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Abstract

We consider graphs such as the minimum spanning tree, minimum Steiner tree,
minimum matching, and traveling salesman tour for n points in the d-dimensional unit
cube. For each of these graphs, we show that the worst-case sum of the dth powers of
edge lengths is O(log n). This is a consequence of a general “gap theorem”: for any
subadditive geometric graph, either the worst-case sum of edge lengths is O(n(d−1)/d)
and the sum of dth powers is O(log n), or the sum of edge lengths is Ω(n). We look more
closely at some specific graphs: the worst-case sum of dth powers is O(1) for minimum
matching, but Ω(log n) for traveling salesman tour, which answers a question of Snyder
and Steele.

1. Introduction

A worst-case, or a priori , bound on a geometric graph is a bound that depends only on the
assumption that all vertices lie within a given container. Such a bound does not depend on
the specific locations of vertices, nor on any probabilistic assumptions.

Early papers especially considered the worst-case length of an optimal traveling salesman
tour for n points in the unit square. The current best upper bound [3] is about 1.392

√
n+

o(
√
n) and the best lower bound is about 1.074

√
n− o(

√
n). Steele and Snyder [11] showed

that this Θ(n(d−1)/d) behavior (in fact, convergence to some constant times n(d−1)/d ) holds
in any fixed dimension d for both minimum spanning tree (MST) and traveling salesman
tour (TSP). Snyder has proved similar results for the rectilinear minimal Steiner tree [5, 6].

More recently, Steele and others have looked at the sum of powers of edge lengths for
geometric graphs in the unit cube. There are several reasons to consider power-weighted
edges. First, an O(1) bound on the sum of dth powers (as is known for MST [2, 9])
implies an O(n(d−1)/d) bound on the sum of edge lengths, so in some sense these are the
harder problems. Second, MST computations typically use squared edge lengths in order to
avoid taking square roots. Because the MST lexicographically minimizes the vector of edge
lengths, this substitution computes the correct tree. In other computations, squares may
be substituted for edge lengths as an inexact heuristic. Finally, in some models of VLSI
circuits, delay along wires scales as the square of the edge length, while other measures
(e.g., capacitance) scale linearly.
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In considering the sum of dth powers, an important point is that the graph is chosen to
minimize the sum of edge lengths, not the sum of power-weighted edges. For example, a
space-filling curve heuristic [9, 7] gives a suboptimal TSP tour for which the sum of squares
is O(1); the interesting question is whether the shortest TSP tour has this property.

Snyder and Steele [7] recently proved that the sum of squares for the shortest pla-
nar TSP tour is O(log n). In this paper, we extend the result of Snyder and Steele to
show that O(log n) holds for any geometric graph in arbitrary fixed dimension, satisfying
certain natural conditions. We also give an O(1) bound for minimum matching and an
Ω(log n) lower bound for TSP. This second result is somewhat surprising, because asymp-
totic growth rates (both probabilistic and worst-case) are typically identical for different ge-
ometric graphs in common dimension. The only previous surprises involve bipartite match-
ings [1, 4]; the growth rate for the planar probabilistic case is Θ((n log n)1/2), rather than
the usual Θ(n1/2) [1].

2. Gap Theorem

A geometric graph is a graph with vertices in Euclidean d-space, and edges that are line
segments joining pairs of vertices. Edge lengths are given by Euclidean distances between
vertices. Let G be a function that maps each finite subset X of the unit cube [0, 1]d to a
geometric graph G(X) with vertex set X. Let n denote |X|, and assume that d is fixed.
Let L(G(X)) denote the sum of the lengths of the edges in G(X) and P (G(X)) denote the
sum of the dth powers of edge lengths.

The combinatorial optimization problems of interest (MST, TSP, minimum matching)
require some tie-breaking rule so that they are well-defined on degenerate point sets. We
assume a tie-breaking rule of the form: perturb the point set very slightly to obtain an
input in general position, map to the graph, and then perturb back. (The bounds in this
paper actually hold for all tie-breaking rules, but this assumption simplifies the discussion.)

We assume the following conditions on function G. The third condition is the operative
one; it is related to the subadditivity conditions defined by Steele [8, 9, 11]. The essen-
tial difference is that previous subadditivity conditions subdivide the unit cube and bound
L(G(X)) by the sum of L(G(X∩Ci)) values on the small cubes Ci, rather than bounding in-
duced subgraphs of G(X). Steele’s definitions of subadditivity provide a recursive inequality
that allows limit theorems (that is, statements of the form L(G(X)) ∼ βdn

(d−1)/d), rather
than just order results. On the other hand, our definition is less restrictive and easier to
confirm.

1. (Translation) If X ′ is obtained from X by a translation, then G(X ′) is the same
graph (i.e., identical except for locations of vertices) as G(X).

2. (Scaling) If X ′ is obtained from X by scaling, then G(X ′) is the same graph as G(X).

3. (Subadditivity) There is a constant c, such that for all X and all X ′ ⊂ X, the sum of
the lengths of edges in the subgraph of G(X) induced by X ′ is at most c · L(G(X ′)).
In other words, an induced subgraph of G(X) is, up to a constant factor, no longer
than the graph given by G on the subgraph’s vertices.
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In some circumstances we assume a fourth condition, and at other times it follows from
the first three assumptions:

4. (Sparsity) For any i, there are O(n) edges in G(X) with lengths in the interval
[2−i, 2−i+1).

Theorem 1. Let G map finite point sets in the unit cube [0, 1]d to geometric graphs and
satisfy conditions 1–3. Then one of the following holds:

• G(X) is sparse, L(G(X)) is O(n(d−1)/d), and P (G(X)) is O(log n), or

• L(G(X)) is Ω(n), and if G(X) is sparse then P (G(X)) is Ω(n).

Proof: We divide edges into length classes. All edges with lengths in the interval
[2−i, 2−i+1) are in class i, for i = 0, 1, 2, . . . . The diameter sphere of an edge ab is the
smallest sphere passing through vertices a and b.

We first consider the case that there is a constant bound on the number of diameter
spheres of G(X) edges from a single length class that can enclose a point of [0, 1]d. This
constant bound must hold over all point sets, and we call the maximum number enclosing
a point the overlap. Notice that constant overlap implies that each vertex is incident to
only O(1) edges from a single length class, which in turn implies sparsity. Constant overlap
also implies that the total volume of all diameter spheres for class i is O(1). For class
i > 1 + 2 log2 n, an edge has length less than 1/n2, so the volume of its diameter sphere is
O(n−2d). The total volume of these small spheres is O(1). Hence the total volume of all
diameter spheres and the sum of dth powers P (G(X)) are both O(log n).

The sum of edge lengths, L(G(X)), is at most
∞∑
i=0

2−i+1 · c′min{n, 2di},

where c′ is a constant. The number of edges of class i must be O(2di) because of constant
overlap, and must be O(n) because each vertex is incident to only O(1) class i edges. This
sum evaluates to O(n(d−1)/d).

Now assume the opposite: the number of diameter spheres of edges of length class i
enclosing a single point of space can grow without bound. Look at the endpoints X ′ of a set
of edges E′ whose diameter spheres all enclose the same point. Subadditivity implies that
L(G(X ′)) is at least a constant times the total length of edges in E′. The translation and
scaling conditions let us magnify the point set X ′ by a factor of 2i−2 so that it approximately
fills the unit cube. In this way we can create a sequence of point sets for which the sum
of edge lengths is at least a constant times the cardinality of the point set. If G(X) is
sparse and L(G(X)) is Ω(n), then a constant fraction of L(X) must come from the first
O(1) length classes, so P (G(X)) will also be Ω(n).

Corollary 1. The worst-case sum of the dth powers of edge lengths is O(log n), and the
worst-case sum of edge lengths is Θ(n(d−1)/d), for the following geometric graphs: minimum
spanning tree, minimum-length matching, TSP tour, k-nearest neighbor graph (in which
each vertex has an edge to its k nearest neighbors), minimum-length k-edge-connected
graph, and minimum-length k-vertex-connected graph. In each case, the graph may be
defined using any Lp metric, 1 ≤ p ≤ ∞, in place of the usual Euclidean distance.
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Proof: These graphs are clearly invariant under scaling and translation. First, we show
that each graph is subadditive. If G is the MST or the minimum matching, the induced
subgraph must be a subgraph of G(X ′). For the TSP tour, the subgraph induced by X ′ is
a TSP tour in a metric in which we introduce shortcuts . That is, we place zero distance
between each pair of vertices in X ′ that are the endpoints of a path in G(X) outside the
subgraph; these shortcuts can only reduce the length from the true TSP tour G(X ′), so
subadditivity holds with c = 1. For k-connected graphs and k-nearest-neighbor graphs, the
subgraph induced by any set X ′ can be replaced by G(X ′) and the appropriate connectivity
properties remain true, so we can again take c = 1.

To show that each of these graphs lies on the low side of the gap, we extrapolate from the
worst-case bound for the TSP tour. Let Gk(X) be the graph formed by joining two points if
they are within k edges of each other in this tour. Then L(Gk(X)) is O(k2`(X)) = O(`(X)),
where `(X) is the length of the TSP tour. Gk(X) is k-connected and contains at least k
neighbors of each point. G1(X) contains both a matching and a spanning tree. So in all
cases L(Gk(X)) is O(`(X)).

For each of the graphs, a regular grid of points in the unit cube shows that L(G(X)) is
Ω(n(d−1)/d).

There are many graphs satisfying our hypotheses on the other side of the gap, that
is, ones for which L(G(X)) = Ω(n). Examples include the complete graph, the maximum
spanning tree, and the maximum matching. A more interesting example is the Delaunay
triangulation: it is subadditive, since the induced subgraph of X ′ is a subgraph of G(X ′),
but its length may be as large as

√
dn−O(1). An optimal graph that fails subadditivity is

the minimum-weight star.

3. Steiner graphs

We now consider Steiner graphs, those formed by adding extra vertices as well as edges to
the original point set. Because there are an infinite number of possible Steiner points, a
combinatorial optimization problem does not immediately translate into a function mapping
point sets to graphs. For example, it is unknown whether the minimum-weight Steiner
triangulation always exists, as there may be a point set with a sequence of more and more
complicated triangulations of ever decreasing length. On the other hand, the existence of
a minimum has been established for the Steiner tree with any Lp metric [2]. For the rest
of this section, assume that G represents a well-defined function from point sets to graphs
with Steiner points.

The proof of Theorem 1 shows that if G satisfies subadditivity, scaling, and translation,
then either L(G(X)) is Ω(n) or the diameter spheres for any given edge length class can
have at most O(1) overlap. The latter condition, however, does not immediately give us
a worst-case bound as there may be more than O(n) edges per length class. Nevertheless,
if we already have a worst-case bound on L(G(X)), we can obtain a bound on P (G(X)).
Alternatively, if we add the assumption of sparsity, the gap theorem then follows.

Theorem 2. Let G be a Steiner graph function satisfying conditions 1–3 and the a priori
bound that L(G(X)) is o(n). Then P (G(X)) is O(log n).
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Proof: The number of edges in [2−i, 2−i+1) must be O(2di) by the bound on overlap and
o(n2i) by the a priori bound. So P (G(X)) ≤ ∑∞

i=0 2−di+d · c′min{2di, n2i}, for some c′,
which again gives O(log n).

Theorem 3. Let G map finite point sets to geometric graphs in the unit cube [0, 1]d and
satisfy conditions 1–4. Then one of the following holds:

• L(G(X)) is O(n(d−1)/d), and P (G(X)) is O(log n), or

• L(G(X)) is Ω(n) and P (G(X)) is Ω(n).

Proof: As before, if an unbounded number of diameter spheres can enclose a single
point, then L(G(X)) and P (G(X)) are both Ω(n). Otherwise, L(G(X)) ≤ ∑∞

i=0 2−i+1 ·
c′min{n, 2di}) and P (G(X)) ≤ ∑∞

i=0 2−di+d · c′min{n, 2di}) for some c′, which gives the
theorem.

The next result can be obtained from the observation that a mininum Steiner tree is
the MST of some point set; our alternative proof illustrates the use of the gap theorem.

Corollary 2. L(G(X)) is Θ(n(d−1)/d) and P (G(X)) is O(log n) for the minimum Steiner
tree of a point set in d dimensions.

Proof: The minimum Steiner tree is subadditive, since any connected component of an
induced subgraph is itself a minimum Steiner tree. The Steiner tree satisfies sparsity, since
it has O(n) edges overall. And it falls on the small side of the gap, since the total edge
length is at most that of the minimum spanning tree. Again a regular grid provides an
obvious lower bound example.

4. Matching

Corollaries 1 and 2 leave open the question of whether O(log n) is a tight bound on the sum
of dth powers of edge lengths.

Gilbert and Pollak [2] proved that the sum of squares for the planar MST (and hence
for minimum Steiner tree) is not just O(log n), but actually O(1). Specifically, they showed
that the edges of an MST have disjoint diamonds, where an edge’s diamond is the 60◦–120◦

rhombus with long diagonal equal to the edge. This gives an explicit upper bound of about
5.47. (For MST the best lower bound we know is 3.) The O(1) bound for MST and Steiner
tree generalizes to d dimensions; this can be proved either by generalizing diamonds [2] or,
more simply, with a space-filling curve argument [9].

In this section, we show that O(1) also holds for minimum matching. We looked at
matching because it bears some relationship to the traveling salesman problem. (A TSP tour
defines two perfect matchings, and several heuristics for the TSP use minimum matching
as a subroutine.) Steele and Snyder [10] have previously shown convergence to constants
times n(d−α)/d for the sum of edge lengths to the α power, 0 < α < d, for both worst-case
minimum and greedy matchings.
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A

ba

Figure 1. An augmenting cycle within the football of edge ab.

Theorem 4. The worst-case sum of the dth powers of edge lengths is O(1) for minimum
matching in the unit cube [0, 1]d.

Proof: We first give the proof in the case d = 2. We divide edges into O(1) slope classes,
and consider only almost-horizontal edges, say with slope in the range [−.1, .1]. Let the
football of an almost-horizontal edge ab be all points x in the plane such that the angle
axb measures at least 170◦. The boundary of a football consists of two circular arcs with
endpoints a and b, as shown in Figure 1. We shall now show that at most nine-tenths of
the area of ab’s football is covered by footballs of edges shorter than |ab|/4. This leaves
some constant fraction of ab’s football uncovered; the volume of this fraction is in turn some
constant fraction of |ab|2.

Aiming for a contradiction, assume nine-tenths of ab’s football is covered by smaller
footballs. Then nine-tenths of some circular arc A with endpoints a and b is covered. Cen-
trally project the edges with footballs touching A onto the circle containing A. Arbitrarily
reduce the resulting collection of arcs so that no more than two arcs cover any point of A,
and no arc is completely contained in some other arc. Now one or the other way of taking
every other arc gives a set of non-overlapping arcs that cover at least four-tenths of A. We
form a cycle (i.e., a possibly non-simple polygon) by alternating edges and gaps between
edges, using ab and the edges corresponding to the selected arcs on A. The length of the
missing edges in this alternating cycle is less than 1.2|ab|, because the gaps between arc
edges total at most .8|ab|, and the gaps between a and the first arc edge and between b and
the last arc edge total at most .4|ab|. The length of the edges in the cycle is at least 1.3|ab|,
so the alternating cycle is an augmenting cycle, and the matching cannot be minimum.

We now consider almost-horizontal edges in order of decreasing length. When we come
to edge ab, we look at its football, which has area proportional to |ab|2. No point of ab’s
football is covered more than a constant number of times by footballs of edges with length
between |ab| and |ab|/4 (or else the worst-case sum of edge lengths would be Ω(n) by the
gap theorem). Moreover, at most nine-tenths of ab’s football is covered by footballs of
still smaller edges. So there remains some constant fraction of ab’s football to “pay for” the
square of its length. Altogether we can conclude that the sum of squares of almost-horizontal
edges is O(1), and hence the sum of squares of all edges is O(1) as well.

The generalization to arbitrary fixed dimension is straightforward. We define the football
of ab as above, so that its volume is Ω(|ab|d). As above, if ab’s football is nine-tenths covered
by smaller footballs, then it must contain a circular arc A that is nine-tenths covered.
Constants must be adjusted to establish the augmenting cycle.
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Figure 2. (a) Splitting and shrinking squares. (b) Cities for k = 2.

5. Traveling Salesman Tour

In this section, we answer a question posed by Snyder and Steele [7]. We show that, despite
the kinship between minimum matching and the TSP, the sum of dth powers for the TSP
may be Ω(log n), even in the case d = 2.

Theorem 5. The worst-case sum of the squares of edge lengths is Ω(log n) for the TSP
in the unit square.

Proof: We show how to create an infinite sequence of problem instances for which the
shortest TSP tour has sum of squares Ω(log n). The example is based on the H-tree em-
bedding of a complete binary tree [12].

Let k be a positive integer. We split the unit square into four congruent squares, shrink
each of these “child” squares very slightly (by an amount to be determined later), and then
split each child. The shrinking leaves vertical and horizontal channels between the child
squares; we shall place the points to be toured (the cities) within these channels. We do
this splitting and shrinking process k times. See Figure 2(a).

We now describe the placement of the cities. Each time we split a square we place a
“T” of cities in the channels. The vertical part of the “T” consists of two parallel lines of
cities, with spacing ε between adjacent cities in the same line, and spacing 4ε between lines.
The horizontal part of the “T” consists of a single line of cities with spacing ε. Two cities
are common to both horizontal and vertical lines. See Figure 2(b). The unsplit leaf squares
each contain the vertical part of a “T” (just as if they were split), but no horizontal part.
Set ε = 2−4k and set the width of all channels to be 8ε. This sets the shrinking amount at
each level. Lines are centered within channels, so that a city on a vertical line is 2ε away
from the closest square boundary.

We now assert that a shortest tour is the obvious one shown in Figure 3(a): simply
follow the outside contour of the H-tree. Consider a leaf square S with side length s, as
shown in Figure 3(b). The intersection of an optimal TSP tour with S is a set of polygonal
“loops” with endpoints on the the boundary of S. The obvious tour induces a single loop
with endpoints a and b and length about 4s. Each entry or exit of a loop, except ones
within s/4 of the entry and exit of the obvious tour, incurs additional cost of about s/4.
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Loop ba

Figure 3. (a) Obvious tour. (b) Within a leaf square.

These additional costs cannot be compensated by savings in a neighboring square, as extra
entry and exit points do not help. We can conclude that there is an optimal tour in which
S is entered and exited only at a and b. We have now reduced to the case of an H-tree with
one less level. (The vertical “stem” is included in both the leaf square and the H-tree with
one less level, but this does no harm.) The case of k = 1 is essentially identical to the case
of a leaf square.

The total number of cities in our construction is less than 25k+3. In the obvious tour,
all edges have length about ε except for the long horizontal edges. The sum of the squares
of the long horizontal edges is at least

1
2

+ 4 ·
(

1
4
− 8ε

)2

+ 16 ·
(

1
8
− 24ε

)2

+ . . . + 4k ·
(

1
2k
− 8(2k − 1)ε

)2

.

This expression is greater than k/8.

6. Conclusions

We have shown that for a large class of natural geometric graphs, the worst-case sum of
dth powers of edge lengths is O(log n) whenever the sum of edge lengths is O(n(d−1)/d) (in
fact, whenever the sum of edge lengths is o(n)). This result unifies two previously separate
phenomena.

The question of whether O(log n) is the best possible bound on the sum of dth powers
seems to be rather delicate. It would be interesting to give a general theorem that would
separate the O(1) geometric graphs (e.g., MST, minimum matching) from the O(log n)
graphs (so far, only TSP). Strengthening our results to convergence results (e.g., sum of
dth powers for TSP is asymptotic to βd log n) would also be worthwhile.
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[1] M. Ajtai, J. Komlós, and G. Tusnády. On optimal matchings. Combinatorica 4 (1984),
259–264.

[2] E. N. Gilbert and H. O. Pollak. Steiner minimal trees. SIAM J. Applied Math. 16
(1968), 1–29.

[3] Howard J. Karloff. How long can a Euclidean traveling salesman tour be? SIAM J.
Disc. Math. 2 (1989), 91–99.

[4] Peter W. Shor. Random planar matching and bin packing. Ph.D. Thesis, Mass. Inst.
of Technology, 1985.

[5] Timothy Law Snyder. Lower bounds for rectilinear Steiner trees in bounded space.
Inf. Proc. Letters 37 (1991), 71–74.

[6] Timothy Law Snyder. Worst-case minimal rectilinear Steiner trees in all dimensions.
to appear in Disc. and Comp. Geometry .

[7] Timothy Law Snyder and J. Michael Steele. A Priori inequalities for the Euclidean
traveling salesman problem. 8th ACM Symp. on Computational Geometry , 1992, 344–
349.

[8] J. Michael Steele. Subadditive Euclidean functionals and nonlinear growth in geomet-
ric probability. Annals of Probability 9 (1981), 365–376.

[9] J. Michael Steele. Probabilistic and worst case analyses of classical problems of com-
binatorial optimization in Euclidean space. Math. of Operations Research 15 (1990),
749–770.

[10] J. Michael Steele and Timothy Law Snyder. Worst-case greedy matchings in the unit
d-cube. Networks 20 (1990), 779–800.

[11] J. Michael Steele and Timothy Law Snyder. Worst-case growth rates of some classical
problems of combinatorial optimization. SIAM J. Computing 18 (1989), 278–287.

[12] Jeffrey D. Ullman. Computational Aspects of VSLI. Computer Science Press, 1984.

9


	Worst-Case Bounds for Subadditive Geometric Graphs
	1. Introduction
	2. Gap Theorem
	3. Steiner Graphs
	4. Matching
	5. Traveling Salesman Tour
	6. Conclusions
	References

