
Access Normalization: Loop Restructuring for
PWJMAComputers

WEI LI and KESHAV PINGALI

Cornell University

In scalable parallel machmes, processors can make local memory accesses much faster than they

can make remote memory accesses. Adclitionally, when a number of remote accesses must be

made, it is usually more efficient to use block transfers of data rather than to use many small

messages. To run well on such machmes, software must exploit these features. We believe it is

too onerous for a programmer to do this by hand, so we have been exploring the use of

restructuring compiler technology for this purpose. In this article, we start with a language like

HPF-Fortran with user-specified data distribution and develop a systematic loop transformation

strategy called access normalmatzan thiit restructures loop nests to exploit locality and block

transfers. We demonstrate the power of our techniques using routines from the BLAS (Basic

Linear Algebra Subprograms) library. An important feature of our approach is that we model

loop transformations using tnuertzble matrices and integer lattice theory.
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1. INTRODUCTION

Scalable parallel machines are usually organized as networks of processor-

memory pairs in which a processor can access local data much faster than it

can access remote data. For example, in the BBN Butterfly, accesses to local

memory take 0.6 microseconds while accesses to remote memory take about

6.6 microseconds [BBN 1989]. Distributed-memory machines like the Intel

iPSC\i860 have even greater nonuniformity in memory access times because

access to remote data must be orchestrated through the exchange of mes-
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sages. If nonlocal accesses are on the critical path through a program, making

these accesses local through proper data management will speed up program

execution.

A second feature of such architectures is that block transfer of data

between processors is more efficient than sending this data using many small

messages. Data transfer between processors can be viewed as a pipeline with

a large setup time compared to the time per stage. For example, on the Intel

iPSC/i860, it takes 70 microseconds to start up communication, but it takes

only 1 microsecond to transfer a double-precision floating-point number

between nearest neighbors once the communication has been set up. There-

fore, when a number of data items must be sent from one processor to

another, it is preferable to use a single long message to amortize startup

time.

Contention in the network has the effect of increasing the expected latency

of nonlocal references; therefore, data management to avoid nonlocal refer-

ences has the added benefit of reducing contention, thereby improving perfor-

mance. Interestingly, some analytical studies show that long messages can

increase the latency of nonlocal accesses [Agarwal 1991]. This is an argument

against long messages, but on current machines, this effect seems to be of

secondary importance compared to the benefits to amortizing startup time, as

we show in Section 8.

For the software writer, the implication of these features of nonuniform

memory access (NUMA)l machines is that programs must not only exploit

parallelism but must also manage data to eliminate nonlocal references

wherever possible; where nonlocal references are necessary, they should be

grouped together for block transfers. We believe that it is too onerous for the

programmer to accomplish this by hand, so we have been exploring the use of

restructuring compilers for this purpose. Existing compiler technology is

oriented mostly toward uniform memory access machines in which the only

concern is exploitation of parallelism. Parallel code is generated by distribut-

ing iterations of the outermost loop in a loop nest among the processors, with

synchronization instructions being inserted to take care of dependence

carried by this loop. To reduce synchronization, transformations like loop

interchange are carried out to move parallel loops outermost wherever possi-

ble [Allen and Kennedy 1987; Banerjee 1988; Midkiff and Padua 1987; Wolf

and Lam 1991 b]. This approach does not perform any data management, so it

is not suitable for generating good code on NUMA architectures.

An alternative approach, implemented by the Id Nouveau [Rogers and
Pingali 1989] and Fortran-D systems [Hiranandani et al. 1991], among

others, is to give the programmer control over how data structures are

distributed across the processors. The compiler uses this data decomposition

information to determine how to assign work to processors. One simple way

to do this is to use the so-called ownership rule—a processor executes an

assignment statement if the left-hand-side variable of the statement is

1 We use this term in a broad sense to include distributed-memory machmes
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mapped to the local memory of that processor. A processor executes a loop

iteration if it has any work to do in the body for that iteration. Although this

strategy takes data mappings into account, it can generate inefficient code, in

which all processors execute all iterations “looking for work to do” if the

structure of the loop nest does not match the data distribution [Zima and

Chapman 1990]. In many of these cases, loop restructuring can improve code

quality, but no general approach to loop transformation has been available in

this context [Hiranandani et al. 1991].

In this article, we present a systematic approach to loop restructuring for

parallel machines with a memory hierarchy. As in the ownership approach,

our starting point is a language like HPF-Fortran with user-specified

data decomposition. However, rather than use this information directly to

generate code, we use the data distribution information to drive access nor-

malization, which transforms loop nests so that code can be generated by

distributing iterations of the outermost loop among the processors without

compromising locality. The structure of inner loops is chosen so that

data can be transferred using block transfers wherever possible.

Our work makes two contributions:

—We describe a new loop transformation strategy called access normaliza-

tion that is useful for compiling programs for parallel machines with

nonuniform memory access. It has applications in other areas such as the

generation of vector code.

—Our loop transformations are expressed in the framework of insertible

matrices and integer lattice theory, which is an important generalization of

existing frameworks that use unimodular matrices.

The rest of the article is organized as follows. In Section 2, we discuss a

simple example that gives an overview of our compiling strategy. We also

introduce the data access matrix, which plays a key role in the development.

In Section 3, we discuss the framework of invertible matrices as a foundation

for loop transformations. For some programs, the data access matrix is

invertible and can be used directly to transform the loop nest, as we show in

Section 4. In general, however, this matrix may not be invertible, and the

techniques of Section 5 must be used to produce an invertible matrix for the

transformation that respects program dependence; this is done in Section 6.

In Section 7, we discuss how code can be generated after loops have been

restructured according to our methods. We present experimental results in

Section 8 that demonstrate thlat our methods work well on programs of

practical interest such as routines from the BLAS (Basic Linear Algebra

Subroutines) library [Coleman and van Loan 1988]. Finally, we discuss

related work in Section 9.

2. OVERVIEW OF NUMA COMPILATION

In this section, we give an overview of our compilation strategy for NUMA

architectures. We also introduce a key data structure called the data access

matrix.
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2.1 NUMA Compilation

Our compiler accepts programs written in Fortran-77 extended with data

distribution declarations that specify how arrays are to be distributed across

the local memories of the machine. We support most of the data distributions

commonly used by programmers of NUMA machines, such as wrapped and

blocked column and row distributions. In a wrapped column distribution, the

columns of an array are distributed in a round-robin manner to the proces-

sors: if P is the number of processors, then processor O gets columns O, P, 2P

and so on, while processor 1 gets columns 1, P + 1,2P + 1,etc. Most of the

examples in this article use a wrapped column distribution. Blocked column

distribution is similar, except that a processor gets a contiguous set of

columns. We also support so-called 2D blocks in which rectangular subblocks

of the array are distributed to the processors [Hiranandani et al. 1991], but

for lack of space, we will not consider them any further.

Data distributions can be specified precisely using a distribution function.

Definition 2.1 A distribution function is a function from array indices to

integers between O and P-1, where P is the number of processors in the

machine. An array dimension is a distribution dimension, if the dimension is

used in the distribution function for the array.

For example, the distribution function for the wrapped column distribution

of a 2D array is Wz(i, j) = j mod P, and the second dimension of the array is

a distribution dimension.

To understand the need for loop restructuring, consider the program in

Figare la, which is a simplified version of the SYR2K code discussed

in Section 8. Assume that both A and B have a wrapped column distri-

bution. Distributing iterations of the outer loop among the processors

(Figure lb) results in processor p executing iterations p, p + P, etc. Consider

accesses to elements of array B. Each iteration of the outer loop makes

Nz( b – b/P) nonlocal accesses, and the total number of nonlocal accesses is

NINzb(l – I/P).

The ownership rule uses data decomposition information to generate code.

A processor is involved in the execution of an iteration (i, j, k) if it owns any

of the elements referenced in the body of the loop in that iteration. Therefore,

for/ =0, N7 – 1
forj=i, i+b–1

fork= O, Nz–l
B[i,J – i] = B[\,j – I] + A[i,J + k]

(al

foru=O, b–7
forv=u, u+ N7+Nz–2

forw=O, N7–1
B[w,u] = 6[w,u] +- A[w,v]

(c)

for i = p, N1 – 7, step P
forj=i, i+b–1

fork= O, Nz–l
B[i,j – I] = BII,j – i] + A[i,J + k]

(b)

foru=p, b–l, step P
forv=u, u+ N7+Nz–2

read A[ * ,v];

forw=O, N1–l
B[w, u] = B[w, u] + A[w, v]

(4

F]g. 1. Transformation and code generation for a simple example.
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processor p has work to do in iteration (i, j, k ) if (j – i) mod P = p (it must

update an element of B) or if (j + k ) mod P = p (it must send an element of

A to whichever processor is up}dating B in that iteration). This is accom-

plished by placing these conditional tests in front of the statement and

having all the processors execute all iterations “looking for work to do”

[Callahan and Kennedy 1988; Rogers and Pingali 1989]. In simple programs,

these conditional tests can be optimized away, but in general they must

be executed at run-time, which is inefficient. Moreover, in our program, the

code cannot make use of block transfers of elements of A since the elements

of A referenced during one iteration of the j loop are mapped to different

processors.

Now, consider the program of Figure lc. This program computes the same

function as Figure la, but if we distribute the outermost loop among the

processors as before (Figure Id), there are no nonlocal accesses to B. There

are nonlocal accesses to A, but these can be performed using block transfers

since the subscript in the distribution dimension of A is invariant in the

innermost loop. The loop transformations described in this article transform

the program of Figure la to that of Figure lc. Given the transformed

program, the code generation techniques described in Section 7 generate the

parallel code shown in Figure Id.

2.2 Data Access Matrix

Since the transformations are driven by the data access patterns, it is

convenient to define a data structure to represent array subscripts in a loop

nest in a convenient way. This d~ata structure is called the data access matrix.

It is used by our loop-restructuring system as the starting point for determin-

ing what transformations to a~pply to the loop nest. For the loop nest in

Figure la, the data access matrix is

()–110
011
100

This matrix represents the subscripts in the sense that the product of the

data access matrix with the column vector [i, j, k IT yields a column vector in

which each element is a subscript from the program. For our example, this

product is the column vector [j – i, j + k, i ]T which corresponds to the three

subscripts of the program. Constants in a subscript are omitted from the

corresponding entry in the data access matrix.

The order in which these subscripts are represented in the data access

matrix is important and corresponds to an estimate of their relative impor-

tance for achieving good performance. A reasonable heuristic is to give

highest importance to subscripts in the distribution dimension(s) of arrays; in

our example, the subscripts j – i and j + k dominate the subscript i since
they occur in the distribution dimensions of arrays B and A. Notice that

~ – i occurs twice, but j + k occurs only once. Therefore, we let j – i domi-

nate j + k. This yields the data access matrix shown above.
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The technical development in the rest of the article is independent of how

subscripts were ordered to obtain the data access matrix. Additionally, a

subscript that is “overly complex” for any reason (such as a nonlinear

function of loop indices) maybe omitted from the data access matrix without

affecting correctness.

3. LOOP TRANSFORMATIONS AND INVERTIBLE MATRICES

In this section, we show how invertible matrices can be used to model the

loop transformations of interest in the NUMA context. Consider a simple loop

nest:

for f=l,3
forj=l,3

A[2i+4j, i+5j]=j;

It is to be restructured to the form

foru=6,18step2
for v = u/2 + max(3[(u – 6) /4], 3),

u/2 + min(3[(u – 2) /4], 9)
step 3

A[u, v] = (2v – u)/6;

To determine how to perform the transformation, consider the iteration

spaces of the two loops, shown in Figure 2. Since the bodies of both loops have

the same statement, we must ensure that the work done in any iteration of

the original loop nest is done in exactly one iteration of the new loop nest.

Therefore, we must construct a one-to-one mapping from the old iteration

space to the new one. Moreover, every iteration of the new loop nest must

correspond to some point in the old iteration space, so the mapping must be

an onto mapping. In other words, we must construct an invertible mapping

between the two iteration spaces. One such mapping can be described con-

cisely by the following set of equations, written in matrix form:

The mapping can be represented using an invertible integer matrix be-

cause it is a linear, integral, invertible mapping between the two iteration

spaces.
The use of invertible matrices to model loop transformations is a general-

ization of the unimodular approach which is used to model loop interchange,

skewing, and reversal [Banerjee 1990; Wolf and Lam 1991 b]. Invertible
matrices include unimodular matrices as a special case and permit us to
model loop scaling, as well. An example of this transformation, which re-

places a loop index with an integer multiple of the loop index, is shown below

fori=l,3 foru =2,6,2
A[2*i] =i A[u]= u/2

(a) original code (b) loop scallng

Loop scaling may introduce integer divisions, as is shown in the example,

but these operations can be strength reduced and replaced with additions.
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1-----
j
3000

2000

1000

123i

(ij) -+ (u,.)

(1,1) + (6,6)

(1,2) + (10,11)

(1,3) + (14, 16)

(2, 1) + (8,7)

(2, 2) + (12, 12)

(2, 3) + (16, 17)

(3, 1) + (10,8)

(3,2) + (14, 13)

(3,3) + (18, 18)

v

18 0

17 0

16 0

15
14
13 0

12 0

11 0

10
9
8 0
7 0

6 0

6 7 8 9 101112131415161718u

Fig.2. Mapping between iteration spaces.

Like skewing or reversal, loop scaling is not particularly interesting in

isolation, but combined with the other transformations, it lets us do whole-

sale loop restricting for NUMA architectures.

The algorithm for generating a restructured program starting from a loop

nest and an invertible mapping is given in Li and Pingali [ 1992 b]. This

algorithm is nontrivial since the new loop nest must traverse points in the

new iteration space in lexico~aphic order, and the starting point, ending

point, and step size of a loop in the restructured loop nest can depend on only

the loop indices of outer loops (for instance, the values for the outermost loop

must be loop constant). It is not immediately obvious that this can be done for

any invertible matrix T. Fortunately, the iteration space of the loop nest

forms what is called an integer lattice; by applying some results from integer

lattice theory, we can easily construct the reauired loop nest.

Since invertible matrices are closed under-matrix p~oduct, it follows that

any sequence of these loop transformations (permutation, reversal, skewing,

and scaling) can also be modeled as an invertible matrix. This means that the

problem of performing the right sequence of loop transformations now re-

duces to that of finding an appropriate invertible matrix that models the

desired sequence of transformations. We show how to do this next.

4. INVERTIBLE DATA ACCESS MATRICES

In this section, we consider the simple case where the data access matrix is

invertible. Consider the program of Figure 1 again. The data access matrix

for the program is X.

(1

–110
x“ 011

100
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It is easy to verify that X is invertible; the result of transforming

the source program using X as the transformation matrix was shown in

Figare lc.

Consider what happens when code is generated for the new loop nest by

distribution iterations of the outermost loop among the processors in a

round-robin manner. Since the outermost loop index is also the subscript of

the distribution dimension of array B, all references to B will be purely local.

We cannot accomplish this for both A and B simultaneously since the

subscripts in the distribution dimensions of A and B are different; therefore,

there will be nonlocal accesses to A. However, since the subscript in the

distribution dimension of the reference to A was placed second in the data

access matrix, this subscript in the new loop nest corresponds to the second

loop index, and we can perform block transfers from accesses to A; as was

shown in Figure Id.

For future reference, we define the following notion.

Definition 4.1 Given an array reference, an array subscript is normal with

respect to loop i if it is equal to the loop index variable i.

In this example, the data access matrix yielded the transformation without

any complications. This is not the case in general. First, the data access

matrix may not be invertible. We handle this case in Section 5, Second, the

transformation suggested by the data access matrix may violate one or more

data dependence. We take care of this problem in Section 6. In both cases,

the goal is to produce an invertible matrix that retains as many rows of the

data access matrix as possible.

5. NONINVERTIBLE DATA ACCESS MATRICES

In general, the data access matrix is not invertible, so it cannot be used

directly to transform the loop nest. The techniques in this section convert

such a matrix into an invertible matrix that retains as many rows (sub-

scripts) of the data access matrix as possible. This is done in two stages—first,

we eliminate linearly dependent rows from the data access matrix using

algorithm BasisMatrix, and second, we pad this reduced matrix with addi-

tional rows using algorithm Padding, to get a matrix that is invertible. The

details of these algorithms can be found in the associated technical report;

here we outline what these algorithms do.

5.1 Basis Matrix

It is easy to design an inefficient algorithm that takes a data access matrix
and selects as many hnearly independent rows as possible; we simply go

down the rows of the matrix in sequence, discarding a row if it is linearly

dependent on the rows before it, and keeping it otherwise. It is important to

traverse the rows in sequence since it ensures that less important rows are

discarded in favor of more important ones. For future reference, let us call the

resulting matrix the basis matrix corresponding to the data access matrix.

Definition 5.1 The basis matrix of a data access matrix A is the first row

basis of A.
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Input: An m x n data access matrix A.
Output: An m x m permutation matrix and the rank of A.

Algorithm BasisMatrix(A): (PermMatrix, Rank)

begin
P = 1,where I is the m x m identify matrix.
done = false;
i=l;

While not done do
I’Consider the submatrix A[i: m, i: n]* I

Search for the first j > i such thatA[j, i: n] # O
If no such j exists Then

done = true;
Else

If j # i then
Exchange A[i, 1: n] with A[jj 1: n]
Exchange iD[i, 1: m] with P[j, 1: m]

End-If
Apply the elementary column operations to make

A[i, i] nonzero and A[i, i + 1: n] zero.
i=i+l;

End-if
End- While
return (P, i – 1);

end

Fig. 3. Computing a basis matrix

The algorithm described informally above is simple, but it is expensive to

keep checking rows for independence. A more efficient algorithm is obtained

by using a variation of computing the Hermite normal form [Li and Pingali

1992a]. A detailed understanding of this algorithm is not important for

reading the rest of the article, so we give an informal description of what it

does. Given a data access matrix, algorithm BasisMatrix in Figure 3 returns

a permutation matrix P and the rank d of the data access matrix (the

number of linearly independent rows). The first d rows of the permutation

matrix P tell us which rows of the data access matrix are in the basis matrix.

The following example should make this clear.

Consider the data access matrix

[

11–10

)

X=22–20.

001–1

This data access matrix can arise from the following program:

for i=...
for j=...

for k=...
for l=...

R[i+j–k,2i +2j+2k, k-/]=...
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Input: An m x n basis matrix B.
Output: An (n – m) x n padding matrix H.

Algorithm Padding(B): PadMatrix

begin
H = 1, where I IS an n x n identity matrix.
Fori=l, mdo

1’ Consider the submatrix B[i:m, I:n]* I
apply the elementary column operations to make

BII, i] nonzero and B[i,i + 1: n] zero.
If columns i and j have been exchanged Then

exchange rows i and j of H
End-If

End-For
return (H[m + 1: n, 1: n]);

end

Fig. .4. Computmg a padding matrix

Algorithm Ba.sisiWatrix(X ) returns the permutation matrix

H100
I’=ool

010

and rank d = 2. The first two rows of the permutation matrix tell us which

rows of A form a linearly independent basis: the position of the nonzero entry

in these rows of P indicates which row of A is in the basis. In this example,

the first and third rows form the basis matrix

(~=ll–lo

1001–1”

The significance of this in terms of transformations is that only the first and

third subscripts can be normalized. This is reasonable because the subscript

2i + 2j – 2k is just a multiple of the subscript i + j – k.

5.2 Padding Matrix

To extend the basis matrix to an invertible matrix, we need to add additional

mutually indepedent rows which are also independent of the rows of the basis

matrix. There is some flexibility in the choice of the padding matrix, and we

will use this flexibility to our advantage in the next section when we discuss

dependence. Algorithm Padding in Figure 4 constructs one possible padding
matrix as follows. It is well known that for a full row rank matrix, there exist

m columns t~at are linearly independent. We simply need to pad these

columns with O and the rest of the columns with columns from the ( n – m ) x

(n – m) identify matrix 1. For the above program, since the first column and
the third column are linearly independent, the padding matrix is

(~=o loo

10011”
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The mapping between the old and new iteration spaces is

In the transformed program shown below, the reference becomes

R[ u, 2 u, u ], and second index is not normalized.

for u=...
for v=...

for w=...
for z=...

R[U,2U, V1

6. DATA DEPENDENCE

The result of Section 5 shows that a basis matrix can always be padded to

yield an integer matrix. However, there is no guarantee that the transforma-

tion corresponding to this final matrix is legal, because this transformation

may violate data dependence.

There are three kinds of data dependence between statements. A dataflow

dependence exists when one ShlkIIM311k assigns to a variable read by another

statement. A data antidependence exists when one statement reads a vari-

able that is reassigned later by another statement. A data output dependence

exists when one statement assj gns to a variable that is reassigned later by

another statement. A data dependence in the loop nest can be represented by

a distance uector or direction vector. For example, the distance vector

tells us that the dependence is between successive iterations of the innermost

loop. A dependence vector has the property that its leading nonzero is always

positive; a legal transformation must preserve this property for each depen-

dence, since the source of the dependence must be executed before its

destination. More information cm data dependence and techniques of depen-

dence analysis can be found in [Banerjee 1988].

To understand the legality of transformations, consider

a basis matrix, and

Ho
DA= o,

\l)

the dependence matrix. Each column of the dependence matrix represents the
distance vector of a dependence in the loop nest. In our example, there is just

one dependence. If T is an invertible matrix representing a loop transforma-
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tion, it is easily shown that TD is the dependence matrix of the restructured

loop nest; therefore, the leading nonzero element in each column of TD must

be positive. By looking at the product

we can see at once that A cannot be padded to give us a transformation that

respects data dependence. The intuition is that the first two rows of A

determine the two outermost loops of the transformed loop nest. In the

original program, the dependence was carried by the innermost loop, but in

the new program, the dependence is “carried” by the second loop. Unfortu-

nately, the negative value of the second dimension of ~~ means that the

source of the dependence will be executed after the sink. Clearly, there is

nothing we can do in the inner loops that would remedy this situation, so it is

impossible to pad A to yield a legal transformation.

To get around this problem, we proceed in two steps. We start with the

basis matrix and use algorithm LegalBasis to produce a new basis matrix

that does not violate dependence. Then, we pad this matrix using algorithm

LegalInvt to yield the final transformation. In this article, we discuss only the

case when dependence are represented by distances; it is straightforward to

extend these results to dependence directions [Li and Pingali 1992a].

6.1 Generating a Legal Basis

Algorithm LegalBasis, shown in Figure 5, takes a basis matrix and checks

each row against the dependence. For example, consider the product of the

first row and DA. This gives us a row vector in which entries can be positive,

zero, or negative. If an entry is positive, it means that the corresponding

dependence will be carried by the new outermost loop. Therefore, the struc-

ture of the inner loops does not matter as far as this dependence is concerned,

and we may delete it from the DA matrix for the rest of the algorithm. If the

entry is zero, then the dependence will not be carried by the potential

outermost loop, so we leave the dependence in the DA matrix. However, if we

have a negative entry, the dependence is “carried” by the potential outer loop,

but the order of the iterations is wrong, Notice that if all of the entries of the

row vector are O or negative (intuitively, for all dependence, the potential

outer loop either does not carry the dependence, or the source of the depen-

dence is executed after the sink), we can simply reverse the direction of the

loop. Problems arise only if some entries are positive and others negative—in
that case, we cannot keep that row of the basis matrix, and we delete it from

the basis matrix. For the above example, LegalBasis (A) generates the basis

6.2 Legal Padding Matrix

To pad a legal basis matrix, we need to satisfy two constraints. First, any row

added must be linearly independent of other rows, so that the final matrix is
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Input: An m x n basis matrix B
and a dependence matrix D.

Output: Alegal basis Matrix.

Algorithm Legs/Basis(B,D): BasisMatrix

begin
Let B, be the ith row of B

and d, be the ith column of D.
Fori=l, m

fT=B, D
If each element of f is non-negative then

D=D – d,, where f[j] >0
Elseif each element of f is non-positive then

B,= (–1) B,;
D=D – d), where f[j] <0

Else
B= B– B,;

End-if
End-For
return B,.

end

Fig. 5. Computing a legal basis matrix.

invertible. Second, the row must not violate dependence constraints. Once a

new row has been added during padding, all dependence carried by the loop

corresponding to this row may be dropped from consideration when filling in

the rest of the matrix. When there are no further dependence to be satisfied,

we can apply algorithm Padding of section 5.2 to complete the generation of

a legal, invertible matrix.

As an example, consider the basis matrix B = (– 1 1 O) which is legal with

respect to the dependence matrix

M00
D= lo.

11

The first dependence is carried by the new outermost loop represented by the

first row of B and can be dropped from consideration for the rest of the

procedure. The inner product of the first row with the second dependence is O,

meaning that this dependence is not carried by the new outermost loop;

therefore, it must be taken into account when padding the matrix. To pad B,

we need to find a row whose inner product with the second dependence vector

is nonnegative. In the geometric sense, the angle between the two vectors

must be less than or equal to 90 degrees. Thus, the general problem can be

stated succinctly as that of finding a vector that is linearly independent of the

existing row vectors in the basis matrix and within 90 degrees of each
dependence vector.

It is not immediately clear that such a vector exists; fortunately, algorithm

LegaUnvt in Figure 6 gives a positive answer by computing such a vector
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Input: An m x n legal basis matrix B
and a dependence matrix D.

Output: An n x n legal Invertible matrix T.

Algorithm Legallnvt(B,D) : Matrix

beg!n
/’ Let B, be row i of B, and d, be column I of D* I
Fori=l, m

fT=B,D
D=D –d,, where f[]] >0

End-For
r=m+l,
While D is not emp~ do

z T = the baws matrix of DT;
find the first e~ that IS not orthogonal to D;
x = CZ(ZTZ) 7ZTe~;

where c is a positive integer that makes x
an Integer vector.

fT = xTD; /’ffi] > 0’/
D=D – d,, where f[]] >0
B, = XT;
r=r+ l,”

End- While

H = Padding(B);
return (append(B, H)):

end

Fig. 6. Computmg a legal mvertlble matrix.

using a standard result about projections. This vector can be written as

x = cZ( Z~Z) - lZ~eh for some positive scaling integer c that makes all of the

entries integers, where e; = [0, O, . . . . 1, . . . . O], with the 1 in the ith position,

and Z is a column basis from D.

.i

i

k

For our example, the remaining dependence to be satisfied is es. The new

row vector for the padding is x = es. Since the dependence is carried by the

loop corresponding to this new row vector, we can drop the dependence from

consideration now. The dependence matrix is empty at this point. The new

legal basis matrix is

B1 =
[

–110

1001”
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Then we can use the algorithm Padding to produce an invertible matrix. The

final matrix

M–110
T= 001

110

is a linear, invertible matrix, and the corresponding transformation satisfies

all of the dependence.

The correctness of Algorithm LegalInut follows from the following theorem.

THEOREM 6.1 The invertible matrix returned by algorithm LegalInvt is

consistent with program dependence.

PROOF. Notice that the dependence vectors that need to be satisfied are

orthogonal to the row vectors of the basis matrix. If we can find a vector from

the subspace spanned by the dependence vectors, then this vector must be

orthogonal to the basis rows therefore linearly independent of the existing

row vectors. The invariants of the while-loop are that AD = O; the rows of the

A are linear independent; and for every column d, of D, e~d, >0. Let

d, = Zy for some y since Z is a basis of the columns of D. Since x =

cZ(Z~Z)-lZ~eh and AZ = O, Ax = O. Since e~d, > 0, we conclude that xTd,
> 0. After each step, the rank of the column space of D decreases at least by

one; so the size of D is decreasing, and the algorithm will terminate. ❑

As a final remark, we note that the choice of the padding matrix in this

article is quite arbitrary. For a machine in which processors have a first-level

cache, there is the obvious possibility of selecting the padding to improve

cache performance by incorporating results on blocking of nested loops

[Gannon et al. 1988; Schreiber and Dongorra 1990]. We leave this for future

work.

6.3 Direction Vectors

Direction vectors provide a conservative approximation when the distance of

dependence cannot be detected at compile-time. They can be represented by

signs “ <”, “ >”, “ =”, and “*”. “ < “ means that the distance is positive, “ > “

negative, and “*“ unknown. The leading nonzero of a direction vector is

positive.

The algorithm in this article can be expended to handle direction vectors.

For lack of space, details can be found in the associated technical report [Li

and Pingali 1992a].

7. NUMA CODE GENERATION

Once the program has been transformed by access normalization, we must

generate the code that will run on each processor. We generate the same code

for each processor, but this code is parametrized by the processor number so
that each processor does only the work for which it is responsible.

The general technique for partitioning the iteration space of the loop nest

among the processors is called tiling. Here, we will restrict ourselves to the
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I–p
forj=l, u fori=~ ~1- P+p, for i = max(l,p * S),

u, mm(u, (p + 1)4. S – 1)
step P

(a) unh step (b) task P for wrapped distribution (c) task p for blocked dstnbution

for i = 1,u, steps fori=l+ no-s, for I = max(l,p * S),
u, mm(u, (p + 1) v S – 1),

step P I (P,s) *s steps

(d) non-unit step (e) task p for wrapped distribution (f) task p for blocked dlstnbutlon

Fig 7 Distributed loops among processors

special case of wrapped and blocked distributions introduced in Section 2. For

these distributions, it is sufficient to distribute the iterations of the outermost

loop of the transformed loop nest among the processors. Consider the first

row of the transformation matrix: one of the following cases must be true.

—The row was present in the data access matrix, so it corresponds to a

subscript in the original program, and this subscript is in a distribution

dimension.

—The row was present in the data access matrix, but it is not a distribution

dimension.

—The row was introduced by padding.

In cases (ii) and (iii), access normalization cannot exploit locality, and we

generate code simply by assigning iterations to processors in a round-robin

manner. This code can still exploit block transfers. For case (i), an iteration

should be executed by a processor if the corresponding data element is

mapped to its local memory.

First, consider the case when the step size is 1. For a wrapped distribution,

processor p owns the data segments p, p + P, p + 2P, . . . etc., where a data

segment is a column in the wrapped column distribution or a row in the

wrapped row distribution. Since the iterations that access the data segments

on processor p are assigned to processor p, it is easy to verify that the

iterations executed by processors p are the ones shown in Figure 7b. The

lower bound [(1 – p)\( P)] * P + p is the first iteration between 1 and u that

belongs to process p.

When the step size is not 1 (Figure 7d), we must solve a linear congruence
for the wrapped distribution. Assume that the step size is positive, since the

solution can be easily extended to handle the case when the step size is

negative. The iterations can be represented by i = 1 + n * s where n is a

parameter with integer values. The iterations that belong to process p are

these satisfying the equation 1 + n * s = p (mod P). Using results from

number theory, we know that when the g.c.d. of s and P (written as (s, P))
divides (1 – p), there is an infinite number of solutions in the form of

n = no + t* P/(s, P) for some integer solution O < no < P\(s, P) and integer

free variable t.However, only certain t’s are solutions for iterations within
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the loop bounds. Since 1 s i s u and i = 1 + (n. + t * P/(s, P))* s, the range

of t is [(–rZO)/(P/(S, P))l = O < t s [(u – 1 – no * s)/(P/(s, P)* s)1. There-

fore the loop for processor p is as shown in Figure 7e.

Given this assignment of iterations to processors, we must generate syn-

chronization instructions to take care of dependence carried by the outer-

most loop and insert block transfers wherever possible. Inserting block

transfers is similar to message vectorization in distributed-memory machines

or block-invalidates for software cache-coherent schemes. These steps are

routine [ Gerndt 1989; Midkiff and Padua 1987; Rogers 1990] and are omitted

from this article.

8. EMPIRICAL RESULTS AND PERFORMANCE ANALYSIS

In this section, we report the performance of our techniques on routines from

the BLAS library. The target machine is a BBN Butterfly GP-1OOO. On this

machine, a processor can access its local memory in about 0.6 microseconds,

but a nonlocal access takes about 6.6 microseconds even in the absence of

contention in the network. For block transfers, the startup time is about 8

microseconds, and after that, a byte is transferred every 0.31 microseconds

[BBN 1989]. Our compiler takes as input Fortran-77 programs with data

distribution information, and it generates C code for each processor; this node

program is compiled into native code using the Green Hills C compiler

(Release 1.8.4). The C! compiler performs only conventional code optimiza-

tion, so our experimental results are not skewed by any restructuring

performed by this compiler. We will use pseudocode in discussing examples.

For the GEMM code, our techniques are successful in eliminating nonlocal

accesses significantly, so block transfers contribute just a small amount to

overall performance. In the SYR2K code, the reduction of nonlocal accesses is

less significant, so block transfers of nonlocal data are important for good

performance.

8.1 GEMM

General matrix multiplication (GEMM) is one of the central subroutines in

BLAS.

fori=l, Ff
forj=l, N

fork=l, N
C[i, j] = C[i, j] +A[i, k]* B[k, jl

All arrays are of size 400 by 400 and are distributed in wrapped-column

manner. By distributing the outermost loop among the processors without

doing any transformations, we obtain the graph labeled gemm in Figure 8a.

The data access matrix is

H
010
001,
100
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and the dependence matrix is

()

o
0.
1

The invertible matrix for the transformation is,

[)

110
001.
100

The transformed loop nest yields the

performance labeled gemmB (Figure 8a).

speedup without block transfers.

for u =p, N,step P
forv=l, N

read A[*, v];
forw=l, N

C[w, u] =C[w, u] +A[w, v]*/3[v, u]

following parallel

The curve labeled

code with the

gemmT is the

After access normalization, accesses to C and B are local. but there are

nonlocal accesses to A. Since three out of four data structure accesses in each

iteration have become local, the effect of block transfers is relatively small.

8.2 SYR2K

When remote accesses are necessary due to the problem structure, it is

beneficial to use block data transfers to amortize the cost of the startup time.

Consider the rank 2 k update SYR2K from BLAS [Coleman and Van Loan

1988]. The subroutine computes C = aA~B + aB~A + C. Suppose A and B

are banded matrices with band width b, then C is symmetric and banded

with band width 2 b – 1. The banded matrices A, B are stored in n X 2 b – 1

arrays Ah, B~ such that the elements A[i, j], B[i, j] are in A~[i, j – i + b –

1] and B~[ i, j – z + b – I]. C is symmetric so only the upper triangular
matrix is stored in an n X (2 b – 1) array C~ such that C[ i, j] is in C~[ i, .j – i].

The program is shown below.

fori=l, N
for j= i, min(i+ 2b – 2,N)

fork= max(i–b +1, j–b+l, l),
min(i+b–l, i+ b–l, N)

Cb[i, j–i+l]
+aAb[k, i –
+aA~[k, j –

Assume that we are

data access matrix is

=’Cb[i, j–i+ll
k+ bl*Bb[k, j–,k+bl
k+ b]* E?b[k,i-k+bl

given a wrapped-column mapping for each array. The

H
–110

01–1
001.
lo–l
100
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If we apply algorithm BasisMatrix, we get a base matrix B consisting of the

first three rows. However, the dependence matrix is [0, O, 1]~. The legal base

mapping is

which is B with the second row negated. This matrix is invertible. Using

B ~C~~l as the transformation matrix and parallelizing the new nest, we get

the following parallel code.

for u=p, 2b – 2, step P
forv=l–b, b–u

read A~[*, –u–v+ b], read Ab[*, –v+ b];

read f3h[ *, –v+ b]; read Bh[*, –u–v+ b];

for w = max(l, u + v), mln(h’, N + v)
Cb[–u–v +w+l, u]=cb[–u–v+ W+l, ul

+aAb[w, –u–v+b]*/3~[w, –v+b]
+aAb[w, –v+b]*Bb[w, –u – v+b]

The experimental results are shown in Figure 8b. The problem size is 500

with a band size of 200. Block transfers are relatively important in this

example, since there are many nonlocal accesses left in the transformed code.

A simple performance model explaining these results can be found in the

associated technical report.

9. SUMMARY AND RELATED WORK

This article is a contribution to the state of the art of compiling programs in

languages like HPF-Fortran that permit user-defined data decomposition for

parallel machines with a memory hierarchy. This compilation problem is the

goal of a number of projects including Fortran-D, Id Nouveau, Superb, and

Crystal [Callahan and Kennedy 1988; Hiranandani et al. 1991; Koelbel and

Mehrotra 1991; Li and Chen 1989; Mirchandaney et al. 1988; Tseng 1989;

Rogers and Pingali 1989; Zima and Chapman 1990].
The emphasis in these projects has been on code generation mechanisms

(such as the ownership rule discussed in Section 2) and on recognizing and
exploiting special patterns of computation and communication, such as reduc-

tions. Although it is well known that loop restructuring before code genera-

tion can improve performance, no systematic loop-restructuring mechanism

using a general loop transformation framework has been available.
We have attempted to exploit locality by matching code to the data distri-

bution across the machine. This is a static notion of locality and must be

differentiated from the dynamic locality that must be exploited on parallel

machines with coherent caches [Kendal Square Research 1991]. On such

machines, the key to high performance is data reuse, and the code must be

restructured to allow reuse of cached data wherever possible. Restructuring

techniques for doing this have been explored by Wolf and Lam [1991a]. Their

approach is complementary to the one described here. It is likely that scalable

parallel architectures will be organized as networks of processor-memory

ACM TransactIons on Computer Systems, Vol 11, No 4, November 1993.



Loop Restructuring for NUMA Computers . 373

pairs in which processors have an on-chip cache and perhaps a second-level

cache between the processor and its local memory. The techniques in this

article can be used to partition work and data among the processors; tech-

niques to enhance data reuse can be used to optimize uniprocessor cache

performance.

Our use of matrix techniques generalizes the unimodular matrix approach

[Banerjee 1990; Wolf and Lam 1991b]. Unimodular matrices were used by

Kumar et al. [1991] to eliminate outermost loop-carrier dependence in gener-

ating code for distributed-memory machines. In our work, we use invertible

matrices which include unimodular matrices as a special case. This lets us

model loop scaling as well, which is important in the NUMA context. In

general, it is easier to work with invertible matrices since there are fewer

constraints to be satisfied in generating invertible matrices, as opposed to

unimodular matrices. There are a number of other loop transformations like

distribution, jamming, and alignment that are useful in generating code for

parallel machines [Wolf 1989]. It would be useful to extend the matrix

framework to incorporate these transformations. Related work on loop trans-

formations can be found [Allen and Kennedy 1987; Ancourt and Irigoin 1991;

Gannon et al. 1988; Irigoin and Triolet 1988; Lamport 1974; Lu 1991; Padua

and Wolfe 1986; Porterfield 1989; Schreiber and Dongarra 1990; Whitfield

and Soffa 1991; Wolf and Lam 1991b; Wolfe 1989].

The data access matrix is a new concept introduced in this article, and

access normalization is useful in other contexts such as code generation for

vector machines. On many vector machines such as the CRAY-1 and CRAY-2,

vector loads and stores must have constant stride. Even on machines such as

the Fujitsu FACOM that support scatter-and-gather operations, it is more

efficient to use constant-stride accesses wherever possible since address

generation for vector elements is faster. The techniques in this article can be

used to accomplish this [ Li and Pingali 1992a].

We require the programmer to specify data distributions. Automatic deduc-

tion of this information for special programs has been investigated by

Balasundaram et al. [1990], by Gannon et al. [1988] on CEDAR-like architec-

tures, by Hudak and Abraham [1990] for sequentially iterated parallel loops,

by Knobe et al. [1990] for SIMD machines, by Li and Chen [1989] for index

domain alignment and by Ramanujam and Sadayappan [1991] who find

communication-free partitioning of arrays in fully parallel loops. These efforts

focus on deducing good data distributions for particular kinds of programs

such as fully parallel loops, and no general solution to this problem is known.

We speculate that it might be possible to start with the dependence matrix

and use our techniques in reverse, so to speak, to determine what a good data

distribution should be. The main difficulty in doing this is to ensure that the

resulting parallel code is load balanced.
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