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Abstract

Voronoi diagrams in the plane for strictly convex

distances have been studied in [3], [5] and [7]. These dis-

tances induce the usual topology in the plane and, mcm-

over, the Voronoi diagrams they produce enjoy many

of the good properties of Euclidean Voronoi diagrams.

Nevertheless, we show (Th.1) that it is not possible to

transform, by means of a bijection from the plane into

itself, the computation of such Voronoi diagrams to the

computation of Euclidean Voronoi diagrams (except, in

the trivial case of the diat ante being affinely equivalent

to the Euclidean distance), The same applies if we want

to compute just the topological shape of a Voronoi clia-

gram of at least four points (Th. 2).

Moreover, for any strictly convex distance not afline-

ly equivalent to the Euclidean distance, new, non Eu-

clidean shapes appear for Voronoi diagrams, and we

show a general construction of a nine-point Voronoi di-

agram with non Euclidean shape (Th.3).

1. Introduction and Statement of Results

Given a partition V of the plane into finitely mimy

regions, Ash and Bolker [1] have studied the problem of

deciding if V is an Euclidean Voronoi diagram for some

set of points (see also [2] and [5]). We can relax the

conditions and ask if the given partition V has at least
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the same topological shape of an Euclidean Voronoi di-

agram of some finite set of points. Here and in what

follows we say that two cellular decompositions of the

plane, each with a finite number of cells, have the same

topological shape if there is an homomorphism of the

plane onto itself sending cells to cells.

This question is theoretically quite easy, because

one can construct an algorithm to decide it as follows:

taking the coordinates of the points for the Voronoi di-
agram as indeterminates, the fact that the Voronoi di-

agram for these points has the shape of V can be ex-

pressed as a finite set of conditions on these indeter-

minate, in such a way that there exists an Euclidean

Voronoi diagram with the shape of V if and only if the

conditions are satisfied for some values of the indetermi-

nate. Now, the conditions appearing are always about

the position of the circle passing by three of the points

respect to a fourth one, i.e. they are polynomial equali-

ties or inequalities and real quantifier elimination gives
the answer to the problem whether they have a solution

or not.

More interesting is to study the question about hav-

ing the same topological shape of a planar Euclidean

Voronoi diagram for the entire collection of partitions

V arising as Voronoi diagrams for a non Euclidean dis-

tance. Does the changing of the distance imply a drastic

change on the shape of Voronoi diagrams? Concretely

we will consider the class of normed dist antes verifying

the strong triangle inequality (i.e. the triangle equality

holds only for collinear points, cf. [6]). Voronoi dia-

grams for these distances (that we shall call in what

follows strictly convex distances) have been first con-

sidered by Chew and Drysdale [3] and then studied by

Klein [5], Maz6n [8], exhibiting an algorithm for their

computation. Moreover, these distances are in many

other respects quite close to the Euclidean distance; for

instance they yield the usual topology on the plane and

the Voronoi diagrams for them induce the same kind

of cellular decomposition of the plane as the Euclidean
Voronoi diagrams do. Thus the problem we posed about

the conservation of the topological shape of Voronoi di-
agrams is quite natural in this situation.

109

http://crossmark.crossref.org/dialog/?doi=10.1145%2F160985.161006&domain=pdf&date_stamp=1993-07-01


The main results of this paper are:

Theorem 1. Let d and 6 be two strictly convex dis-

tances in the plane.

(i) If d = i$of with f a bijection of the plane onto itself
(i.e. d(P, Q) =4( f(P), f(Q)), VP, Q), then f is an

affine mapping and for every finite set S c IR2:

f(Vord(S)) = Vort(f(S)).

(ii) If there exists a bijection f : IR2 ~ E%z preserving

the bisectors of every two points, i.e. such that:

VP, Q E Et= f(Bid(P, Q))= Bia(f (P), f(Q)),

then fisaffine, d=k.6of=60(k .f), for some

constant k > 0, and thus we are in the conditions

of (i).

Two distances such that d =bof,withfan

affine bijection will be called afinely equivalent, Part

(i) of Theorem 1 says that if one knows how to com-

pute Voronoi diagrams for a given distance 6, then one

can also compute them for any other affinely equiva-

lent distance d. For inst ante, the problem of computing

Voronoi diagrams with respect to a strictly convex dis-

tance d whose unit ball is an ellipse can be reduced to

compute Euclidean Voronoi diagrams.

Part (ii) of Theorem 1 establishes that, for two
given strictly convex distances d and 6 to be affinely

equivalent, it suffices that a bijection f from the plane

onto the plane exists such that it preserves bisectors

(which are twepoint Voronoi diagrams). In this case,

(i) implies that the Voronoi diagram of any finite set

of points will be also preserved. In other words, (ii)

is a strong reciprocal of (i): the only transformations

which allow to reduce the computation of the Voronoi

diagram for one strictly convex distance to another one

are bijective affinities. Note also that if we take the bi-

jection f as being the identity, (i) and (ii) say that two

distances produce identical Voronoi diagrams for every

finite collection of points if and only if they have the

same bisectors and that, in this case, they are related

by d = M and so they have the same circles (a circle for

a distance d is the set of points with equal distance to

a fixed center; if it is convenient to specify the distance
we shall call them d-circles).

After this, in some sense, negative result, we are
interested in knowing when this procedure of reduction

permits to obtain, if not the exact diagrams, at least
their topological shape, as this is the hardest part in

the computation of a Voronoi diagram ([4]). We find

the next negative result, with the additional hypothesis

of the distances being smooth (i.e. with smooth circles).

Theorem 2. Let d and 6 be two strictly convex and

smooth distances in the plane. If there exists a bijec-

tion f from the plane onto itself such that for every

finite set S, Vor~(S) has the same topological shape as

Vord(f (S)), then f is affine, d = M o f for some con-

stant k > 0 and we are in the conditions of Th.l(i).

Moreover, the hypothesis is only needed for sets S of

four or less points and it is not sufficient to have it for

sets of three points.

As a corollary to Theorems 1 and 2, to look for

homeomorphism between Voronoi diagrams of strictly

convex smooth distances is the same as to look for equal-

ity. We want to remark that the additional hypothesis

of the distances being smooth is used in our proof, but

possibly Theorem 2 would be still true without it.

Finally we ask if strictly convex distances induce}

for all Voronoi diagrams, the topological shape of an

Euclidean one. The answer is given in the following

Theorem which states that it is so only for distances

affinely equivalent to the Euclidean distance.

Theorem 3. If d is a strictly convex distance, not

af%nely equivalent to the Euclidean distance, then there

exists some collection S of nine points whose Voronoi

diagram with respect to distance d, Vord(S), has not

Euclidean shape.

2. Voronoi Diagrams for Strictly Convex Dis-

tances

Strictly convex distances include all the LP dis-

tances for 1< p < w for which Lee [7] has generalized

the standard divide and conquer algorithm to compute

the Voronoi diagram. Also Chew and Drysdale [3] pro-

posed a further generalization of the divide and conquer

algorithm to convex distance functions.

A strictly convex distance in the plane is any dis-

tance induced by a norm and such that the boundary

of its unit ball contains no three collinear points. The

closed unit ball of a strictly convex distance is a compact

and strictly convex subset K of the plane that contains

the origin in its interior and is symmetrical with respect

to it. Conversely, any set K with these properties is the

closed unit ball of a certain strictly convex distance [6].

The distance dK(P, Q) induced by K between two points

P and Q, is measured ss follows: translate K so that it

is centered at P and call it KP. Let Z be the unique

point of intersection of the half line from P through

Q with the boundary of Kp. The distance between P
and Q is, by definition, the quotient of the Euclidean

distances between P and Q and P and Z.

If the convex K has smooth boundary (i.e. if it

has only one supporting line through each point of its

boundary) we will say that the corresponding distance

is smooth.

Let d be a strictly convex distance on the plane

and P and Q any two distinct points. The bisector

Bid(P, Q) of P and Q with respect to the distance d is
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defined as Bi~(P, Q) = {X c R2 : d(P, X) = d(Q, X)}

and the d-circle of centre P and mdius r, Cd(P, r) is

defined as Cd(P, r) = {X ~ lR2 : d(P, X) = r}. Three

given points are said to be d-cocimular if they belong to

some d-circle.

Let S be a finite collection of points. Let H(P, Q) =

{X 6 R.2 : d(X, P) – d(X, Q) < O}. Then:

Rs,d(P) = n H(P,Q)

QES-{P}

is the Voronoi region of P with respect to S and:

Vor~(S) = U Bd Rs,d(p)

PE s

is the Vorvnoi diagmm of S with respect to the distance

d, where Bd RS,d(P) denotes the topological boundary

of the Voronoi region Rs,d(P).

Interested readers may consult [8] for general prop-

erties of strictly convex dist antes. Here we just recall

the more important ones for our purposes:

(i)

(ii)

(iii)

(iv)

d(X, Y) = d(X, P) + d(P, Y) if and only if P be-

longs to the closed segment [X, Y] (strong triangle

inequality).

Three given collinear points cannot be d-cocircular.

Conversely, if d is smooth, three non collinear points

are always d-cocircular. This converse is no longer

true if d is not smooth.

Any two d-circles intersect at moat in two points

(i.e. there is at most one d-circle containing three

given points).

Bisectors are simple curves that divide the plane in

two unbounded regions.

Strictly convex distances produce Voronoi diagrams

with very good properties, aa stated in [8]. Summariz-

ing, if S is a finite collection of points then:

(i) RS,d(P) is an open and not empty subset of the

plane and R.s,d(P) = {X E R2: d(X, P) < d(X, Q),

VQCS–{P}}.

(ii) If X E Rs,d(P), then the whole closed segment

[P, X] is contained in R.s,d(P).

(iii) Cl R.s,d(P) = {X c Ill’ : d(X, P) ~ d(X, Q), for

every Q G S – {P}}, where Cl Rs,d(P) denotes the

topological closure of RS,d(P).

(iv) Up,s C’1 Rs,d(P) = lR2.

As a consequence the Voronoi diagram for any finite

collection S of points induces a finite cellular decom-

position of the plane in which the 2-dimensional (cells
are the Voronoi regions, and the l-dimensional and O-

dimensional cells are, respectively, the edges and ver-
tices of the diagram.

Given a Voronoi diagram Vord(s), with d a strictly

convex distance, its dual is called the Delauna y diagmm

of S, De~d(S). The Delaunay diagram is the imbedded

graph whose vertices are the given collection S of points

and having an edge between every two points whose

corresponding Voronoi regions share an edge.

The polygons that appear as regions in the Delau-

nay diagram are characterized by the fact that there

exists a certain d-circle passing through all the vertices

of the polygon and having the rest of points of S out-

side. This implies that the polygons are strt”ctly convez

(they are convex and do not have three collinear ver-

tices). In a similar way, an edge appears joining two

points P and Q of the Delaunay diagram if and only

if there exists a d-circle passing through P and Q and

with all the other points of S outside. If S does not

contain four d-cocircular points, the Delaunay diagram

is a triangulation, known as the Delaunay -triangulation,

The topological information of a Voronoi diagram

is not lost in passing to the dual Delaunay diagram and

Delaunay diagrams are much easier to handle, specially

when our distance is not the Euclidean one, as the edges

are now segments instead of bisectors. For this reason

in the following examples we shall work with Delaunay

diagrams.

In order to study the topological shapes of Voronoi

diagrams coming from a strictly convex distance d, we

can simply construct all the possible shapes of imbedded

graphs with strictly convex regions and then find out,

for each of these graphs, whether it is realizable aa a

Delaunay diagram. Figure 1 shows all the shapes of

imbedded graphs with convex faces up to four vertices,

with the corresponding shapes for their dual Voronoi

diagrams, which are shown in soft lines.

*’*’&””’~&
I ..-’”” .:

i

Figure 1

The first eight diagrams in Figure 1 are all of them

easily realizable by some Euclidean Delaunay diagrams

and, in fact, by Delaunay diagrams with any strictly

convex distance. On the contrary the two last ones,

with four points each, are not realizable by Euclidean

diagrams. The reason is that Euclidean 10elaunay dia-

grams have convex contour, i.e. the edges in the convex
hull of S are edges of the Delaunay diagram. This is so
because for every two consecutive points in the convex

hull, a sufficiently large Euclidean circle passing through
them can be found not containing any other point of S.
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Moreover, this happens not only for the Euclidean dis-

tance, but for every smooth strictly convex distance. We

conclude that no Delaunay diagram for a smooth dis-

tance has the shape of the two last diagrams in Figure

1.

Nevertheless, this is no longer true for non smooth

distances. Figure 2 shows two unit balls which real-

ize, respectively, the two last diagrams in Figure 1. In

the two cases the realization is possible because of the

existence of groups of three points which are neither

collinear nor cocircular, for the distance we consider.

cd)
Figure 2

One can then think that only non smooth distances

produce topological shapes different than the Euclidean

ones for the Delaunay and Voronoi diagrams. In fact,

up to six points, all possible shapes of imbedded graphs

with convex contour and strictly convex polygons have

been exhaustively explored resulting that all of them

have the shape of some Euclidean Delaunay diagram.

With seven points several shapes exist which cannot be

realized by any Euclidean Delaunay diagram; two of

them are shown in Figure 3.

,A75/4Aii247
6

(a) (’M

Figure 9

If the diagram in Figure 3(a) was an Euclidean De-

launay diagram, then the points 1, 2, 3 and 4 would lie

in an Euclidean circle and thus the sum of the angles

a and a’ would equal to 180°. The same thing would

happen to polygons (2456) and (3457), and we would

have thata+/3+ y+a’+/3’+# =3x180”. But

a’+P’+7’ =360 °and soa +/?+ 7=180°. This
is not possible, because the sum of the three angles of

the triangle (167) is also 180°, and a + ~ + ~ is clearly

smaller.

In Figure 3(b) we must have a + a’ < 180°, as

point 4 must be outside the Euclidean circle passing
through 1, 2 and 3. With similar arguments we conclude

a+~+-y+a’+ /3’+~’< 3x180 °andthena+/?+~<

180°. This is again impossible as the contour of the

diagram (the hexagon (125673) ) is convex.

The question is now whether these shapes can be

realized by Delaunay diagrams for some smooth strictly

convex distance or not. The answer is affirmative as in-

dicated in Figure 4 for the diagram in Figure 3(a). The

sixteen points in the left part of Figure 4 form a strictly

convex, symmetrical polygon, and thus there exists a

symmetrical, smooth and convex closed curve passing

through all of them. If we take as unit d-circle any such

curve, then the right part of the figure is actually a De-

launay diagram for the induced distance d: to see this,

note that polygons (1234), (2456) and (3457) have

their vertices in the d-circles with centers (0, 9), (–8, 3)

and (8, 3) and radii 8/17, 1 and 1, respectively. A simi-

lar construction can be made for the diagram in Figure

3(b).

(4,6) ●

~7.53)

qwt)
●(a.5,0)

54,-2)

(-7.5,-3)

(-lo@ ●

(0;.3)

(0,4.5)
●

,(4,6)

(7.33)

(W*
(a5,0p

(%-a):

(7.5,.3)
● (4,-6)

6(-15.5,0) 7(15.5

Figu’re ~

We do not know either if every diagram with con-

vex contour and strictly convex regions has the shape

of a Delaunay diagram for some strictly convex dis-

tance, nor if for every strictly convex distance there

exists a seven-point Delaunay diagram with non Eu-

clidean shape. Nevertheless, in the proof of Theorem 3

we will see that any strictly convex dist ante, provided

it is not affinely equivalent to the Euclidean distance,

produces some nine-point Delaunay diagram with one

of the shapes shown in Figure 5. The proof that no Eu-

clidean Delaunay diagram has these shapes is similar to

the proofs made for the diagrams in Figure 3, and left

to the reader.

Ela EEl
(b)

FiguTe 5

3. Proofs of Theorems

Proof of Theorem l.(i). To prove that ~ is affine it

suffices to see that it sends collinear points to collinear

points. By the Fundamental Theorem of Affine Geom-
etry any bijection from the plane onto itself preserving

collinearity is affine.

Let P, Q and R be three collinear points and, with-

out loss of generality, suppose that R is in the segment
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[P, Q]. Then, by the strong triangle inequality on d,

d(P, Q) = (f(P, R) + cf(R, Q). Thus, W(p), /(Q)) =
~(f(p)t f(~))+ c$(f(@,f(Q)) and by the strong trian-
gle inequality on 6, ~(P), ~(Q) and ~(l?) are collinear.

It remains only to study how ~ trasforrns Voronoi

diagrams. We recall the definition of Voronoi regions:

Rs,~(P) = {XC R2: d(X, P) < d(X, Q),VQ G S–{P}}

Now:

(i(X, P) < cf(X, Q) % 6(f(X), f(P)) < A(f(X), f(Q))

and then X ~ &,d(P) = ~(X) G Rfis],~(~(P)). We

conclude that f(Rs,d(P)) = Rt(S),d(f(p)), i.e. that f

preserves the Voronoi regions. As f is bijective, the

same happens for the union of the regions and so also

for the Voronoi diagrams. w

The proof of Theorem I.(ii) is based in the following

sequence of lemmas:

Lemma 1. In the hypothesis of (ii), for every d-circle

Cd with center at X, its image ~(cd) is a &circle with

center at ~(X).

Proof. Let cd be a d-circle with center at a point X

and let us prove that ~(cd) is cent ained in a certain

&circle Cd with center ~(X). By a similar argument we

would prove that f-1 (C6 ) is cent ained in a certain d-

circle Cj with center at f-1( f (X)) = X and necessarily

Cj = Cd and so f (cd) = 6’6,and the lemma holds.

Let P, Q and R be three points in Cd. Then the

distance from X to any of them is the same and X is

the only point having this property, because any point

having this property would be the center of another d-

circle intersecting cd in at least the three points P, Q

and R. ‘I’hen,

Bid(P, Q) (l Bid(Q, R) = {x}.

Now, f being bijective and preserving bisectors implies

that

/(Bid(P, Q)) n f(~id(Q, R)) = {f(x)}, and

Bi6(~(P), f (Q)) n Bi6(~(Q), J(R)) = {f (x)},

so f(P), f(Q) and $(R) lie in a certain &circle C6 with

center at f(X).

To prove that for any other T G cd, f(T) also lies

in C6, it suffices to make the same considerations for
the points P, Q and T and conclude that they lie in a

certain 6-circle with center at f(X). This circle must be

the same C6 because it hsa the same center f(X) and

the same radius c$(f(X), f(P)). ■

Lemma 2. In the hypothesis of (ii), if R is the midpoint

of P and Q, then f(R) is the midpoint of f(P) and ~(Q).

Proof. The midpoint R of a segment [P, Q] is the only

point of intersection of Bid(P, Q) with the d-circle with

center P and radius r = d(P, Q)/2. As we already know

that f transforms d-circles to 6-circIes and d-bisectors

to &bisectors, it follows that f(R) is the only point of

intersection of lli6( f (P), f(Q)) with a certain &circle

C6 centered at f(P). In these conditions, the radius

of C6 must be 6( f(P), f(Q))/2 and thus f(R) is the

midpoint of f(P) and f(Q). ■

Lemma 3. In the hypothesis of (ii), f is an homomorp-

hism.

Proof. We know by Lemma 1 that f sends each d-circle

cd to a 6-circle C6 = f(cd). Let us see now that it also

sends the region Bd bounded by cd to the region l?6

bounded by C6. Let O be the center of Cd and r its

radius. Consider a point P with d(O, P) = 2r and let

R be the midpoint of O and P, which is on Cd. As f

preserves midpoints, the point f(R), which lies on C6,

is the midpoint off(0) and f(P).

Any point X in Bd belongs to a d-circle centered

in O and with radius smaller than r, and thus not

intersecting the bisector Bid(O, P). Its image f(X)

must be then in a certain 6-circle centered in f(0)

and not intersecting the bisector Bi6 ( f (0), f (P)). So

6(f(0), f(X)) < c$(f(0), f(P))/2 = 6( f(0), f(R)), con-

cluding that f(X) belongs to B6.

As the families of Bd’s and B6’s are both basis for

the usual topology, ~ is an homeomorphism. m

Lemma 4. In the hypothesis of (ii), f sends collinear

points to collinear points.

Proof. Let P, Q and R be three collinear points and,

without loss of generality, suppose that Q is between P

and R. We can construct a sequence of “midpoints” in

segment [P, R] having Q as limit: let X1 be the mid-

point of P and R, X2 the midpoint of the halil+egment

in which Q is contained and so on. As f preserves

midpoints, the image sequence }(Xn) is cent ained in

segment [f(P), f(R)] and, being f continuous, f (Xn )

has f(Q) as limit and f(Q) belongs to the segment

[f (p), f (W. ■

Proof of Theorem I.(ii). Firstly, f is affine because

any bijection in the plane sending collinear points to

collinear points is affine, by the Fundamental Theorem

of Afine Geometry.

It remains only to prove that d = k 6 of, for some

constant k >0.

Let P and R be any two points and let us compute
b(f(P), f(R)). For that, let od be the d-circle centered

at P with radius 1 and let Q be the unique point of

intersection of the half line from P through R with cd.

By definition of d we have d(P, R) = 11P– Rl\/l[P– Ql[.

113



By Lemma 1, ~(C~) is some 6-circle centered at

~(P) and radius r = 6(~(P), ~(Q)).

To measure 6( f(P), f(R)), note that ~ being afine

imdies:-r -

and, by definition of 6 we have:

M(p) - f(R)ll _ W(p), f(@)
M(p) - f(Q)ll - W(p)tf(Q))

So 6(f(P), f(R)) = 6(f(P), f(Q))~ = r . d(P, R),

where we have used that:

r = L$(f(p), f(Q)) andd(P, R) = 11P – R[[/[[P – Q1l.

Thus, bof=r. dandd=k. iiof, withk= l/r.

Finally, k. 60 f = 60 (k. f) (any normed distance

commutes with homotecies) and we are in the conditions

of (i). w

Proof of Theorem 2. First we are going to see that

f sends collinear points to collinear points, and thus ~

is afline. Let P, Q and R be three collinear points. If

f(P), f(Q) and f(R) were not collinear, they would be

c$-cocircular (because of 6 being smooth, recall property

(ii) of strictly convex distances) and the center (Y of

a 6-circle passing through them would belong to the

closures of the three regions in Vor6({ f (P), f(Q), f(R)}

(by property (iii) of Voronoi diagrams).

Now, VorJ({f(P), f(Q), f (R)}) has the same topo-

logical shape than Vord({P, Q, R}) and thus there ex-

ists some common point O in the closures of the three

Voronoi regions in Vord({p, Q, R}). This implies that

O has the same distance to P, Q and R, and thus there

is a d-circle passing through P, Q and R, which is im-

possible because they are collinear.

Now let us see that f sends any d-circle with center

at O to a c5-circle with center at f(0).

Let cd be any d-circle and O its center. For every fi-

nite collection S of three or four points in Cd, O belongs

to the closure of each of the Voronoi regions in Vord(!$)

(again by property (iii) of Voronoi diagrams). As ~ pre-

serves the topological shape of Voronoi diagrams of at

most four points, there must exist a point 01 in the

closure of each of the Voronoi regions of Vor6 ( f (S)).

Then, all the points in f(S) are in a certain &circle C’s

with center at O’. This CS is uniquely determined by S,

because two &circles cannot have three common points.

Now, if S c S’, (i.e. if S = {P, Q, R} and S’ =

{P, Q, R, T}), then clearly C~ = C’S, for they intersect

in ~(S). For arbitrary S and S’, say S = {P, Q, R}

and S = {P’, Q1, R’}, we can consider the intermediate
sets:

S1 = {P, P’, Q, R}, S2= {P’, Q, R}, S3= {P’, Q’, Q, R},

S4 = {P’, Q’, R} and S5 = {P’, Q’, R’, R},

and conclude that:

Cs= Csl= Cs,= Cs== Cs,= Cs.= C.s.

So, Cs is the same for every chosen S and we can

call it simply C6. We conclude that f (cd) C CJ, where

C6 is some &circle and a similar argument [(applied to
f ‘1) proves the converse; thus f (cd) = C6. Moreover,

t being afiine, the center O’ of C* must coincide with

f(0), because affine maps preserve centers of symmetry.

Once we know that f is affine and that it sends d-

circles to &circles we can finish the proof of d = k. b o f

as in Theorem 1.(ii). m

Proof of Theorem 3. The reasoning will be made with

the Delaunay diagrams, rather than with the Voronoi

ones; due to the considerations made in Section 2, a

Voronoi diagram has the same topological shape of ati

Euclidean Voronoi diagram if and only if its dual De-

launay diagram has the shape of an Euclidean Delaunay

diagram.

Let C be the unit d-circle of the given distance

d. C’ is a closed curve, with strictly convex interior and

symmetrical respect to the origin. We give the following

lemma on C, whose proof we do not reproduce for it is

quite long and uses analytical methods having nothing

to do with Voronoi diagrams.

Lemma 5. Let C be any closed curve, symmetrical

with respect to the origin and with convex interior.

Then there exists a certain ellipse E centered at the

origin containing C in its inside and intersecting C in

at least two pairs of opposite points (see Figure 6). ■

Figure 6

The lemma says, roughly speaking, that there ex-

ists an ellipse circumscribed to C by four points. For

the sake of simplicity we can suppose, moreover, that

the ellipse E is actually a circle; this produces no loss of

generality because, by theorems 1 and 2, an affine bijec-

tive transformation to distance d makes no changes in

the topological shapes obtained for Voronoi diagrams.

Now, the two pairs of opposite points in which E

and C coincide, E being a circle, are the vertices of

a rectangle in the plane and we can form a nine-point
figure with four copies of this rectangle, aa indicated

in Figure 7(a). Clearly the Delaunay diagram of these

nine points, both for the Euclidean distance and for the
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distance d, consists on the four rectangles 1245, 2365,

5698 and 4587 because the vertices of each rectangle lie

both in a circle and in a scaled translation of C (which

is a d-circle).

:IsEEIEi
(a)

(b

Figure 7

We are now going to move a little the four vertices

of the bigger rectangle (i.e. the points 1, 3, 7 and 9 in

the figure) in order to change the shape of the Delaunay

diagram: note that if we move one of these vertices, say

1, along the circle passing by it, the other three vertices

can be moved accordingly in their respective circles, in

such a way that the contour (1’23’69’87’4) is still a

rectangle with the four points points 2, 4, 6 and 8 in

its sides (as in Figure 7(b)).

Using this property we can move the four vertices
1, 3, 7 and 9 to a position in which at least one of them

(say 1’) does not lie on the corresponding d-circle (this

is possible because, by hypothesis, the d-circles are not

circles). In these conditions, point 1’ must be exterior

to the d-circle passing through vertices 2, 4 and 5 (for

the d-circle is “inscribed in the circle”), and this makes

the segment joining points 2 and 4 to appear as a new

edge in the Delaunay diagram of the nine points for the

distance d.

By symmetry, the same thing occurs at the point 9’

opposite to 1’. For the other two vertices 3’ and 7’, two

possibilities may happen: either they lie on their corre-

sponding d-circles or are exterior to them. In the first

case no more edges appear and the Delaunay diagram

is the one in Figure 5(a), and in the second case the

edges 26 and 48 are also in the Delaunay diagram, and

it has the shape of Figure 5(b). Neither 5(a) nor 5(b)

have the shape of any Euclidean Delaunay diagram, so

the proof is complete. ■
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