be NP-hard. Show-

ing that the problem can be formulated as GLP gives a

expected linear time algorithm for the fixed dimensional

case.

Define a positive hyperplane to be one which is

oriented so that its normal vector is directed into the

positive orthant of Ed. There is a diameteral pair of

vertices v+, v- on each box such that, at any fixed
value of ~, a positive hyperplane m goes through the

2The first of these problems can in fact be formulated as a

linear program.
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box if and only if u+ and v- lie in its positive and

negative halfspaces, respectively. Finding a positive

hyperplane transversal of the boxes at atlxed value of

J is thus the geometric dual form of a d-dimensional

linear program with 2n constraints. If a fixed positive

hyperplane m goes through a box at J1, it also does so at

any J2 > Al. So for each constraint point v in the linear

program, the set of hyperplanea for which u lies in the

correct halfspace form a nested family parameterized

by A. Finding the minimum value A“ which admits a

positive hyperplane transversal of the boxes is a GLP

problem of combinatorial dimension d + 1, again using

a perturbation argument to ensure a unique minimum

hyperplane. In the special case in which the boxes

all have the same dimensions, the problem can be

formulated as a linear program. In general, however,

each point moves along a unique trajectory as A varies,

and the constraints cannot be linearized.

For a given family of boxes, we define a separate

GLP problem for each orthant of Ed. The solution to

the whole problem will be hyperplane which achieves

the minimum A of any of the 2d GLP problems.

Application 5.2 Linear interpolation with a polyhe-

dral metric.

Consider the problem of finding a hyperplane transver-

sal of a family of polytopes whose facets are drawn from

a set U which is the union of a constant number of fam-

iliea of parallel hyperplanes. Avis and Dorskis [AD92]

show a similar reduction of this problem to a fixed num-

ber of linear programming problems. Applying the first

paradigm givea an expected linear time algorithm for

fitting a hyperplane to a point family under any metric

whose unit ball is a polytope with a constant number

of sides, or, more generally, in which each point has an

error metric whose unit ball is a polytope with facets

drawn from U.

Application 5.3 Line fitting in the weighted L@ met-

ric.

Megiddo has shown [M91] that the problem of finding a

line transversal for a family of axis-aligned boxes in Ed

can be formulated as a collection of linear programs in

dimension 2d-2. We can again apply the first paradigm

to find the cloees~ line to a family of points under the

weighted Lw metric defined above.

Observe that, in the previous examples, at any A
(not necessarily one such that A = w(G) for some G),
we can find some point in n GA by linear programming.

This suggests a general way to remove the unique

minimum assumption from the first paradigm.

Theorem 5.1 Let (~, n) be a parametrized Helly sys-
tem with parameter A and natural objective junction Wo.

If there is a function WI such that every (HA, WI) is

a GLP problem of combinatom’al dimension < k, then

there is a function w such that (~, w) is a GLP problem

of dimension < 2k + 1.

The proof of this theorem, which is similar to the

proof of theorem 4.1, is omitted. The idea is that w

is the parametric objective function (W., WI), where W.

is the most significant parameter and WI is used as a

tie-breaker.

The following example shows that unfortunately

this upper bound of 2k + 1 on the combinatorial di-

mension is the beat posible in such a general context.

Theorem 5.2 There is a GLP problem, of the form

described in theorem 5.1, in which every (HA, WI) is

a GLP problem of combinatom’al dimension < k, and

(~, w) is a GLP problem of combinatorial dimension

2k+l.

Proof: Consider an optimization problem in which

the constraints h e H are sets of the form

{

c:if~<b
ZCEk, AGRlti%~ _m:if A>b

-}

Here ii is a constant vector, and b and c are constants.

The most significant objective wo is to minimize A, and

the tie-breaking function WI is to minimize Z.

feasible

— m~n

-

Figure 2: Size of basis is three

Observe that in figure 2, constraints a and b de-

termine the minimum value of A, while constraint c

determines the minimum value of z. In general a ba-

sis for (II, w) may contain of a basis of an infeasible

k-dimensional linear program, determining ~, and an-

other, disjoint, basis of a feasible k-dimensional linear
program determining z, so that its total size may be as
large as 2k + 1.
0
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6 Second Paradigm

While the first paradigm is useful for many problems,

it is not the one used by linear programming with a

parametric objective function. Canthat objective func-

tion be applied to other Helly theorems? Hoffman [H79]

gave a paradigm for constructing a parameterized ob-

jective function for a general Helly system, relating the

Helly number to something he called the binding con.

straint number. Here we relate it to the combinatorial

dimension.

Assume that we have a set X and a family C of

subsets of X, such that C’ contains a nested family

~. For example, the family of convex subsets of Ed

contains the nested families of parallel halfspaces. For

any x E X, let the parameter of z defined by ~ be the

index of the smallest set in ~ which contains x, or the
special symbol $2if there is no such set. Thus one nested

family defines a partial order on the elements of X.

Several nested families act like a coordinate system.

Assume that C contains d nested families ~i, . . . . ~d.

Each x c X is thus equipped with a string of parameters

(PI ,..., p~), although more than one z might share the
same parameter string. We say that X is paramet erized

by~~,...,~d.

Theorem 6.1 Let (C, f)) be a Helly system with Helly

number k, embedded in X, where X is parametrized

by~l,.. .~d C C. Define w(G) as the lexicographic

minimum of the parameters of all x E (l G, or the

special symbol Ct if n G = 0. Assume that, for all

G~H,

1. w(G) ezists, and

2. if n G # 0, there is always a unique point z E n G

with parameter string w(G).

Then for any H ~ C, (H, w) is a GLP problem with

combinatorial dimension s (k – l)d.

Proofi The constraints H are subsets of X, so

observation 4.1 again implies that (H, w) obeys the

monotonicity condition. Since there is exactly one point

m with parameters w(G), the argument in the proof

of theorem 4.1 shows that (H, w) meets the locality

condition.

Consider any G ~ H, and any basis B of G. If G
does not intersect then IBI ~ k, and w(G) = w(B) = !2.

So assume that G intersects. We consider each of
the parameters of w(B) separately. Let pl be the most

significant, p2 the next most significant, and so on. For

a parameter pi and a family G C C, let pi(G) be the

ith parameter of w(G).

For each parameter pi, let Bi ={h6Blpi(B -

h) < pi(~) and Pj(l? – h) = Pj(B), Vj < i}. That
is, Bi is the family of constraints whose removal from

B causes w(B) to decrease in the ith most significant

parameter. Let p; = ma~{pi(B – h) I h E Bi}. The

value p; is the index of some set in P“ 6 C, a member of

the nested family~i. For every h c Bi, Bi – h intersects

some member Ph of pi, such that Ph ~ P*, and hence

Bi – h intersects P*. But we know from the definition

of Bi that fl Bi fails to intersect P*. Therefore the

family Bi U {P*} must contain some family A of size
~ k such that A fails to intersect. It haa to be the

case that P* G A, because otherwise A ~ Bi, which is

impossible because we are assuming that Bi intersects

and A does not. Also every h E Bi is also in c A, since

otherwise A ~ (Bi – h) U {P* }, which again is impossible

because (Bi – h) U {P*} intersects and A does not. So

]Bi[=lA1-l<k_l.

For every i the number of elements in Bi is ~ k – 1,

and there are d parameters, so for the whole basis

IBI ~ d(k - 1).
c1

The archetypal example of a Helly system of this

sort is the convex sets in Ed, with the halfspaces defined

by the coefficient hyperplanes as the nested families.

But this problem has combinatorial dimension d, not d2

as theorem 6.1 would suggest. We get a better bound

on the combinatorial dimension with the following little

Theorem 6.2 1“ for every H ~ C, there ezists some

single nested family Q which imposes the same total

order on the set of minima M = {m [ m = w(G), G ~

H} as the parametric function w, then the combinatorial

dimension of (H, w) is k – 1.

Proof: Let w~ be the single parameter function as-

sociated with Q. Since w~ determines the same total

order on M as w, itmeets conditions 1 and 2. By the

same argument used in the last proof, every basis B of

any G ~ H under w~ has size ~ k — 1. But the bases

are the same under the two functions; so (H, w) also has

combinatorial dimension k – 1.
n

For problems in Ed involving a finite number of con-

vex objects and using a parameterized linear objective

function determined by a lexicographic ordering on the

coefficients, there is always some delicately tilted fam-

ily of nested halfspaces which imposes the same order-

ing on M as the parameterized linear function. One

such family of halfspaces is the one with normal vector

E,C2>.,,, Cd, for some c < 1. There will always be some c

small enough, because the family M of constraints is fi-

nite. This explains why using a parameterized objective

function does not increase the combinatorial dimension

for convex programming.

For some Helly systems, the second paradigm can

be used to construct a GLP problem but there is no
such family Q. For instance, the family of axis aligned

boxes in Ed has Helly number 2, but the combinatorial

dimension of the resulting GLP problem is d.

We can use this paradigm to define a GLP prob-
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lem in which the constraints are not even connected, let

alone convex. This is interesting in that it implies we

can sometimes use a single GLP problem to solve math-

ematical programming problems in which the feasible

region becomes disconnected, so long as the number of

connected components remains fixed.

Application 6.1 Pairs of convex sets.

A family 1 of sets is intersectional if, for every H ~ I,

(1 H E 1. Let C be the set of all convex sets in

Rd, defined so as to include the empty set. Let Z =

{(CI U C’z) I Cl, Cz ~ C}. The whole family Z is not

intersectional. But consider some subfamily Z’ which

is intersectional. Then (Z’, n) is a Helly system with

Helly number 2(d + 1) [GM61]. As a concrete example,

let each h c Z’ be a pair of spheres of radius 1, separated

by a distance of 1 (kind of like dumbbells).

Notice that we can adjoin the set S of spheres cen-

tered at the origin to any intersectional family of pairs

Z’. Each sphere can be considered a pair with the empty

set, and set Z’ U S remains intersectional since the in-

tersection of a sphere with any pair of convex sets will

produce s 2 convex sets. Let S. be the sphere of radius

r centered at the origin. For any G ~ Z’, let w(G) be

the smallest r such that fl G n S, # 0. Notice that for

any G, if r = w(G), lnGnSrl = 1. So (Z’, w) is a

G LP problem, where w is the one-parameter function

defined by S, with combinatorial dimension 2d – 1.

7 Non-GLP Helly systems

SC) far we have given paradigms for constructing a

GLP objective function for a Helly system. These

paradigms required additional geometric assumptions

on the constraint families, beyond having a fixed Helly

number. We now show that some such additional

assumption is necessary, by exhibiting a set system with

a fixed Helly number which cannot be turned into a fixed

dimensional GLP problem.

Theorem 7.1 There is a family H of 2n sets with Helly

number 2 such that for any valid GLP objective function

w the combinatorial dimension of (H, w) is n.

Proofi Let the universe X consist of the 2“ points at

the vertices of an n dimensional hypercube, and let the

ccmstraint family H be the 2n subsets each if which lies

in a facet of the hypercube. Notice that if a subfamily

G G H includes any pair of opposite facets, then G

fails to intersect, and otherwise G does intersect. So
the Belly number of (X, H) is 2.

Any valid objective function

$2 to the infeasible families G

of opposite facets. Meanwhile

w must assign w(G) =

which contain a pair

any feasible G which

70

does not contain a pair of opposite facets will have

w(G) = s e S, with s < fl. Let s* = max{s G S1s <

fl and s = w(G) for some G ~ H}, and consider some

G with w(G) = s*. If IGI < n, then there exists some

pair (h+, h-) of facets, such that G contains neither h+

nor h-. This means that G+ h+ is also feasible. By the

monotonicity condition, so w(G+h+) ~ w(G); and since

w(G) is maximal, we can conclude that w(G + h+) =

w(G) = s*. This argument shows that there must be a

subfamily G of size n with w(G) = s*.

Now we show that there is no basis B for such a

subfamily G such that B # G. Assume, for the pur-

pose of contradiction, and without loss of generality,

that there is some element h+ E G such that h+ @ B.

B+ h- is still feasible, so w(B + h- ) = w(B) = s*. But

w(G + h-) = Q. Since B c G and w(B) = w(G), this

means that w is not a valid objective function because

it fails to satisfy the locality condition. So any valid ob-

jective function w must have B = G, and (H, w) must

have combinatorial dimension n.
c1

This theorem says that the class of problems whose

constraint sets have a fixed Helly number is strictly

greater than the class of fixed dimensional GLP prob-

lems.

8 Concluding Remarks

The two paradigms should be useful in producing com-

putational versions of other interesting Helly theorems

such as those using spherical convexity and those con-

cerning separating surfaces.

There are many theorems similar to Helly theorems,

such as Gallai-type theorems and Hadwiger-type theo-

rems, and Helly-type theorems in which the fact that

all subfamilies of size ~ k have some property p implies

that the whole family has some other property q. It

would be interesting to find algorithmic applications of

these.

Generalizing the many results about linear pro-

gramming to other Helly systems may give interesting

geometric results.
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