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Modern object-oriented languages and programming paradigms require finer-grain division of

memory than is provided by traditional paging and segmentation systems. This paper describes

the design of an OSM (Object Space Manager) that allows partitioning of real memory on object,

rather than page, boundaries. The time required by the OSM to create an object, or to find the

beginning of an object given a pointer to any locatlon within It, is approximately one memory

cycle. Object sizes are limited only by the avadability of address bits. In typical configurations of

object-oriented memory modules, one OSM chip is required for every 16 RAM chips. The OSM

serves a central role in the implementation of a hardware-assisted garbage collection system in

which the worst-case stop-and-wait garbage collection delay ranges between 10 and 500 ~sec,

depending on the system configuration.
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1. INTRODUCTION AND MOTIVATION

Traditional garbage collection systems are incompatible with real-time sys-

tems because of their stop-and-wait behavior. Recently, a number of incre-

mental garbage collection techniques have been proposed [Baker 1978;

Christopher 1984; Nilsen 1988; Ungar 1984; Yuasa 1990]. Some of these are

capable of guaranteeing upper bounds on the times required to allocate a unit
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of memory and to read or write previously allocated memory cells. All of the

incremental garbage collection algorithms require frequent synchronization

between the application processor and the garbage collector. Depending on

the algorithm, this synchronization generally consists of one or more extra

instructions executed on every fetch or store that refers to the garbage-col-

lected heap. In detailed performance analysis of these systems, the overhead

of synchronizing on writes ranges from 3–24% of total execution time in one

study Chambers [1991], and synchronizing on reads was found to more than

double execution time in a different study Nilsen [1988]. Note that in most

programs, fetches are much more frequent than stores. Most of the incremen-

tal garbage collection systems that require synchronization only on store

operations perform generational garbage collection, in which the incremental

garbage collector focuses its attention on a small fraction of the heap (a single

generation) at a time. In generational collectors, the typical cost of doing

garbage collection is small, but occasional garbage collections induce abnor-

mally long delays in program execution. Thus, generational garbage collectors

are not generally appropriate for hard real-time applications, though they

offer considerable improvements over traditional stop-and-wait techniques

for garbage collection within interactive applications. The overhead of syn-

chronizing application processes with incremental garbage collectors is one of

the principal impediments toward more widespread use of real-time garbage

collection.

Real-time garbage collectors must honor tight upper bounds on the dura-

tion of time during which they might suspend execution of application

processing. In existing systems, these delays are imposed during reading and

writing of heap-allocated memory and during allocation of new objects. Using

stock hardware, the tightest bound currently available on the time applica-

tions must occasionally wait for garbage collection during access to previously

allocated objects is 500 psec. This empirically determined worst-case re-

sponse time depends on characteristics of the underlying garbage collection

system that are somewhat specialized and restrictive [Engelstad and Van-

dendorpe 1991]. More general garbage collection systems promise looser

bounds, ranging from several to several hundred milliseconds [Johnson 1992;

Ellis et al. 1988]. In all of these garbage collectors, worst-case response times

depend in part on the maximum size of allocated objects. Furthermore,

existing garbage collection systems offer no guarantees of minimum time

separation between consecutive events that require abnormal delays in pro-

gram execution. These delays are too large and too unpredictable to be

tolerated by many real-time applications.

Yet another shortcoming of many existing garbage collectors is that they

are unable to guarantee availability of memory to satisfy an application’s

dynamic memory needs. For example, conservative garbage collectors treat

every integer as though it might contain a pointer. Integer values that

happen to “point” at dead objects within the garbage-collected heap cause
these dead objects to be retained as if they were live. Memory also becomes

unavailable in noncompactiffing garbage collection schemes, including ex-

plicit use of malloc and free, through fragmentation. Experience shows that
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for many common workloads and virtual-memory configurations, conserva-

tive and noncompactifying garbage collectors perform very well [Boehm and

Weiser 1988; Boehm et al. 1991]. However, our goal is to provide reliable

garbage collection to real-time programs running in real memory. Com-

paction is required to eliminate memory fragmentation. Accurate, rather

than conservative, techniques are required to enable relocation of live objects,

By adding a limited amount of specialized hardware to typical RISC

environments, both the worst-case response latency and the average-case

storage throughput of real-time garbage collection can be greatly improved

over software-only garbage collection schemes. The OSM (Object Space Man-

ager) described in this paper is one of the hardware components that makes

possible a real-time garbage collector for which the worst-case stop-and-wait

garbage collection delay ranges between 10 and 500 ~sec, depending on

various configuration options. All fetches, stores, and allocations execute in

less than 1 psec.1 The garbage collection algorithm compacts live memory to
eliminate fragmentation and guarantees that a certain amount of memory

will always be available to represent live objects.

To achieve high performance, garbage-collected memory cells can be cached,

offering high-bandwidth access to the contents of garbage-collected memory.

A thorough description of the garbage collection algorithm and its analysis

are provided in Nilsen and Schmidt [1992a; 1992b]. Simulations of C+ +

programs retargeted to this garbage collection architecture reveal that hard-

ware-assisted real-time garbage collection provides throughput competitive

with traditional C + + implementation techniques.2

The real-time garbage collection algorithm is based on an algorithm origi-

nally described by Baker [1978]. The basic idea of the algorithm is to divide

available memory into two large regions named to- and from-space respec-

tively. Objects are allocated from to-space while previously allocated live

objects are incrementally copied into to-space out of from-space. When the

garbage collector copies an object into to-space, the first word of the old object
is overwritten with a forwarding pointer to the object’s new location. The

garbage collector uses this forwarding pointer to update other pointers that
refer to the same object. When those pointers are traced, the garbage collector

recognizes that the referenced object’s first word is a forwarding pointer and

updates the pointers appropriately rather than creating yet another copy of

the referenced object. After copying an object, the garbage collector scans it.

During scanning, each pointer within the copied object is examined. If the

pointer refers to an uncopied object in from-space, the referenced object is

1 The bound on allocation times depends on limiting the total amount of live data in the system

and limiting the rate at which new objects are allocated,

2 In performance measurements of the groff typesetting program written by James Clark, a lisp

interpreter written by Timothy Budd, a sliding fast fourier transform program written by ISU

graduate student James Lathrop, and a simple line editor written by ISU undergraduate student

Craig VanZante, the garbage-collected implementation of C+ + provides throughput ranging

from 25% faster to 25% slower than traditional C++ implementations. The garbage-collected

C++ dialect garbage collects all objects, including heap-allocated function activation frames.

Detailed performance results are described in Schmidt [ 1992] and Schmidt and Nilsen [1992].
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copied out to-space. If the pointer refers to a from-space object that has

already been copied into to-space, the object’s new location is found by

examining the object’s forwarding pointer. In either case, scanning makes

sure that the obsolete pointer to from-space is overwritten with an updated

pointer to the new location of the referenced object in to-space.

New objects are allocated form to-space while old objects are being copied

into to-space. When there is no longer adequate memory in to-space to satisfy

an allocation request, the names assigned to the two memory regions are

exchanged, so that allocations are now made from the other region. This is

called a fZip. By pacing allocation rates against the garbage collector’s

progress, the algorithm guarantees that all live data will have been copied

out of the old from-space by the time the next flip occurs.

The application program is allowed to maintain only a limited number of

pointers (called descriptors) to dynamically allocated objects. The descriptors

under direct control of the application are called tended descriptors. When a

flip occurs, the objects directly referenced by tended descriptors are scheduled

for copying into to-space, and the descriptors are modified to reflect the new

locations of the objects they refer to. The task of updating a pointer to reflect

the new location of a live data object is called tending. The garbage collector

maintains the invariant that tended descriptors always point into to-space.

This invariant is established at the time of a flip. Thereafter, every value

assigned to a tended descriptor is tended prior to making the assignment.

There are several differences between the Baker algorithm, as originally

described, and our garbage collection system, primarily:

—Our system supports a larger variety of object types and sizes. Each object

is tagged in its first word, to identify the object’s type and size. Because our

system does not restrict object sizes, we perform incremental copying and

scanning.

—When an object is scheduled for copying, memory is set aside for the COPY

in to-space, and a double link is established between the new and old

locations of the object.

—Our system scans data as they are being copied into to-space, rather than

scanning during a second pass over the copied data.

Figure 1 illustrates an intermediate state of our garbage collector, as it copies

the objects labeled A, B, and C into to-space. In this figure, A’, B’, and C

represent the new locations of the A, B, and C objects respectively. All

memory to the left of Relocated has been copied and scanned. Memory to the

right of New was allocated during the current garbage collection pass. And

memory between Relocated and Reserved represents the queue of objects

waiting to be copied into to-space. Copy End marks the end of the object

currently being copied. CopySrc is the address from which the next word of

from-space memory will be copied, and CopyDest is the address to which that
particular word will eventually be copied. During garbage collection, memory

operations that refer to memory found between the CopyDest and Reserved
pointers require special handling.
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Fig. 1. An intermediate garbage collection state.

All of the special circuitry required by our hardware-assisted garbage

collection system resides within an expansion memory module that is portable

between CPU architectures. The CPU accesses this memory module using

standard load and store operations, and fetched memory cells may be cached

by the CPU. In order to minimize the impact of garbage collection on

continued execution of application software, the garbage collector coordinates

its efforts with the CPU by simply examining the stream of memory fetches

and stores that are issued by the CPU on the shared system bus. Occasion-

ally, the garbage collector intercepts the CPU’s memory requests in order to

provide the special handling required for operations that refer to uncopied

memory. The special memory module automatically redirects these memory

operations to the appropriate from-space addresses, as described in Section 2.

We prefer to maintain compatibility with existing CPU, cache, and bus

designs. By so doing, we minimize the effort required to make high-perfor-

mance real-time garbage collection available to the widest possible audience.

Given that the garbage-collected memory module mimics traditional memory

connected to a traditional system bus, there is no straightforward and

efficient mechanism by which the CPU can communicate the base address of
each object referenced by a memory operation, even if the CPU was aware of

the objects’ base addresses. As discussed in Section 3, base addresses are not

always readily accessible to the CPU anyway.

2. IMPORTANCE OF THE OSM

The services provided by the OSM are summarized in Table I.

Of these instructions, Lookup is executed most frequently and must execute

within the least amount of time. Lookup takes a single argument, a pointer to

a location within some previously created object. It returns a pointer to the
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Table I. Operations Supported by the OSM

Primitive

service Description

Reset Reset the OSM, removing all object header locations from its internal database.
Install Install a new header location, given a starting and ending address for the object.

Lookup Look up a header location, given a pointer to any location within the object.

first word occupied by the object that contains the specified address. The

OSM design presented in this paper responds to a Lookup request in approxi-

mately one traditional memory cycle. Second in execution frequency and

speed is the Install instruction. For each dynamically allocated object created

or copied, one Install instruction must be executed by the OSM. Because the

frequency of Install instructions is much lower than that of Lookup, overall

system throughput does not depend heavily on small variations in the time

required by the OSM to install a new header location. The Reset instruction

is executed only once for each individual OSM chip during every two passes of

the garbage collector. After copying all live data out of from-space, the

garbage collector resets all of the RAM and OSM chips that reside in

from-space prior to initiating the next flip. 3 The process of resetting from-

space’s RAM and OSM chips, which comprises the very last phase of garbage

collection, executes in parallel with continued execution of the application.

Though it would be possible to arrange for the OSM chip to reset its state in a

single memory cycle, there is no reason to reset the OSM in any less time

than is required to reset memory. To keep hardware costs to a minimum, the

OSM design presented here uses 211 memory cycles to perform the Reset

instruction.

The hardware-assisted garbage collection algorithm relies on the OSM to

find header information associated with dynamically allocated objects. Object

headers must be accessed in the following situations:

(1) Each dynamically allocated object must make its internal organization
available to the garbage collector so that raw data bits can be distin-

guished from pointers to other objects. This is done either by tagging each

word of the object independently or by encoding the object’s organization

in its header. If the latter alternative is used, then header lookups are

required each time an attempt is made to read from unscanned objects

residing in to-space.

(2) If an attempt is made to read from or write to an object waiting to be

copied, the header of the uncopied object identifies the true location of the

3 RAM is initialized to zero in anticipation of its future use to satisfy memory allocation requests.

By guaranteeing that all newly allocated memory initially contains zeros, our systems eliminates

race conditions that might exist between the time that memory is allocated and the time it is

eventually imtialized. If garbage collection is to begin prior to initialization of the allocated

memory, the uninitialized contents of the allocated object might be misinterpreted as pointers to

otherwise dead data.
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object in from-space. The garbage collector redirects the memory opera-

tion to the appropriate from-space location by following the pointer stored

in the uncopied object’s header.

(3) Descriptors do not necessarily point to the headers of the objects they
refer to. Instead, they frequently point at internal fields within these

objects. Each time a descriptor pointing into from-space is tended, the

header of the referenced object is consulted to determine the total size of

the object and to decide whether the object has already been scheduled for

copying. If the object has been scheduled for copying, the header points to

the space reserved for the object’s new location in to-space.

Header locations must be installed into the OSM in the following circum-

stances:

(1) Each time a new object is allocated, the object’s location must be installed
into the OSM data base.

(2) Each time space is reserved for a live object to be copied out of from-space,
the garbage collector informs the OSM of the region of memory that

corresponds to the to-space copy of the object. This action is triggered by

explicitly tending of a root pointer, by fetching an unscanned descriptor

that refers to from-space data not yet queued for copying into to-space,

and by background garbage collection activities.

Each allocation requires one OSM Install operation. In the worst case, a

memory write operation depends on the result of one OSM Lookup operation.
And the worst-case path through the fetch-servicing routing executes two

OSM Lookup operations and one Install operation [Nilsen 1991]. Constant-time

response to OSM requests is necessary in order to guarantee constant-time

response to all allocation, fetch, and store operations.

The garbage collection system imposes no restrictions on the sizes, align-

ments,4 or internal organization of dynamically allocated objects. This com-

plicates the task of installing and looking up object header locations. None of

the software techniques currently in use provides constant-time header

lookups and installs given unconstrained object sizes and alignments. The

algorithms described in this paper, if implemented in software, respond to

both Lookup and Install requests in time logarithmic to the size of memory.

However, without hardware support, the constant bound on the time required

to implement the Install operation is much too high to be practical.

3. COMPARISON WITH RELATED WORK

Traditionally, languages designed for garbage collection have avoided the use

of pointers that refer directly to internal fields within objects. Instead, to

4 Aligning all pointers on word boundaries and all dynamically allocated objects on four-word

boundaries keeps hardware costs down. However, these alignment restrictions are simply

configuration choices. There is nothing in the design of the garbage collection algorithm that

prevents less constraining alignment restrictions.
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facilitate garbage collection, run-time systems are designed to pass all such

pointers as base/offset pairs [Chambers 1992; Griswold and Griswold 1986;

Hanson 1977]. However, desires to garbage collect traditional imperative

programming languages such as C and C++, and to take advantage of more

ambitious code generation techniques than had previously been available to

garbage-collected languages, have required a number of researchers to inves-

tigate alternatives to more traditional run-time organizations.

Diwan et al. [1992], describe an interesting approach to maintaining and

making use of base pointers in the context of an optimizing compiler. Their

work is implemented within the University of Massachusetts Language

Independent Garbage Collector Toolkit [Moss 1991]. Diwan’s approach en-

sures that a temporary variable holds the starting address of each object

within which an internal field is directly referenced by some other variable.

Besides reserving temporaries to hold base pointers, Diwan’s compiler gener-

ates tables that associate each internal-field pointer with an appropriate base

pointer. The garbage collector consults these compiler-generated tables to

find the base addresses of objects referenced by registers pointing to fields

with dynamic objects. Though this technique is capable of supporting Modula-

3, it is not sufficient by itself to support garbage collection of C or C++. In

particular, the technique does not allow derived pointers to be communicated

beyond the scope of a particular function. Other shortcomings of Diwan’s

approach are that it adds considerable complexity to the compiler, and it

places additional burdens on the global-register allocator.

A software precursor to our OSM is described by Appel, et al. [1988]. In

their system, a crossing map maintains for each page of memory a single bit

that is true if and only if an object spans (crosses) the boundary between that

page and the preceding page. Using their technique, both the time required to

install an object that spans multiple pages and the time required to find the

page on which a very large object begins is proportional to the length of the

object.

Bartlett [1988] describes a technique based on an allocation side table. This

table is simply a large bitmap with one bit corresponding to each possible

location at which an object might begin. A particular bit is set if and only if

an object begins at the location controlled by that bit. Detlefs [1990] uses this

same technique. Note that, in this system, installation of a new header

location is a constant-time operation, but header lookups require time propor-

tional to the distance of the derived pointer from the object’s starting address.

Also, note that initialization of the allocation side table requires time propor-

tional to its size.

A more elaborate strategy is used in the Xerox Portable Common Runtime

(PCR) system [Boehm et al. 1991]. Their technique is a generalization of the

algorithm described in [Boehm and Weiser 1988]. In the original algorithm,

memory is divided into chunks of size 4K, aligned at memory addresses that

are multiples of 4K. Within each chunk, all objects are the same size. Each
chunk has a header that identifies the size of the objects contained within

ACM Letters on Programming Langaages and Systems, Vol 1, No. 4, December 1992



346 . K. D. Nilsen and W. J. Schmidt

that chunk and marks whether the chunk is valid.5 Objects larger than 4K

are assembled from a sequence of contiguous 4K chunks called a cluster. The

first chunk in the cluster contains a header that identifies the total length of

the object and marks the cluster as valid. In the garbage collection system for

which this strategy was originally designed, all pointers refer directly to the

beginning of the allocated objects. Given this, the location of the cluster

header that describes the size of the object is found by masking off the 12

least-significant bits from the object’s start address. Recently, in order to

support garbage collection of C and C + +, it has been necessary to modify the

original algorithm [personal correspondence, Boehm 1991]. The revised algo-

rithm allows pointers to refer directly to internal fields of objects by supple-

menting the heap with a byte map that holds one byte for each 4K chunk. For

valid addresses, this byte represents the distance, measured in 4K chunks, of

this chunk from the chunk that holds the object’s starting address. Using this

technique, header lookups are performed in constant time, but installation of

a new header requires updating a number of bytes proportional to the length

of the object.

Schmidt and Nilsen [1991] describe the design and analysis of an object

space manager that provides a superset of this system’s functionality. In

addition to the instructions supported by this OSM, that system supports

deletion of objects and is able to reset its state in approximately one memory

cycle. However, the VLSI cost of that OSM design is more than four times the

cost of this system. Furthermore, the circuits of that system are nearly all

specially designed, whereas most of the circuitry in this design is represented

by standard memory arrays which are well understood and economically

manufactured in high density.

4. THE ALGORITHM AND DATA STRUCTURES

The challenge in implementing the OSM is that all header Iookups and

installs must execute in constant time, regardless of the sizes of the objects

involved in the operations. In order to bound the work involved when

installing a new header location, the OSM is divided into groups, each group

controlling a different segment of real memory. The OSM Instal I algorithm
maintains the following invariant:

For each possible location within memory, the corresponding OSM

entry records the offset of the beginning of the object that spans

that location if the object begins within the region of memory

controlled by the OSM group that encloses the OSM entry.

If the object begins prior to the start of memory controlled by a particular

group, then that group takes no responsibility for representing the object’s

5 PCR uses a conservative garbage collection technique in which it cannot always distinguish

between pointers and integers. It uses various hints, such as whether the memory referenced by

a potential pointer is valid heap space, to help it determine which words of memory are not valid

pointers. In a conservative garbage collector, integers that happen to represent valid addresses

may cause the collector to retain as “live” more heap objects than would have been retained by

more traditional “accurate” garbage collectors.
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start address. The OSM maintains a hierarchy of groups. This invariant is

maintained at all but the topmost level. Figure 2 illustrates a single level one

OSM group that controls eight possible object locations.

In this figure, object locations are numbered using zero based array index-

ing. One object, with an unspecified starting address, spans the first three

object locations controlled by this OSM group. The second object occupies

locations three, four, and five. A third object begins at offset six within the

group and extends into the group that follows. For each possible object

location, the OSM dedicates a single bit to distinguish between valid and

invalid offsets. Since the object that spans the first three cells of the illus-

trated group of memory does not begin within this group, the first three

offsets are flagged as invalid.

How does the OSM represent the starting address of objects that span

boundaries between level one groups? For each level-one group, the OSM

maintains in separate arrays the starting positions of objects that span the

boundaries of lower-level groups. Second-level offsets are themselves assem-

bled into groups. For example, the level-one group illustrated in Figure 2 is

shown within a larger context in Figure 3. Here, it is the second of two

level-one groups controlled by a two-element level-two group.

Dotted lines connect group boundaries at one level with the bottom-left

corner of the associated crossing offset in the next level up. The 7 in the

second entry of the level-two group indicates that the object that spans the

boundary between the two level-one groups begins at offset seven relative to

the beginning of the memory controlled by the level-two group. Note that

each level-two group controls more memory than a level-one group. However,

level-two coverage is spotty. Level-two groups only represent objects that:

(1) begin within the segment of memory controlled by the level-two group,

and

(2) span the boundary between neighboring level-one groups.

Since all valid-two entries represent objects that span (or cross) boundaries

between adjacent level-one groups, we refer to the level-two entries as

crossing pointers.

A third level of crossing pointers describes objects that span boundaries

between groups of level-two offsets. In Figure 4, each group maintains two

offset fields. At the base (level one) of this pyramid, each group corresponds to

two possible object locations. Each group of level-two offsets represents four

potential object locations. And at the top level, there is only one group, which

spans the entire region of memory controlled by this OSM. In this example,

the top-level group controls eight possible object locations.

At all but the topmost level, each group maintains offsets only for objects

that begin within the region of memory controlled by that group. All offsets

are expressed relative to the beginning of the group that holds the offset. For
example, top-level offsets are expressed relative to the beginning of the chip

space. The offset value 1 shown in the second group of level-two offsets refers

to offset 4 + 1 = 5 relative to the beginning of the OSM’S chip space (4 is the
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Fig. 4. A three-level OSM hierarchy.

offset at which the second group of level-two offsets begins). The top-level

group encompasses the entire region of memory controlled by a particular
OSM chip and also represents objects that span the boundary between the
memory controlled by this chip and lower-addressed memory. In this exam-

ple, – 1 in the leftmost position of the level-three group denotes that the first

object illustrated above begins at offset – 1 relative to the beginning of the

region of memory controlled by this particular OSM chip.

Header Installation and Lookup

In the initial state of OSM, all entries at all levels of the OSM’S pyramid of

starting offsets are flagged as invalid. Execution of the OSM’S Reset instruc-

tion restores the OSM to this initial state.
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The Install instruction is parameterized with the object’s starting and

ending addresses. Call these start and end respectively. Installation of a new

object within the OSM consists of executing the following steps.

(1) If the start and end pointers lie within a single level-one group, update the

corresponding entries within that level-one group and stop.

(2) Otherwise, update all entries within the level-one group that follow the

start pointer, including the entry at the start position.

(3) If the start and end pointers lie within a single level-two group, update all
entries within the level-two group that follow the start position (excluding

the entry at the start position) and precede the end position. If the end
pointer is not aligned with the first address controlled by a level-one

group, update the level-two end position as well. Stop.

(4) Otherwise (the start and end pointers refer to different level-two groups),
update all entries within the level-two group that follow the start pointer,

excluding the entry at the start position.

(5) Update all level-three entries that follow the start position (excluding the
entry at the start position) and precede the end position. If the end pointer

is not aligned with the first address controlled by a level-two group,

update the level-three end position as well. Stop.

At most, three complete groups of entries must be updated during installa-

tion of a new header location. Whenever multiple OSM spaces are spanned by

a single object, all of the involved OSM chips process the Install instruction in

parallel. The chip that holds the start pointer executes the five-step algorithm

described above. The other chips execute only step 5.

Given a pointer to a location within an object and the data structure

described above, header lookups are implemented by the following six-step

algorithm:

(1) The pointer is converted to an index within the level-one table of starting
offsets.

(2) If the corresponding entry within the level-one table is valid, the object’s
header location is obtained by adding this offset to the address at which

the corresponding group begins. Stop.

(3) Otherwise, convert the level-one index to a level-two index by dividing by
the number of entries in each level-one group.

(4) If the corresponding entry within the level-two table is valid, the object’s
header location is obtained by adding the level-two offset to the address at

which the corresponding level-two group begins. Stop.

(5) Otherwise, convert the level-two index into a level-three index by dividing
by the number of entries in each level-two group.

(6) Assuming that the requested address lies within an object previously
installed into the OSM, the object’s header location is obtained by adding

the level-three offset to the address at which this particular chip’s mem-

ory begins.
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Though not mentioned in the OSM specification provided above, it is

noteworthy that the OSMS data structures are capable of supporting nesting

and deletion of objects in addition to the capabilities already described. The

algorithm to delete an object is the same as the Install algorithm except for

one small change: instead of updating particular entries within the OSM

hierarchy, the Delete algorithm invalidates those entries. No changes to the

existing algorithms are necessary to support creation of new objects nested

entirely within previously created objects. Following installation of a small

object within a larger one, a Lookup invocation that refers to the smaller

object would find the start address of the smaller object. This capability is

used during garbage collection to divide large objects containing garbage into

multiple smaller objects, each containing live data. Note that, following

creation of a small object within a larger object, subsequent Lookup instruc-

tions that refer to portions of the larger object not included within the smaller

one may no longer correctly resolve to the larger object’s header address. Also

note that deletion does not work in the presence of object nesting since,

rather than invalidating values within the OSM hierarchy when deleting an

enclosed object, it may be necessary to restore the OSM entries to whatever

value they held prior to installation of the smaller object.

5. VLSI IMPLEMENTATION OF THE OSM

Note that each header lookup requires reading of at most three different

offsets, one from each of the three levels in the data structure described

above. Installation of a header requires writing to at most three complete

groups of offsets, one from each of the three levels of the OSM data structure.

In order to implement fast install and lookup instructions, (1) each level of

the data structure is stored in a separate array of DRAM cells and (2) each

group of offsets is aligned with the row boundaries of the corresponding

DRAM array. By hardwiring parallel data paths to each of the three memory

arrays, it is possible to update all of the entries within three hierarchical

groups of start offsets in a single memory cycle. Using the same parallel data

paths, the three OSM entries required to respond to a Lookup request are

also obtained in a single memory cycle. To implement the Reset instruction,

each of the arrays, in parallel, sequentially overwrites each row of memory

with zeros. Since the largest of these arrays, level-one has 211 rows, this

many memory cycles are required to perform a reset operation.
There are a large number of alternative ways to arrange three tiers of

starting-offset pointers within three separate memory arrays. The optimal
arrangement depends on a variety of factors, such as:

—The combined sizes of the DRAM arrays.

—VLSI layout considerations, which ultimately determine how many OSM

circuits fit on a single silicon wafer.

—The costs of decoders, fanout trees, control logic, and other support cir-

cuitry.

—Circuit depth, which is the maximum number of components through

which a signal must propagate in servicing primitive operations.
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Detailed analysis of these tradeoffs is beyond the scope of this paper. A

number of alternative configurations have been considered. The one pre-

sented here was chosen because it delivers a good ratio of total object

locations in proportion to bits of DRAM and because it lends itself to a fairly

dense rectangular VLSI layout. This chip supports a total of 219 distinct

object locations:

Level 1. Eight entries comprise each level-one group. Within each entry,

three bits represent offsets within the group, and a fourth bit marks invalid

entries. Thus, there are 32 bits per group. Thirty two 32-bit groups are stored

on each row of the level-one DRAM array. To represent a total of219 distinct

object locations, 211 rows are required, each row holding 210 bits.

Level 2. Since the level-one array holds 216 groups, the level-two array

must have this many entries. One hundred twenty-eight entries are stored in

each level-two group. Within each entry, 7 bits represent offsets within the

level-two group; 3 bits represent offsets within the level-one group; and an

1 lth bit flags invalid entries. Thus, there are a total of 128 X 11 = 1,408 bits

in each group. Only one group is stored on each row of the DRAM array. To

represent 216 different offsets, 29 rows are needed in the level-two DRAM

array. The total size of this array is thus 29 X 1,408.

Level 3. Since the level-two array holds 512 different groups, the level-three

array must have 512 entries. Each entry must be prepared to represent the

starting address of any object that contains memory controlled by this OSM

chip. This includes objects whose starting address precedes the memory

controlled by this OSM chip. Assuming that 32 bits are required to represent

a physical address, the total size of this DRAM array is 29 X 32.

One possible VLSI layout for the OSM design discussed here is illustrated in

Figure 5.

Note that the DRAM arrays in this layout occupy less than three-fourths of

the space required for the memory array (not including its support circuitry)

associated with a 4 MBit DRAM chip. We assume in the current analysis that

the space occupied by the OSMS support circuitry is fairly small in compari-

son with the total sizes of the DRAM arrays with which it is associated.

We conclude, therefore, that a single OSM chip of approximately the same

transistor density as a 4 MBit DRAM is capable of representing 219 object

locations. If all objects are aligned on 4-word boundaries, then 16 4-MBit

DRAMS are required to represent 219 distinct objects (221 4-byte words).

Thus, one OSM chip is required for every 16 RAM chips in this configuration,

which we consider typical.

Compression of the OSM hierarchy

The information required by the OSM to perform lookups can be compressed

in order to further reduce VLSI costs. Note, for example, that the first entry

in each level-two group is never used (any object that spans the boundary of
the level-one group controlled by this entry must necessarily begin outside

the segment of memory controlled by the level-two group). Similarly, note

that the largest offset to be stored in the second entry of a level-two group is
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Fig. 5. Comparison between OSM and DRAM densities

the size of a level-one group. And the largest offset to be stored in the third

entry of a level-two group is twice the size of a level-one group. Thus, certain

entries in the OSM hierarchy do not make use of all the bits reserved for

them in the analysis above. In particular, the analysis above assumes that

each level-one group would consist of eight entries with four bits per entry. To

compress this, discard three bits from the first entry, two bits from the second

entry, and one bit from each of the third and fourth entries. All of the

discarded bits are hardwired to logical zero. By eliminating extraneous bits

from the DRAM arrays, we compress each level of the hierarchy (see Table

II).

Further compression is made possible by removing redundant information

from the upper levels of the OSM hierarchy. Each level-two entry, for

example, records a pointer to the level-one group that represents the start of

the corresponding object and records the object’s starting position within that

level-one group. Since the last entry in the enclosing level-one group holds

the offset of the object’s starting position within the level-one group, the

level-two entry needs only to record a pointer to the level-one group that

holds the object’s starting address. Given this pointer, the OSM consults the

corresponding level-one group to determine the exact position at which the

object begins. By removing this redundant information from each entry in

level two, we can further reduce the OSM implementation costs. In particu-

lar, 512 X 128 X 3 = 196,608 bits can be removed from level two. The sav-

ings offered by this compression are rather small in comparison to the total

size of the OSM. The cost of this optimization is an extra memory cycle in the
worst-case cost to look up an object header. Thus, we recommend against this

optimization.
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Table II

DRAM

Level

Size in Bits

Original Compressed

Percent

savings

1 2,097,152 1,638,400 22%

2 720,896 653,824 9%

6. DISCUSSION AND CONCLUSIONS

In this paper, we have presented a practical design for real-time management

of an object space. This Object Space Manager serves as a central component

of a hardware-assisted real-time garbage collection algorithm. Given the

growing importance of dynamic real-time systems to support multimedia and

virtual-reality systems for the general public, the needs to improve productiv-

ity of traditional real-time programmers, and to improve the flexibility of

many important existing real-time applications, the market may finally be

ready to support commercial development of hardware-assisted real-time

garbage collection.

There are a variety of issues related to the design of the OSM that have not

been explored in this paper. These include detailed circuit layout, timing

diagrams, and the hardware interface. In nearly all of these unresolved

areas, selecting between various design alternatives depends on understand-

ing the typical workload placed on the OSM. Ongoing simulation research

focuses on quantifying this workload.

Though many of the OSMS finer details remain unsettled, the general

approach that we have outlined appears practical. Of the remaining unre-

solved design issues, most depend both on additional technical study and on

important economic considerations such as manufacturing costs, market

analysis, and the possibility of government participation in development of

the new technology. Within the general framework outlined by this paper,

there is no single OSM configuration that will serve best in all situations.
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