
Optimizing User Interaction for Mobile Web Browsing

Dong Zhou, Ajay Chander, Hiroshi Inamura
DOCOMO USA Labs

3240 Hillview Ave., Palo Alto, CA 94304, USA
{zhou,chander,Inamura}@docomolabs-usa.com

ABSTRACT
The small form-factor of mobile handsets and the longer, variable
latency of cellular networks negatively affect user experience in
mobile web related activities. In this paper we describe the design
and prototype implementation of a framework for improving
mobile web interaction based on monitored interaction history
and runtime interaction context. Our framework predicts future
interaction sequences and optimizes predicted user interactions
with navigation shortcuts and automatic text copying and form-
filling

Categories and Subject Descriptors
D.2.2 [Design Tools and Techniques]: User interfaces

General Terms
Design, Experimentation, Human Factors

1. INTRODUCTION
The small form factor of mobile devices makes it much harder to
interact with: the small screen makes it difficult to read what’s
displayed and to click/tap at the right places; the lack of full-sized
keyboard and stable arm-support makes it difficult to input text;
and the lack of multi-window and mechanisms for easy
copy/paste makes it difficult to copy data from one application to
another.
Furthermore, despite recent progress in technology, cellular
network connections are still weaker and less stable than their
fixed-line counterparts. The result of this is longer and less
predictable network latency and user wait time, and consequently
worse user experience, especially for web sessions involving
sequences of user actions and Internet requests/responses.
Various approaches have been proposed and implemented to
improve mobile user experience for web-related activities,
including sliming down web sites to customize for mobile devices
intending to reduce page sizes and downloading time [6], as well
as reorganizing the information hierarchy of web sites to narrow
navigation breadth at the cost of deeper navigation depth. [2][3]
There are also research work and commercial applications on
automatic form filling for reducing user typing. [1] Such
approaches are usually more effective when they are used in
predefined tasks, and they typically use dictionary-based

approach in filling input fields.[6]
While above mentioned approaches help improving mobile user
experience, they are still limited to varying extents in: 1)
considering a sequence of interaction instead of a single step in
optimization; 2) minimizing user involvement and maximizing
context sensitivity; 3) adapting to minor changes in user tasks and
changes in user interaction context; 4) having a comprehensive
optimization target that reduces both user input and user wait
time.
We propose the design and describe the prototype implementation
of an initial framework towards a mobile user interaction
optimization system that requires minimal explicit user
involvement; is sensitive to users’ interaction contexts; looks
beyond users’ immediate next step; targets costs in both user
input and user wait time; and can, to some extent, adapt to
changing user tasks.

2. FRAMEWORK
Our framework is composed of three general steps or conceptual
modules: monitoring, rule generation, and rule matching and
application. The monitoring module captures and logs users’
interaction history with their browsers. The rule generation
module creates interaction prediction rules from such interaction
history, and generates optimized forms for predicted user
interaction sequences. The rule matching and application module
matches a user’s current interaction context against generated
rules and, if there are any matching rules, non-intrusively
communicates the optimized predicted interaction sequences to
the user.
Interaction history is defined as set of interaction state transition
sequences, where the interaction state is defined by the following
variables: 1) the page that is currently open in the browser; 2) the
highlighted text on the current page; 3) content of the clipboard,
and 4) form inputs made to the current page. An Interaction event
changes the value of one of the above interaction state variables.
Such event can be one of Page-Load event, URL-Input event,
Text-Highlight event, Text-Copy event, Text-Paste event, or
Form-Input event.
Captured interaction event sequences are broken into Trails. A
Trail is a segment of user interaction sequence that reflects a burst
of user interaction activities. A long sequence of user interaction
with a device can be divided into multiple Trails at abnormally
long time gaps along the sequence. Such long time gap is usually
resulted from the user reading a page in detail, or from the user
shifting attention away from the browser.
A server in the network collects and maintains a database of trails.
The server also hosts the prediction rule generation module that

Copyright is held by the author/owner(s).
MobileHCI09, September 15 - 18, 2009, Bonn, Germany.
Copyright © 2009 ACM 978-1-60558-281-8/09/09…$5.00.

runs periodically and/or after a Trail database has been updated.
A prediction rule created by the module takes the following form:
 <Trail_Seg> :- <Optimized_Trail_Tail>
where <Trail_Seg> is one of the segments of one of the Trails in
the database, and <Optimized_Trail_Tail> is the tail of a
candidate Trail after optimization.
Candidate trails for optimization are selected through a recursive
algorithm which takes a Trail segment (TS), and either goes to
the next level of recursion or returns a pair (TS, MS), where MS
is a set of Trails matching TS whose size could be zero. The
purpose of the algorithm is to find likely future interaction
sequences (i.e., MS) given an interaction context (TS). A weight
function that takes into account of information such as visit count
and the cost of each interaction event in the tail is used to
prioritize matching trails.
The tail of each matching Trail in the MS of the (TS, MS) pair is
then optimized to reduce user input, as well as to reduce user wait
time for page loading. Specifically, for a Form-Input event we
determine if such input is resulted from copy/paste operations by
tracking back along the Trail. If it is, we associate the value(s) of
the text string(s) copy/pasted with the Form-Input event. For each
Page-Load event, we check whether the URL or other request
parameters of the page to be loaded is associated with one or more
of preceding Form-Input events (for example, the text a user typed
in a search box is associated with the search results page). We then
link the Page-Load event with its associated Form-Input event(s).
If a Page-Load event has no Form-Input event associated with it,
we create a new Page-Prefetch event for it and add the new event
to the start of the tail.
The Rule Matching and Applying module deployed on a mobile
device monitors the user’s interaction with the browser, and
similarly breaks interaction sequences into Trails. The most recent
Trail (which haven’t terminated) is used as the current interaction
context (CIC). The CIC is used in real-time to match against
prediction rules, and the optimized Trail tail of each matching
prediction rule is non-intrusively presented to the user.

3. IMPLEMENTATION
We have implemented a proof-of-concept prototype of our
framework as a Mozilla extension for the Firefox web browser. In
this prototype, we only retrieve the rule with the highest
interaction cost. We then optimize the events in the body of the
rule, and use XUL elements to represent such optimized
interaction. We then display such XUL elements on the status bar
of the browser (see Figure 1).
Specifically, for each Page-Load event, we use a clickable label,
with its name set to the abbreviated title of the page to be loaded.
Clicking the panel will result in loading the page associate with
the panel in the browser, without needing to input the URL of the
page in browser URL bar. For each Form-Input event, we use an
editable textbox, with its value initialized to the value of the
event. If the Form-Input event is associated with a later Page-
Load event, we modify the hyperlink of the clickable panel for the
Page-Load event whenever the value of the textbox changes. In
addition, when the Page-Load event is immediately after the
associated Form-Input event, we simply use “go” as the label of
the clickable label for the Page-Load event (see last widget in
Figure 1).

Such optimization widgets serve as reminder to the user that the
system predicted the next likely steps of the user, and that the user
can take advantage of such widgets to make such interactions
easier to perform. Note that the user can choose to activate any of
these widgets: activating a widget later in the line essentially lets
the user to skip previous interaction steps, or he can opt to ignore
such optimization widgets. Since such widgets are displayed on
the status bar of the browser and do not obtrude with user
interaction, we believe that it generally does not pose undue
negative effects on user experience.

4. CONCLUSION AND FUTURE WORK
We described our framework for enhancing user experience
through reducing user input and wait time for page loading. Our
framework depends on collecting users’ interaction history, from
which, based on current interaction context, we predict sequences
of likely next interaction steps. We then find out likely data input
for each step, pre-fetch when necessary pages that can be pre-
determined and are expected to be used in one of the successive
steps, and provide short-cuts for skipping unnecessary
interactions. Our work can thus potentially both reduce the
amount of user input and shorten user wait time.

REFERENCES
[1] E. Rukzio, A. Schmidt and H. Hußmann. Privacy-enhanced

intelligent automatic form filling for context-aware services
on mobile devices. Artificial Intelligence in Mobile Systems
2004 (AIMS 2004).

[2] A. Geven, R. Sefelin and M. Tscheligi: Depth and breadth
away from the desktop: the optimal information hierarchy
for mobile use. Proceedings of MobileHCI 2006.

[3] G. Hattori, K. Hoashi, K. Matsumoto, and F. Sugaya. Robust
web page segmentation for mobile terminal using content-
distances and page layout information. Proceedings of
WWW 2006.

[4] C. C. Yang and F. L. Wang. Fractal summarization for
mobile devices to access large documents on the web.
Proceedings of WWW 2006.

[5] G. Leshed, E. Haber, T. Matthews and Tessa Lau.
CoScripter: Automating & Sharing How-To Knowledge in
the Enterprise. Proceedings of CHI 2008.

[6] J. Nichols and T. Lau. Mobilization by Demonstration:
Using Traces to Re-author Existing Web Sites. Proceedings
of IUI'2008

UI widget for Page-Load
event associated with

previous Text-Input event

Figure 1. Widgets for optimized rule body displayed on
browser status bar

UI widget for
Page-Load event

UI widget for
Text-Input event

