
An Optimal Algorithm for the Two-Guard Problem

(Extended Abstract)

Paul J. Heffernan *

Dept. of Mathematical Sciences, Memphis State University, Memphis, TN 38152

Abstract

In this paper we give optimal solutions for two

versions of the two-guard problem. Given a sim-

ple polygon F’ with vertices s and t, the straight

walk problem asks whether we can move two

points monotonically on I’ froms tot, one clock-

wise and one counterclockwise, such that the

points are always co-visible. In the counter walk

problem, both points move clockwise, one froms

to t and the other from t to s. We provide O(n)

constructive algorithms for both problems. We

obtain our results by examining the structure of

the restrictions placed on the motion of the two

points, and by employing properties of shortest

paths and shortest path trees.

1 Introduction

Work on polygonal visibility is essentially a study

of structure: given a polygon, what properties

does it exhibit, and how efficiently can these

properties be determined? One interesting area

of visibility is guard problems, where it is asked

whether a set of point guards can see all points

inside a polygon. In this paper we concentrate

on the “t we-guard walkable” problem, which was

introduced by Icking and Klein [IK]. This prob-

“Supported in part by the U.S. Army Research Office,
Grant No. DAAL03-92-G-0378

Permission to copy without fee all or part of this material is

granted provided that the copies ara not made or distributed for

direct commercial advantage, the ACM copyright notioe and the

title of the publication and its date appear, and notioe ie given

that copying ie by permission of the Association for Computing

Machinery. To copy otherwise, or to republish, requires a fee

and/or specific permission.

9th Annual Computational Geometry,5/93/CA, USA

e 1993 ACM 0-89791 -583-61931000510348 . ..S 1.50

lem takes as input a simple polygon P and two

specially designated vertices of P, which we call

s and t. The vertices .s and t partition P into

two chains, L and l?. If we think of the interior

of -P as a street in a dangerous section of town,

complete with alleys and side streets, and L and

l? as the sidewalks on either side of the street,

then the straight walk problem asks the follow-

ing: can two guards walk down the street from s

to t, one on each sidewalk, without backtracking,

while always staying in sight of each other? The

counter watk problem is similar, except that one

guard walks on his sidewalk from s tot while the

other walks from t to s.

Describing a straight walk or a counter walk

on a polygon P with n vertices carries a trivial

lower bound of Q(n), as the two guards visit ev-

ery vertex during their patrol. It is. natural to

ask whether we can test for existence of a walk

and construct a walk-in O(n) time. Many funda-

mental questions that concern polygonal st ruc-

ture have been solved in linear time, including

the computation of the visibility polygon from a

point, triangulation of a polygon, and construc-

tion of the shortest path tree from a vertex. We

will show that a linear-time solution exists for

the two-guard problem, as well.

In this paper we give optimal @(n) -time algo-

rithms that determine the existence of straight

and count er walks, and construct such walks if

they exist (the counter walk algorithm is omitted

from this extended abstract because of space con-

st raint). We thereby improve upon the results

of [IK], who provide O (n log n)-time constructive

algorithms for both cases. The methods of [IK]

are locked into the O (n log n) time complexity

348

http://crossmark.crossref.org/dialog/?doi=10.1145%2F160985.161163&domain=pdf&date_stamp=1993-07-01

from the start, since they perform ray shooting

queries (in O(log n) time per shot) for each of

the reflex vertices of P. We take a closer look

at the need for ray shooting, and learn how the

number of ray shooting queries can be reduced.

Then, we employ the structure of shortest paths

and shortest path trees to compute all essential

ray shooting queries in only linear time. We find

it necessary to develop a series of definitions and

lemmas concerning shortest paths, while also us-

ing a number of shortest path results from the

literature.

Guard problems (or “watchman problems”)

have been studied by several researchers. An

overview can be found in [0 ‘R]. The number

of stationary guards needed to see all points in a

polygon is studied in [Chv] and [Fi], while [LL]

show that obtaining the minimum number of

such guards is NP-hard. In [Sh] these results are

generalized to “link visibility”, where guards can

see around one or more corners. Mobile guard

problems, as studied in [CN], ask for paths which

see all points. An O(Z’ + n log n)-time algorithm

in [M W] gives minimum-length paths for a pair

of guards who must remain co-visible while j?a-

trolling a polygonal domain with holes, where n

is the number of vertices on all holes and E is

the size of the visibility graph.

2 Notation

We define notation for this paper; much of our

not ation is borrowed from [IK]. A polygonal

chain in the plane is a concatenation of line seg-

ments. The endpoints of the segments are called

vertices, and the segments themselves are edges.

If the segments intersect only at the endpoints of

adj scent segments, then the chain is simple, and

if a polygonal chain is closed we call it a polygon.

In this paper, we deal with a simple polygon P,

and its interior, int(~). Two points Z, y c 1’ are

visible (or co-visible) if ~ c F’ U int(.p). We as-

sume that the input is in general position, which

means that no three vertices are collinear, and no

three lines defined by edges intersect in a cc)m-

mon point.

If z and y are points of P, then PCW(Z, y)

(~ccw(~, Y)) is the subchain obtained by

traversing -P clockwise (counterclockwise) from

z to y.

In the problems we consider, two vertices of

P are specially designated as the start vertex, s,

and the goal vertex, -t. We refer to the subchains

F’CW(S, t) and Pccw(s, t) as L and R, respec-

tively; both L and R are oriented from s to t.

Points on L (R) are denoted by p, p’, PI, etc. (q,

~’, ~1, etc.). If P is a vertex of a polygonal chain,
Succ(p) represents the vertex of the chain im-

mediately succeeding p, and Pred(p) the vertex

preceding p.

For p, pl c L, we say that p precedes pi (and

pf succeeds p) if we encounter p before pl when

traversing L from s to t. We write p“ < pt. The

chain L<P (L>P) is the subchain of L consisting

of all points that precede (succeed) p. The chain

LP,P, is the subchain of all points that succeed p

and precede pl. We make analogous definitions

for R.

A (general) walk is a pair of continuous func-

tions

f:[O,l]-+L g:[O,l]+R,

where j(0) = g(0) = s, ~(l) = g(1) = t, and

f(t) and g(t) are co-visible for all t A walk

is straight if f and g are monotonic functions;

that is, ~(tl) < f(t2) and g(tl) < g(t2) when-

ever tl < t2 (see Figure 1). A counter walk is

a pair of monotonic, continuous functions with

~(0) = g(1)= s and j(l)= g(0)= t.

For points z and y, d(z, y) is the direction of

the directed segment from z to y. The (undi-

rected) segment between x and y is Fj. The ray

F(z, y) is the ray with terminus z in direction

d(x, y). The line containing x and y is denoted

l(z, y), and the directed line from z through y is

~z, y). An important definition is that of (ray)

shots: the backward (my) shot (or hit point) from

a reflex vertex p c L, denoted Backw(p), is the

first point of f’ encountered by a “bullet” shot

from pin direction d(Succ(p), p), and the forward

(ray) shot Forw(p) is the point encountered by

the bullet shot from pin direction d(Pred(p), p)

(see Figure 2). We let d(l?ackw(p)) represent

the direction of the backward shot from p, i.e.

d(Succ(p), p). We define the backward shot

349

13ackw(q) and forward shot Forw(q) for a re-

flex vertex q ~ R in similar fashion. (Note that

a shot cannot hit a vertex, by the assumption of

general position.)

A vertex p of a polygonal chain is a left turn

(right turn) if Succ(@ lies on the left (right) side

of the directed line l(l%ed(p), p).

Two rays with common endpoint z partition

the plane into two regions, each of which is the

union of a set of rays with endpoint z. We

call the region cent aining all rays encountered

as we sweep from F(z, yl) to P(z, YZ) counter-
——

clockwise a cone, and denote it cone(zgl, XY2)

(or cone(yl, z, y2)). We can also think of a cone

as an interval of directions.

3 Shortest Paths

The algorithms of this paper are based on the

properties of shortest paths in a polygon. We

now give definitions concerning short est paths,

and establish some visibility lemmas based on

their properties.

The shortest path between two vertices w and v

of a simple polygon F’, denoted SP(W, v), is the

(Euclidean) minimum-distance curve with” end-

points w and v lying entirely in .P U imt(P).

Shortest paths are unique. This means that

two shortest paths cannot cross twice, since this

would imply distinct shortest paths between a

pair of points. The path S-P(W, v) is always a

polygonal chain, whose vertices are also vertices

of P. This can be seen by a local analysis: if

one of the above two conditions is violated, some

small amount of local improvement is possible.

By a similar argument, we have the following.

Lemma 1 If w and v are vertices of P, and

SP(W, v) is the shortest path directed from w

to v, then any vertex of SP(W, v) that lies

on Pcw(w, v) is a left turn, while a vertex of

SP(W, v) on PCCW(W, v) is a right turn.

We write FE(w, v) to denote the jirst edge of

SP(W, v); that is, the edge of SP(W, v) incident

to w. The direction of this edge away from w is

denoted M.E(w, v). The parent of w is the vertex

of SP(W, v) adjacent to w; in other words, it is

the other endpoint of FE(w, v). The shortest

path tree from a vertex v of P, denoted SPT(V),

is the union of all shortest paths SP(V, w), for w

a vertex of P. If we think of the vertices of P as

nodes, and the segments of S.PT(V) as arcs, then

we can think of S.PT(V) as a graph. The graph

SPT(V) is acyclic and connected, and therefore

is a spanning tree.

A path of paramount import ante in our dis-

cussion is SP(S, t), the shortest path from s to

t. We will refer to this path as C, for it is the

center path from s to t, lying between the left

path L and the right path R Points of C will

be denoted r, r’, etc. The chain C is oriented

from s to -t, and we say that r precedes T’ (or

r < r’) if r is closer to s on C than is ~’. We

define C<., C>., and C.,,1 analogously to L<P,

L>P, and LP,Pt. Every vertex of C is a vertex of

P. Furthermore, if a vertex of C is a left turn,

then the vertex lies on L, while a right turn lies

on R (by Lemma 1).

For p G L, we define C,(p) to be the point of

SP(p, s) n C nearest top on SP(p, s). In other

words, it is the first point of C that we encounter

upon traveling from p to s by the shortest route.

We define Ct(p), C.(q), and Ct(q) similarly. Un-

less p c C (in which case CJp) = p), the point

C.(p) must be a vertex of C.

If we think of C, as a function on the points

of L, then C~ is monotonic:

Lemma 2 If pl, p2 G L and pl < pz, then

C.(Pi) < CS(P2).

Earlier we defined a cone around a point. Of

specizd interest are

the cones cone(FE(q, t), FE(q, s)) for a vertex

q 6 R and cone(FE(p, s), FE(P, t)) for a vertex

p E L; since we will refer to these cones often, we

will denote them simply as cone(q) and cone(p),

respectively (see Figure 3).

Lemma 3 A bullet shot from p G L inside P in

direction Q hits R if a e cone(p), and the bullet

hits L if Q is not in the cone. A similar property

holds for q G R.

Corollary 1 Given p c L, q c R, if S1’(p, q)

contains points p’ G L<P and p“ c L>p (P’ # S,

350

p“ # t), then p is not visible from any point of

R.

Lemma 4 Suppose p 6 L, q c R are not both

on C. The points p and q are co-visible if and

only if

c.(p) < Ct(q), c.(q) < Ct(p)

q C cone(p), p < cone(q)

A bridge between points p G L and q 6 R is

an edge of SP(p, q) with one endpoint on L and

the other on R.

We now discuss some of the computational

considerations involving short est paths. The

shortest path between two points of a triangu-

lated polygon can be computed in linear time

[LP], and the shortest path tree from a vertex

v of a triangulated polygon can be computed in

linear time [GHLST]. A polygon can be triangu-

lated in linear time by the algorithm of Chazlelle

[Cha]. While the Chazelle algorithm is neces-

sary to obtain optimal worst-case time-bounds

for the straight walk algorithm, it can be avoided

in the counter walk case. For a polygon P to be

counter- walkable from s to t,these points must

be co-visible. The chord Z partitions P into

two subpolygons, each of which must be weakly-

visible from Z. A polygon can be tested for

weak-visibility in linear time [AT], and if found

to be weakly-visible, it can be triangulated in

linear time by one of several uncomplicated al-

gorithms [ET, He].

It is possible to modify the shortest path tree

SPT(S) so as to obtain a triangulation of P,

through the addition of Steiner points. A Steiner

point is created by adding a vertex to the interior

of an edge, thereby splitting the edge into two.

For each reflex vertex v, we extend the last edge

of SP(S, v) (if possible) and insert a Steiner pc)int

at the end of the extension. With the addition of

these Steiner points as vertices of P, SPT(S) is

a triangulation of P; that is, SPT(S) partitions

.P and its interior into triangular regions.

An important characterization of P with its

Steiner points added is that for any pair of adja-

cent vertices, v and v’, their parents in SPT(S)

are either equal or adjacent. More precisely, all

interior points of an edge have the same parent.

We call this point the parent of the edge. Also,

dl interior points of an edge have the same value

C,, so we can define C. on the edges of P.

For our algorithms, we construct the Steiner

points with respect to SPT(S), and with respect

to SPZ”(t), and add them to the set of ver-

tices of P. (This creates a violation of the non-

degeneracy assumption, since it allows a triple

of vertices to be collinear, but every such triple

must come from an original edge of P.) The

Steiner points can be constructed and added to

Pin linear time through an adaptation of the al-

gorithm of [GHLST] (note that only O(n) Steiner

points are constructed). Once P has been modi-

fied in this manner, all interior points of an edge

have the same parent with respect to SPT(S)

and with respect to SPT(t), as well as the same

values of C~ and Ct. We can compute the parents

for all vertices and edges through one traversal

of S.PZ’(S) and one of SPZ’(t). If we observe

that each vertex w c C has C.(w) = w, and a

vertex w @ C has C$(w) = C~(w’) where w’ is

the parent of w with respect to SR!’(S), we see

that a single depth-first traversal of SPT(S) can

generate all values C. for L and R. Similarly, a

traversa3 of SPT(t) can compute Ct for L and

R. Our algorithms perform these preprocessing

steps in order to easily employ Lemma 4. This

lemma states that visibility between two points

of L and R not both on C can be determined

in constant time, if each of the points can query

its cone and its values of C$ and Ct in constant

time. Since knowledge of the parents of a point

in SPT(S) and SPZ’(i!) suffices to compute the

point’s cone, and the preprocessing we have men-

tioned can “be performed in O(n) time, we have

the following lemma.

Lemma 5 After an O(n) -time preprocessing

step on P, we can determine in (O(1) time

whether two points p c L and q G R, not both

on C’, are visible.

Our algorithm for the straight walk case re-

quires that for a point z G P, we be able to

traverse SP(z, t) starting from z. We allow our-

selves to do this easily if we store SH!’(t) as a

directed graph, where each edge is diiected from

351

a vertex v to its parent in SP(V, t). Addition-

ally, for each edge of P, we store the parent of

the edge in SIV(t) by means of a pointer from

the edge to the appropriate node in the directed

graph S_PT(t).

In order for P to have a walk (straight,

counter, or general), L and R must be weakly

visible; that is, each point of L (R) must be co-

visible wit h at least one point of R (L). [IK] give

a simple test for weak visibility, but it requires

knowledge of the shots Backw(v) and ~o~w(v)

for all reflex vertices v E F’. We employ an al-

ternate test that requires only O(n) time. While

we omit the description here because of space

restrictions, the test is based on the fact that

L is visible from R if and only if it is visible

from C; this problem reduces to testing whether

a polygon is visible from a reflex chain, which can

be determined in linear time [LC!]. For the re-

mainder of the paper, therefore, we assume that

the chains L and R of the input polygon 1’ are

weakly visible.

4 Straight walks

In this section we give a linear-time algorithm

that determines whether F’ is straight walkable,

and, if it is, returns a straight walk. To answer

questions on walkability, [IK] develop a consid-

erable collection of definitions and theorems. As

these results are necessary for our work, we begin

by summarizing them.

Pictorially, we can consider two types of for-

bidden configurations, known as deadlocks and

wedges, which are shown in Figure 4. It is clear

that an instance of either configuration prevents

a polygon from being straight walkable; [IK]

show that the absense of any instances of these

configurations ensures that a polygon is straight

walkable. To generate an algorithmic approach,

[IK] define functions 10 and hi on the vertices of

F’. Specifically, the following definition is given

for L, with a symmetric definition applying to R.

(The operations min and maz are defined with

respect to the ordering on the chain L, so that

min of a set of points is a point of the set not

preceded by any other.)

Definition 1 [IK] for a vertez p < L, we define:

hiP(p) = min{q I q vertex of -R and

L 3 l?ackw(q) > p}

hiS(p) = min{~ow(p’) E R [p’ vertex

of L>P}

hi(p) = min{hiF’(p), hiS(p), g}

loP(p) = max{q I q vertex of R and

L 3 Fo?’w(q) <p}

loS(p) = max{llackw(p’) E R I p’ vertex

of L<P}

lo(p) = max{lo~(p), /oS(p), s}

We can think of hi and 10 as functions from the

vertices of L to the points of R, and also from the

vertices of R to t he points of L. It is important to

note that these are monotonic functions. [IK] are

able to show that a polygon P is straight walk-

able if and only if [to(v), hi(v)] is a non-empty

interval for every vertex v. Furthermore, if F’ is

straight walkable, then the set of possible walk

partners for a vertex v is precisely the points of

[lo(v), hi(v)], where two points p 6 L, q E R are

walk partners in a given straight walk if the two

guards are at points p and q at some moment of

the walk.

(We should note here a special case not con-

sidered by [IK]: their definition of hi and 10 does

not allow for s and/or t being a reflex vertex.

It can be shown that if s is a reflex vertex, the

chains L and R are straight walkable if and only

if L \ {s} and R or L and R \ {s} are straight

walkable-similar observations can be made if t

or if s and t are reflex. As a result, slight modi-

fications to our algorithm will handle the case of

s and/or t being reflex.)

[IK] discuss the following type of search struc-

ture. Construct two doubly-linked lists, one for

L and one for R. The list for L consists of all

vertices of L, and all ray shots Forw(q) G L or

Backw(q) e L where q ~ R, with the points ap-

pearing in the list according to their order on L.

The list for R is similar. In addition, for every

pair of points p ~ L, q G R on the lists such that

one point is the ray shot of the other, construct a

pair of pointers between the points. As noted in

[IK], it is possible to construct the points lo(p),

p c L in sorted order in linear time, by means

of a single forward traversal of the search struc-

352

ture lists. Similar traversals yield hi(p), lo(q),

and hi(q). Clearly this information suffices to

determine straight walkability, since P is straight

walkable if and only if [lo(v), hi(v)] is non-empty

for all vertices v, [IK] also present a simple,

linear-time algorithm that constructs a straight

walk for a walkable polygon, given ZO(P) 7 ~@J),

lo(q), and hi(q), each in sorted order.

We see that to solve the straight talkability

problem, it suffices to compute functions hi iind
10 on L and R in sorted order, and that this is

done in [IK] by constructing a search structure

that incorporates all of the ray shots. We will de-

scribe a search structure similar to that of [IK],

but that omits some ray shots. The omitted ray

shots (which we will call dominated) will be seen

to be unnecessary when computing hi and 10,

implying that our smaller search structure is ad-

equate for the computation of these functions.

The bottleneck step of the algorithm of [IK]

is the construction of the search structure. This

step requires O (n log n) time, since each of the

O(n) ray shots takes O(log n) time, and the O(n)

hit points must then be sorted. All other steps of

their algorithm require O(n) time. We will show

how to construct our search structure in linear

time. Thus, by substituting our search structure

for that of [IK], we will obtain an overall linear-

time algorithm.

4.1 Definition of dominated

We give now our definition of dominated, and

show how it suggests the construction of a

smaller search structure that omits dominated

shots.

Consider vertices pl, pz E L with pl < PZ,

such that l?ackw(pl), Backw(p2) 6 R and

l?ackw(pl) > Backw(p2) (see Figure 5). In

other words, the shots cross. Is it possible t;hat

knowledge of Backw(p2) is necessary in comput-

ing hi and 10? Figure 5 allows us to see picto-

rially why a dominated shot Backw(p2) from L

to R can be ignored. An internal point on the

segment pl Succ(pl) is visible from no point of R

before Backw(pl), so the shot Backw(pl) G R

is saying, in effect, “The guard on R must reach

Backw(pl) by the time the guard on L reaches

pl .“ It is easily seen that satisfying the condition

imposed by pl implies that the one imposed by

p2 is satisfied (while the converse is not true).

Formally, we say that a shot li?ackw(pz) G 1?

from a vertex p2 < L is dominated if there exists

a vertex pl G L<P2 such that Backw(pl) ~ R and

Backw(pl) > Backw(p2). In an analogous man-

ner we define dominated for shots of the types

Forw(p), Backw(q), and Forw(q). Any shot

from L that hits R or from R that hits L that is

not dominated is called non-dominated.

For each family of non-dominated shots, we

have a non-crossing property. FOF example,

if Backw(pl) and Backw(pz), PI, P2 c L,

are non-dominated shots, then the segments

pl Backw(pl) and p2Backw(p2) do not cross.

This means that if the origins of the non-

dominated backward shots from L are, in

sorted order, pl, . . . , Pk, then the hit points

Backw(p~),. . . . Backw(pk) are sorted on R

The search structure that we wish to build

is identical to that of [IK], except that we in-

clude only non-dominated shots as opposed to

all shots. The above observation on domina-

ted shots implies that we can compute hi and

10 over L and R from our search structure in

linear time, by means of a constant number of

passes over the structure. The search structure

can be constructed easily once we lhave com-

puted a sorted list of each of the four types of

non-dominated shots. Consequently, the remain-

der of the section will consist of a description

of our linear-time method for constructing non-

dominated shots in sorted order.

4.2 The search structure

We now give a procedure that constructs a sorted

list of all non-dominated backward ray shots

from L. The procedures for the other types of

ray shots are similar. We begin with a prelimi-

nary stage, in which we mark all reflex vertices

p c L such that Backw(p) 6 R. By Lemma 3,

this can be done in linear time, since each vertex

can compute its cone in constant time. All non-

dominated backward shots must emanate from

these vertices. We will refer to these vertices as

shooting vevtkes.

353

The basic scheme is to traverse L and 1? si-

mult aneously from s to t. When we encounter

a shooting vertex p ~ L, we will determine if p

is non-dominated, and if it is we will compute

the hit point Backw(p). If we have computed

all non-dominated shots up to a shooting vertex

p, then, by the non-crossing property and the

definition of non-dominated, p is non-dominated

if and only if its shot does not cross the previ-

ous non-dominated shot. We let PI, pk de-

note the non-dominated shooting vertices of L,

listed in the order that they appear on L, and we

let ql, qk denote the corresponding hit points

(i.e. qi = Back).

The algorithm is inductive. The algorithm

uses two sub-procedures, Search and Bridge,

which will be described in detail below. We call

procedure Search if we know that the shot from

c is non-dominated; the input is a point q G R

that precedes the hit point Bach-u(c), and the

output is Backw(q). When we do not know

whet her the shot from c is dominated, procedure

Bridge answers our question. We state our in-

ductive hypothesis.

Inductive Hypothesis: At the end of

step i – 1, we have traversed L up

to point a and R up to point b.

We have computed the non-dominated

shots P1 , pi–~ that precede a, and

their hit points ql, . . ., qi–1, where

q;–1 < b. The points a and b are

co-visible, and we call ~ the cutting

chord. The next shooting vertex is non-

dominated if and only if its shot does

not cross Z

The basis step (step O) consists of setting

a, b+s.

We begin step i by traversing L from a to

the next shooting vertex, c. We must deter-

mine if c is dominated or not. If c is domina-

ted we traverse until the next shooting vertex,

but if c is non-dominated we must compute the

~it p~int Backw(c). Let F = F(SUCC(C), c), and

.t?= l(Succ(c), c). We separate our analysis into

three cases:

2. ?’n~ # 0, and b lies on the right of ~

3. Fn~ # 0, and b lies on the left of ~

Case (l): The chord ~ partitions P into two

subpolygons; let P~b be the subpolygon cent ain-

ing s, and PJb the one with t. Since ~ is the

cutting chord, c is dominated if and only if its

hit point precedes b. This is not possible in case

(l), since c E P~5 and R<b C Pjb; therefore c is

non-dominated in case (1), and we cdl procedure

Search(b).

Case (2): In order for the shot from c to be do-

minated, it must cross ~. Since the shot starts

in f’~b, as it crosses ~ it DNISt have a on its right

and b on its left. In case (2), therefore, the shot

is non-dominated, and we call Search(b).

Case (3): Here, the shot from c is fired towards

the chord ~, but we cannot be sure if it hits R<b

or l?,sb (we know it hits R because c is a shooting

vertex). If C~(c) > Ct(b), then the shot is non-

dominated (see Figure 6). This can be seen as

follows. Since the hit point Backw(c) c R is vis-

ible with c, and c and Backw(c) are not both on

C (by the non-degeneracy assumption.), we know

by Lemma 4 that C.(c) < Ct(.Z3ackw(c)); since

C.(c) > Ct(b), we have Ct(b) < Ct(l?ackw(c)),

which implies that b < Backw(c). Since the shot

is non-dominated we call Search(b).

If C,(c) < Ct(b), then the shot may be ei-

ther dominated or non-dominated (see Figure 7).

It is therefore appropriate to call the procedure

Bridge(c,b) to determine if the hit point pre-

cedes or succeeds b.

We now describe the sub-procedures.

Procedure Search(q)

This procedure takes as input a point q E R~b

such that the hit point of c succeeds q. It returns

the hit point Backw(c). Specifically, the algo-

rithm traverses R from q until reaching a vertex

d such that

d lies on the left side of ~and Pred(d)

lies on the right.

It is clear that no point pr~ceding P~ed(d) can

be the hlt point, but d“ = 4 n P~ed(d), d might

354

be. We test c and d* for visibility in constant

time (Lemma 5). If the points are visible, then

we set pi, a e c and qi, b + d*, and increment

i. If they are not visible, then we know that the

hit point succeeds d, so we call Search(d).

End Search.

Procedure Bridge(c,b)

This procedure accepts as input c and b, where

b lies on the left side of ~ It can be shown that

Sf’(c, b) is convex and has only one bridge when-

ever Bridge is called (these conditions that all

vertices of SP(C, b) as we traverse from c to b

are left turns). The procedure either produces

the bridge of SF’(C, b), or answers that SP(C, b)

intersects ~ in the former case the shot is do-

minated while in the latter it is non-dominated.

The procedure is described in an appendix.

End Bridge.

We summarize the algorithm and the argu-

ment for its correctness. We begin a step with a

non-dominated chord ~, and a shooting vertex c

which may be the next non-dominated shot. Sev-

eral cases imply that c is non-dominated, and we

respond by calling procedure Search. This pro-

cedure outputs the next non-dominated shot. In

the case where we are not sure whether the shot

is dominated or not, we call Bridge, which ~calls

Search if the shot is dominated. In zdl cases,, the

inductive hypothesis is re-established.

The entire algorithm runs in linear time. Each

shooting vertex requires that we call one or two

procedures. The work performed finding c and

executing the two procedures consists of travers-

ing L, -R, and portions of SIV’(t). However, the

traversals of L and l? progess monotonically from

s to t, and thus require only O(n) time. It can

be shown that all work spent on SM’(t) is O(n).

The result is that our algorithm constructs all

non-dominated backwards shots from L in lin-

ear time. As described above, this is sufficient to

establish our linear-time constructive algorithm

for determining straight walkability.

5 Conclusion

This paper has taken the two-guard problem as

introduced by [IK] and produced optimal-time

algorithms for it. Both the straight walk and

counter walk problems were originally solved in

O(n log n) by [IK], and we have given O(n) algo-

rithms for both.

It is interesting to note how the different time

complexities arise in the two pairs of algorithms.

The key to solving a walk problem is determin-

ing ray shots from reflex vertices, since these

shots exactly form the rest rictions on the guards’

movement. [IK] respond to this need by imme-

diately computing ray shots for all reflex ver-

tices, and sorting the hit points, thereby lock-

ing themselves into an O (n log n) time complex-

it y from the start. We observe that a certain

class of ray shots are not essential, and that the

remaining ray shots exhibit a special structure;

in the straight walk case this structure is the

non-crossing property, and in the counter walk

case it is the crossing property. It .is perhaps

not surprising that guards who are required to

move monotonically on L and R have their mo-

tion governed by chords, the essential ones which

also move monotonically.

We state two open questions. The first is

whether the linear time-bound can be obtained

without as much use of previous results from the

literature, especially triangulation and shortest

path tree algorithms. The algorithms of this pa-

per depend upon the shortest path tree, but the

ideas on non-dominated and non-c-dominated

shots developed here might lead in other direc-

tions as well.

A second question concerns the general walk

problem, for which [IK] give an O(n log n + k)

algorithm, where k is the size of the instruction

set of the minimum dist ante walk. Since k could

be as small as O(n), their algorithm is not op-

timal in the output-sensitive sense, and we ask

whether there exists an O(k) algorithm.

References

[AT] D. Avis and G.T. Toussaint, “An optimal al-
gorithm for determining the visibility of a polygon

355

from an edge,” IEEE Transactions on Computers,

30 (1981), pp. 910-914.

[Cha] B. Chazelle, “Triangulating a simple polygon

in linear time,” Discrete and Computational Ge-

ometry, 6 (1991), pp. 485-524.

[CN] W.-P. Chin and S. Ntafos, “Optimum watch-

man routes,” Proc. .2nd ACM Symp. on Computa-

tional Geometry, 1986, pp. 24-33.

[Chv] V. Chvatal, “A combinatorial theorem in plane

geometry,” J. of Combinatorial Theory B, 13

(1975), pp. 39-41.

[ET] H. EIGindy and G.T. Toussaint, “On geodesic

properties of polygons relevant to linear time trian-

gulation,” The Visual Computer, 5 (1989), pp. 68-

74.

[Fi] S. Fisk, “A short proof of Chvatal’s watch-

man theorem,” J. of Combinatorial Theory B, 24

(1978), p. 374.

[GHLST] L. Guibas, J. Hershberger, D. Leven, M.

Sharir and R. Tarjan, “Linear time algorithms for

visibility and shortest path problems inside trian-

gulated simple polygons,” Algorithmic, 2 (1987),

pp. 209-233.

[He] P.J. Heffernan, “Linear-time algorithms for

weakly-monotone polygons,” Proc. 2nd Canadian

Conference on Computational Geometry, 1990,

pp. 236-239.

[IK] C. Icking and R. Klein, “The two guards prob-

lem,” Proc. 7th ACM Symp. on Computational Ge-

ometry, 1991, pp. 166-175.

[LL] D.T. Lee and A.K. Lin, “Computational com-

plexity of art gallery problems,” IEEE Transac-

tions on Information Theory, 32 (1986), pp. 276-

282.

[LP] D.T. Lee and F.P. Preparata, “Euclidean short-

est paths in the presence of rectilinear barriers ,“

Networks, 14 (1984), pp. 393-410.

[LC] S.-H. Lee and K.-Y. Chwa, “Some chain visibil-

ity problems in a simple polygon,” Algorithmic, 5

(1990), pp. 485-507.

[MW] J.S.B. Mitchell and E.L. Wynters, “Optimal

motion of covisible points among obstacles in the

plane,” Proc. .%d Canadian Conference on Com-

putational Geometry, 1990, pp. 116-119.

[0’R] J. O’Rourke, Art Gallery Theorems and Algo-

rithms, Oxford University Press, 1987.

[Sh] T. Shermer, Visibility Properties of Polygons,
Ph.D. dissertation, McGill University, June 1989.

Appendix
This appendix gives the details of Procedure

Bridge, and establishes its correctness and run-

time.

Procedure Bridge(c,b)

This procedure accepts as input c and b, where

b lies on the left side of ~ It is necessary that

SP(C, b) be convex and have only one bridge. A

bridge, as we recall, is an edge of a shortest path

from a point of L to a point of R with one end-

point on L and one on R. We will show later that

these conditions are satisfied whenever Bridge is

called (if these conditions hold, then all vertices

of SP(c, 13) as we traverse from c to b are left

turns). The procedure either produces the bridge

of SP(C, b), or answers that SP(C, b) intersects &

in the former case the shot is dominated while in

the latter it is non-dominated.

We first check whether c and b are visible, since

if t hey are then the shot is dominated. If not, we

precede as follows.

Let c’b’ represent the bridge of SP(C, b), where

c’e Land b’ CR. The chord clbl par-

titions P into two subpolygons, one contain-

ing t and the other s. Because SP(C, b) con-

tains c’ and consists of only left turns, the

path SP(C, v) contains c’ for any” vertex v

of the subpolygon cent aining t. Specifically,

S’-P(c, t) contains c’. Similarly, S.F’(b, t) con-

tains b’. If F’red’ and Succ’ are defined on the

chains SP(C, t) and SP(b, t), then we see that

b’ ~ cone(d(Pred’(c’), c’), d(c’, SUCH’)) and

c’ c cone(d(b’, Such’), d(l+ed’(b’), b’)) (Fig-

ure Al).

To find c’ and b’, we will simultaneously tra-

verse SP(C, t) and SP(b, t) (recall that we can

easily do this because we have stored SPT(t)

as a directed graph). If, at any time, the cur-

rent edge of SP(b, t) crosses F, the procedure

halts, and we know that the shot from c is non-

dominated. We let b“ and c* denote the cur-

rent vertices of SP(b, t) and SP(C, t), respec-

tively, initially set to Succ’(b) and Succ’(c). We

alternate between the steps of advancing b* to

Succ’(b*) and c* to SUCC’(C*). Initially at least

one of the current points “shoots ahead” of its

count erpart on the other chain, in the sense that

356

c* lies on the right of ~(~red’(b”), b*) and./or

b“ lies on the left of ~1%-ed’(c”), c*). If ever

a current point “shoots behind” its counter-

part, we have traversed too far with that point.

For example, if by advancing b“ we shoot be-

hind c*, we back up by setting b* e- Pred’(b”).

Now we have c* in the cone of b“, since c“ G

cone(d(b”, Such’), d($%ecl’(b”), b“)). We c,on-

tinue to traverse forward with c*. If necessary,

we traverse backward with b* so that c* remains

in the cone of b*. We stop when c* first shc)ots

behind b*, and set c’ - -Z%ed’(c”) and b’ +- b*.

The procedure is symmetric if c* shoots behind

b* first.

Another possible event is that either b* may

encounter a right turn or c* a left turn. Since

SP(C, b) is convex, such events can occur cmly

after b’ and c’, respectively. Therefore we stop

traversing forward with such a pointer. For ex-

ample, if b* is a left turn, we set b* to Pred’(b”).

We traverse forward with c* w4Me leaving b*

fixed. If c* moves to the left of 1(.Pred’(b*), b“),

we traverse backward with b*, so that c* stays in

the cone of b*. We stop when c* shoots behind

b*, and construct the bridge as described above.

If we find that SP(b, t) intersects ~ where

b“ is th~ first vertex of SP(b, t) on the right

side of 1, then we know that the hit point suc-

ceeds b“; we call Search(b”) in order to find the

non-dominated hit point of c. Otherwise, all of

SP(b, t) lies left of l+which we learn when we

find that b’ is left of 1; this implies that the hit

point precedes b and that the shot is dominated.

In this case, any shooting vertex on LC,C1 has a

hit point that precedes b, as seen in Figure Al,

so we can skip over these points. Since any shot

from L,cI cannot hit .l?b,b!, we advance b tc) b’.

This gives a new cutting chord ~. Thus, in the

case where the shot from c is dominated, we hlave

a t c’, b + b’; we traverseforward on L from

c’ until finding the first shooting vertex, which

becomes the new point c, and we test whether

this new c is dominated.

End Bridge.

We now show that procedure Bridge is called

only when the necessary conditions hold.

Lemma 6 It Bridge (c,b) is called, the shortest

path SP(C, b) is convex. Furthermore, it has only

one bridge.

We briefly discuss the time-complexity of pro-

cedure Bridge. The traversals of L and R are

simply a part of the monotonic traversals of those

chains made by the full algorithm. However,

Bridge also traverses portions of SPZ’(t); we

claim that the total traversal time of SIYZ’(t) is

O(n). First, let us consider the backtracking of

Sl?7’(t) that can occur in the procedure. This

happens when one of the points shoots behind its

partner or encounters a non-convex turn. How-

ever, because we alternate forward steps of b*

with those of c*, all of the work can be charged

to the chain which is not backtracked, at the ex-

pense of an extra constant factor. We claim that

the charged portion of S-F’Z’(t) is not traversed

again. If we assume, without loss of generality,

that SP(b, b’) is the path charged, then it suf-

fices to show that no portion of SP(b, b’) is on

the shortest path of any point q c R>&. If such

a point q did have a point q’ G Rb,bl on SP(q, t),

then we would have q’ c R<* and t c R>q both

on SF’(q, t)—a slight variant of Corollary 1 im-

plies that q is not visible from L, since q’ pre-

cedes t on SP(q, t). Therefore only O(n) time

is spent traversing portions of SH!’(t), and the

linear run-time of the algorithm is established.

At

A.\

L
“\

@

i
\ ‘,

\
\

\ R
\

L ~...-----
............-

..-..--.-””-

:..-- ...‘-%.-. ‘-----

................................

s

Figure 1: A straight walk

.
LoForw(p)
/ “’””//“ R. ...

p ““..,,

\
Backw(p)

L

s
Figure 2: Forward and

backward ray shots

357

t

P

Figure 3: cone(p)

t

...........
. ...

...

s

Figure 5: Definition of dominated

(a) (b)

Figure 4: (a) Deadlocks, and (b) wedges

(a Ct(b)
CJC)

.

q~ /

/
Backw(c) ““”””””””””””””””’”c

b
C+(Backw(c))

Figure 6: Case (3),
where Cs(c) > Ct(b) L]

b

Fig&e 7: Case (3),
where Cs(c) c= Ct(b)

b

Figure Al: Procedure Bridge

358

