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Abstract

The design of an optimol physical database entails art expo-
nential time complexity. This is the main reason which haa

shifted the attention of researchers to the problem of deter-

mining a good physical database design. Two kinds of ap-

proaches have been proposed to find a good physical design,

an optimizer and a knowledge based approach. An optimizer
based approach is characterizti by generating physical d-

signs on basis of extracted information from the optimizer.

The knowledge baaed approach is characterized by represertt-

ing the knowledge of experts, not necessarily knowledge with

regard to optimizers, into rules. In this paper we will pro-

pose a framework of a tool based on a combination of both

approaches which can assistin finding a good physical de-
sign. In our approach we deal in a fundamental way with

knowledge based aspects such as how to represent knowledge
into rules and how to combine different rules. Knowledge
based approaches for physical design take ad hoc deciaiona

for these subjects. We believe that these kinds of decisions

are essential for a knowledge based approach because the gen-

erated solutions are determined by the rules and combkiation

of rules. We will present a technique how to model knowl-

edge in a more proper way into rules. This makes it possible

to combine rules in a founded way with the Dempster-Shafer

theory, finally leading to a good proposrd for physical design.

Keywords: Physical databruw design, Generating storage

schemes, Dempster-Shafer theory, Modelling rules of thumb.

1 Introduction

The design of databases is a difficult and time consuming
process. The design process takes place on several leveIs.
One of these levels is the physical level. A typical task
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on this level is to determine the placement and access
structures for relations resulting in a storage scheme, A
siomge scheme contains the stomge conjigumtions of all

relations which are involved in the database. Comer
[Come 78] demonstrated that the subproblem of sec-
ondary index select ion, in determining an optimal stor-
age scheme, is NP-complete. In [ChBC 92a] it is proved
that even if the secondary index selection problem will
not be relevant, the problem of determining an optimal
storage scheme still remains NP-complete.

Because of the exponential complexity which is involved
in determining an optimal storage schemel, the field of
research is shifted to the problem of determining a good
storage scheme. A storage scheme is considered as good
if a competent human database designer would produce
the same or a worse storage scheme with the same avail-
able information. Finkelstein et al. [FiST 88] justify the
shift also with the argument that the problem specific-
tion and the problem that the designer actually wanta to
solve are usually not the same. The problem specifica-
tion is in general to handle the workload on a database
with minimal costs. To realize this task the designer
has to gather information such as the frequencies of the
statements of the workload, statistics of the stored data,
etc. The gathered information are in general approxi-
mations of the real values. So, solving the problem with
the approximated values will result into an optimal stor-
age scheme belonging to the approximated values and
not one to the real values.

Rxmghly we can distinguish two approaches in selecting a
good storage scheme automatically, the optimizer based
approach [FiST 88] and the knowledge based approach
~h 91,DaJe 88].

The optimizer based approach is characterized by the
selection of storage schemes on basis of information ex-
tracted from the optimizer. A great advantage of such

an approach is that the proposed storage schemes will
be used by the optimizer to ita full advantage. An-

I An ~Pti~ storagea&me u the storagescheme whi~ h= the

lowest cost in processing the workload defined on the database.
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other advantage of a tool based on this approach is the
independency between tool and optimizer. If the opti-
mizer changes the tool is adapted ‘automatically’. One
fundamental problem ofan optimizer based approach is
the entailed exponential complexity. Finkelstein et al.

[FiST /38] apply this approach to the optimizer of System

R. They developed a tool DBDSGN which aims to select
a good set of indices for each relation. Their tool could
avoid the exponential complexity problem because they
adopt the principles of System R. One of the principles
of System R which reduces the exponential complexity
considerably is that System R uses at most one index in
proceaaing aSELECT’ FROM WHERE part in a query.
In general the optimizer baaed approach can reapplied
for relative simple optimizers whose behaviour are pre-
dictable. Ifthis is not the case then all possible storage
schemes have to be passed on theoptirnizer.

The knowledge based approach is characterized by rep-
resenting the knowledge of experts in rules. These rules
are then sequentially applied to generate a good storage
scheme. A great advantage of such an approach is that

it can help to narrow the number of alternative storage

schemes which has to be explored in finding a good one.
The reason for this is that experts can recognize quickly

on the basis of experience and intuition that some stor-
age schemes will be bad while others are eligible as good.

However, tools based on such an approach have the fol-
Iowing more or less serious drawbacks.

● The generated solutions of the tool are dependent
on the knowledge of experts. The better the ex-
perts will be, the better the knowledge baaed sys-

tem will be.

● The tool must be kept up to date. This means that
if experts discover new rules of thumb this must
be processed because otherwise experts can gener-
ate better storage schemes or generate them more
quickly which would make the tool redundant.

● We are not sure whether the proposed storage

schemes will be used to its full advantage by the
optimizer.

Knowledge b=d approaches can be found in [RoSh 91,
DaJe 88]. The approach discussed in [Dale 88] takes

as input an entity-relationship scheme and a workload.
Then a set of rules is appIied to the input to generate
a number of candidate representations for relationships
between entity types. These candidate representations
are then further explored by applying another set of

rules and more afgorithrnic processing. The presented

approach in [RoSh 91] starts with a more gmwd in-
put. It takes as input a logical datab~e scheme and
the workload defined on the scheme. The approach con-

sists of two steps. The first step is based on the intuition
that database designers can produce quickly a number
of advantageous candidate storage organizations for one

single query on btasis of heuristics. The second step aims
to produce an inter nmliate between good storage orga-
nizations of the individual queries.

It is clear that the rough idea of the first step of the two

knowledge btased approaches [RoS1] 91, DaJe 88] is com-

parable and we believe that it is a good one. Howe\’er,

the problem is how to model the rules of thumb used by
database designers into knowledge rules and how to deal
with them. Rules of thumb have always an uncertain
character. For example, a database designer can use a
heuristic which says that (under some conditions) a cer-
tain subset of the available set of storage structures will

be good in 80% of all cases. This heuristic says noth-
ing about the remaining 209’0 which implies ignorance in

these cases. So, an adequate modelling of the first step

demands to take uncertainty and ignorance into account.

However, the approach in [RoSh 91] takes no uncertainty
into account while the approach in [Dale 88] deals with
a limited form of uncertainty. In [DaJe 88] a certainty
factor (abbreviated as CF) is associated with each rule
which lies between [-1,1]. The certainty factor is a nu-

meric measure of the degree to which a fact is believed
to be true (or fake). If two certainty factors CF1 and

CF2 are both positive (or negative) and are associated
with different rules concluding the same fact, then they

are combined using the formula of Bernoulli [GrSt 82] re-
sulting in the new certainty factor CF1 +CF2*(1 -CF1).
If two rules are conflicting then the certainty factor for
the consequent (then part) is achieved by subtracting
the certainty factors of the involved rules. Besides the
fact that the intuition and a formal foundation is miss-
ing of this step, this approach is not able to deal with
ignorance.

In this paper we adopt the idea of Finkelstein et al.
[FiST 88] that the generation of good storage schemes
should be made on the basis of information achieved
by the optimizer and we also adopt the idea of the au-
thors of the knowledge based approaches that knowledge
rules can narrow the search space in finding good stor-
age schemes. As a consequence we will present in Section
2 the architecture of a tool which is baaed on the inte-
gration of the optimizer and knowledge based approach.
In an integrated approach the emphasis lies on knowl-

edge =pects such as how to deal with uncertainty, ign~

rance and the combination of rules. We will present tech-
niques which are able to deal with these issues. These
techniques are applications of the Dempster-Shafer the-
ory [Demp 67,Demp 68], which has been mathemati-
cally founded by Shafer [Shaf 76]. Despite of the fact
that some practical and theoretical objections can be
made on this theory [Choe 90,Zade 84] we think that
the theory is of practical significance for our purpose.
More recently it has been shown in [HaFa 92] that some
critiques on the Dempster-Shafer theory sterns from a

confounding of two different views of the theory. For
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the computational aspects of tho throry we refer to
[Barn 81,Choe W,ShLo 87].

In Section 3 we will present the form that rules of thumb
have as well as how they can be modelled with the
Dempster-Shafer theory. The forms nre achieved by

analysing about 60 rules of thumb that are used by ex-
perts at the GAK for designing storage schemes. These
rules of thumb can be found in [\Valr 90]. Section 4 con-
siders the combination of rules. Some remarks conclude
the paper.

2 The Integrated approach

From the introduction it should be clear that the disad-
vantage of the optimizer based approach (the exponen-

tial complexity) is not present in the knowledge based

approach and that the last disadvantage of the lmowl-
edge based approach (if the preposed storage schemes
will be used by the optimizer to its full advantage) is
not present in the optimizer btased approach. This is the
motivation to propose a tool based on a combination of
these approaches called the integrated approach. We be-

lieve that a tool based on the integrated approach will
result in a more powerful tool than one based on pure a
knowledge based or an optimizer based approach.

The aim of the tool is to produce proposals for storage
schemes given a workload, a logical scheme, the permit-
ted storage structures, possibly other database charac-
teristics such as the cardinality of the involved relations,
number of available pages etc, and possibly requirements
put by the user. For example, the user can decide to put
an index on certain attributes which has to be adopted
by the tool. The architecture of the tool is given in Fig-
ure 1.

Let us fetch a glance how the tool can be related to its
users. After the tool received the cost estimations in-
volved in processing the workload of the candidate stor-

age schemes from the optimizer, it chooses the one with
the lowest cost and presents it to the user. The user may

possibly change some storage configurations and ask the
tool for a cat estimation of the modified storage scheme.

In that case the tool will check whether the modified stor-
age scheme has already been evaluated. If this is the case

the information will be given to the user otherwise the
scheme will be sent to the optimizer. Note, there is also
a possibility that the user can change the initial input
parameters. This can be useful if the user lms made bad
decisions with regard to the requirements.

The function of the knowledge system is to produce
proposals for storage schemes. When and how storage
schemes have to be produced is controlled by the tool.

The tool decides which storage schemes proposed by the

knowledge system will be sent to the optimizer for an es-
tinlat. iou of the invoivwi cost in processing the workload.

The tool Ims also as t.asli to control the invocations of
rules and rule groups.

The knowledge system consists of a rule base and a
knowledge base management system. The knowledge

b=e management system is responsible for the execu-
tion of rules in a proper way. The rule base consists
roughly of three rule groups:

1.

2.

3.

A group containing optimizer dependent inforrrw

tion which will be brought in by human experts
or gathered by rule group 3 of the knowledge sys-
tem. For example, several formulm can be used
by an optimizer for the estimation of the nurrt-
ber of p,age accesses involved in retrieving T tu-

ples [ChBC !)2b]. The information that optimizer
O uses formula F to estimate the number of page
accesses belongs typically to this group.

A group containing optimizer independent infor-
mation which will be brought in by human experts.
For example, in the selection process of secondary
indices the complexity reducing measures, which
can be taken, depend on the retrieving formula
which is used as illustrated in [ChBC 92 b]. The
information which complexity reducing measures
belongs to which retrieving formula will be stored
in this group.

A group which is able to gather specific informw
tion about optimizers. If this group succeeds in
deriving relevant information this will be stored in
group 1. This group contains for example infor-
mation how to decide which formula is used in es-
timating the number of page accesses involved in

retrieving T tuples. How this speciilc information
can be achieved will be demonstrated now.

Let us consider two well-known formulas prc+
posed by Cardenas [Card 75] and Bernstein
[BG WRR 81]. The formula of Cardenas looks as
follows: NPA = p(l - (1 - l/p)~), in which NPA
is the number of page accesses, p is the number
of pages required to store a relation and T is the
number of tuples which haa to be retrieved.

The formula of Bernstein looks as follows:

{

T for T ~ 4P
NPA = $(T+p) for }p<T~2p

P for 2p< T

To determine which formula an optimizer uses can

be done for example by formulating a query such
that the number of tuples which has to be retrieved
is about 2p and to offer the optimizer the query to

make an estimation about the involved number of
pages. If the optimizer estimates that the involved
numberof pages is about p then the optimizer used
probably the formula of Bernstein and if it will be
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Figure 1: Architecture of a tool for physical database design

about p( 1- ( 1- P)ZP) then probably the formula of
Cardenas is used. Once these kinds of informat ion

are derived then they will be stored in rule group
1.

The last rule group is a special one and will be espe-

cially used when an optimizer is connected with the tool

or the model of the optimizer will be changed. Suppose

the tool will be coupled to an optimizer O. If the tool

WM coupled before to optimizer O then some infornm-

tion will be stored in rule group 1. If this is not the case

the tool should involie the rules of rule group 3 to collect

relevant information such that it will be possible to use
the information of rule group 2. As already noticed, in

the selection process of secondary indices the con~plex-

ity reducing measures, which can be taken, depend on

the retrieving formula which is used. Suppose, for exam-

ple, that rule group 2 contains the information, which

complexity reducing meaaures have to be taken for each

formula. If the tool wants to exploit this information it

should find out which retrieving formula is used by the

optimizer. For this purpose rule group 3 can be invoked

by the tool.

We will now illustrate the interaction between tile tool

and the knowledge system in more detail. Suppose that

the tool invokes all rules of group 1 with the highest

‘belief’ (belief is a way to model uncertainty and will be

discussed in section 3) for a given set of input parameters.

Then the knowledge system will give a set of crmdidrtte

storage schemes. The tool may decide to invoke other

rules on basis of the received canrfidate storage schemes

because the time required to let the optimizer make an

estimation of the cost of the storage schemes may be too

large.

The advantage of the prop=ed tool is that we are sure

that proposed storage schemes will be used to its full

advantage and that we have to explore only a restricted

number of storage schemes. But, still two drawbacks of

the knowledge base remain, the tool must be kept up to

date and the generated solutions are dependent on the

experts. \Ve crm partly take these two drawbacks away

by puttil]g a functional requirement on the tool that it

h.w to be extensible, so that it will be easy to add new

rules to the tool or to improve existing rules.

The rules in the groups contain a certain belief and are

ranked on basis of these beliefs. This belief is a way to

model the uncertain character of rules of thumb which

are used by human designers for physical design. Rules

which contain facts will be given full belief. The rules and

combinations of rules produce candidate storage schemes

and gather information about optimizers. If they will

propose bad storage schemes and irrelevant information,

the tool will make bad choices. Thus the rules of thumb

have to be modellecl carefully into rules and the combi-

nation of rules is also essential.

s Modelling rules of thumb into

knowledge rules

In this section we shall take a ckxer look at the heuris-

tics which are usecl by designers of physical databases as

well as how to model them into knowledge rules. We be-

lieve that in our approach (and also in pure knowledge

breed approaches) an adequate rnodelling of heuristics

is essential because the generated storage schemes are
determined by these rules.

\\re start this section by taking a 100A at the heuristics
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Heuristic 1:

& phySiCid tXb]eS are S1llal] (< l~J,iLg&)

THEN
choose an lSAM storage structure al)ove
a B-tree storage structnre

Heuristic ?:

~ ruore than 1070 of the workload change the value

of an attribute

THEN
this attribute is not an index candidate

Figure 2: Examples of some heuristics as used at the
GAK

presented in [Walr 90]. Then we will define techniques
to represent these heuristics into rules.

Walraven ~Valr 90] has gathered about 60 rules of thumb
which are used by physic,al design experts at the GAK
office for the design of Ingres databases. After a rough
inspection of these heuristics we can r-makethe following
two observations:

● The experts have apparently no difficulties to
translate qualitative notions into quantitative mea-
sures because in most heuristics where a qualitative
notion is used, a quantification is given between
brackets. An example is given by heuristic 1 of
Figure 2.

● Two types of heuristics can be discerned. The first
type can be characterized in the following way:

~ condition THEN conclusion(s) (1)

For an example of this type of heuristic we refer
again to heuristic 1 of Figure 2.

Let C(a) be the extent (in %) to which a condition
has been satisfied. Then, the second type heuristic
can be characterized as:

~ C(a) z (<)z% THEN conclusion(s) (2)

In this heuristic z represents a constant value. For
an example of this type of heuristic we refer to
heuristic 2 of Figure 2. The value of z in this
heuristic is 10.

It is clear that the first observation makes the mod-
elling of the heuristics into knowledge rules easier be-
cause in general the representation of qualitative notions
into quantitative measures is a tough problem.

We will now concentrate on how to model the two types
of heuristics into knowledge rules. The first type of
heuristic (1) has almost the form of a knowledge rule
only the belief committed to the heuristic is missing.

Before we propose how to commit belief to a heuristic
we shall first introduce some definitions originating from

the Dempster-Shafer theory [Shaf 76].

Definition 3.1: Let SC be a hypothetical set consist-
ing of all permitted storage configurations for the
relations and let IP(SC) be the power set of SC,
then a function m : P(SC) z [0,1] is called a
basic probability assignment (bps) whenever

m(o) = o (3)

~ ?-n(s)=1 (4)
s~sc

The quantity m(S) is called S’s basic probability number

and it is understood to be the me~ure of the belief that
is committed exactly to the set of storage configuration
S. The total belief in S (Bel(S)) is the sum of the basic
probability numbers of all subsets SS of S. The following
definition describes the relation between belief and basic
probability assignment in a formal way.

Definition 3.2: A function Bel is called a belief jinc-
tion over SC if it is given by (5) for some bpa
m : P(SC) -t [0, 1].

Be/(S) = ~ m(SS) (5)
Ssc s

Note, a basic probability assignment induces a belief
function and conversely.

Example 3.1 Suppose SC = {Sl, S2, .... S.} and
we have a rule which provides the following bpa ‘S
m({Sl, Sz, S3}) = 0.5, m({S2, S3}) = 0.4 and m(SC) =
0.1. Then the following belief function can be con-
structed: Be/({S2, S3}) = 0.4, Bel({Sl, S2, S3}) =
0.9 and Bel(SC) = 1.0 0

In the following two definitions we will introduce the n-
tions of plausibility and ignorance.

Definition 3.3: The plausibility of a set of storage con-

figuration S, Pi(S), is defined as:

P/(S) = 1- Be/(+) (6)

Definition 3.4: The degree of ignorance with regard to
a set of storage configurations S, lg(S), is:

Ig(S) = IV(S) - BeI(S) (7)

Example 3.2 Consider the following bpa defined over
Sc={sl, sz, sa}.
m({S1}) = 0.2, m({S2}) = 0.2, m({Sz, Ss}) =
0.4 and m(SC) = 0.2. Then the corresponding be-
lief function is: Be/({Sl}) = 0.2, Bel({Sz}) =
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0.2, 13ei({Sz, S3}) = 0.6 and Eiel(SC) = 1.0.
To compute the plausibility of a set of storage configu-
ration S we will make use of the following formu]a:

P/(s) = E m( Sj )
sns,+a,s,~sc

The derivation of this formula from definition 3.3 is
straightforward.
Then, P/({Sl}) = 0.4, PI({SZ}) = 0.8, PI({SZ, S3}) =
0.8 and P/( SC) = 1.0 and the corresponding de-

grees of ignorance are: lg({Sl }) = 0.2, lg({Sz)) =

0.6, Zg({S2, S3}) = 0.2 and ly(SC) = 0.8 •1

We continue with illustrating how this theory can be ap-

plied in modelling the rules of thumb. Applying defini-

tion 3.1 to the heuristics of type (1) means that for each

heuristic experts have to indicate which storage configu-

rations are supported by the heuristic and the belief they

commit to it.

Example 3.3 Consider heuristic 1 of Figure 2. Sup-
pose that the belief in an ISAN[ storage structure for
small tables is 0.5 and the belief in a B-tree is 0.4. This
heuristic can be modelled then as follows:

~ physical tables are small (< 15pages)
THEN

ISAM storage structure; m({ISAill} ) = 0.5
B-tree storage structure; m({B-tree}) = 0.4

Sc; m(SC’) = 0.1

We shall explain the meaning of this rule with the follow-
ing example. Suppme we have a logical scheme consist-

ing of two relations RI and Rz, in which R1 is a small re-

lation. Then the rule supports all storage schemes which
have an ISAhl storage configuration for relation Rl with

a bpa of 0.5 whatever the configuration of Rz will be.
Storage schemes with a configuration of a B-tree for re-
lation RI are supported by a bpa of 0.4. The meaning of

m(SC) = 0.1 is that no statement can be made for the
remaining belief of 0.1, so we assign it to all possibilities.
The assignment of the remained belief to all possibilities
means that we do not know anything about the renmin-
ing possibilities. In this way we provide a technique to
model total ignomnce.

Note, the plausibility and the degree of ignorance with
regard to a set of storage configurations can be computed
straightforward. n

Note that the Dempster-Shafer theory provides an in-
tuitive and flexible manner to model heuristics because

if experts can not make choices between good storage
configurations it is possible to model this. This theory

provides the possibility to model exactly what you know

and what you do not know.

Let us analyse the heuristic of type 2. Suppose that, a

b~

1.0

‘~

------ ----- ----- ----- -

x 100?0

acfualpercents o

Figure 3: A possible function between the fraction sat-
isfying a condition and the bpa

is the actual percentage that satisfies the condition and
z the required percentage which h= to be satisfied for
the assignment of a non-zero belief to some conclusions.
Then the heuristic of this type implicates that the be-
lief in a conclusion depends on cr. In general, the larger
cx- Z, the stronger the belief in the conclusion will be.
Thus, the bpa in modelling heuristics of type 2 will be a
function of a. In general, the grow of bpa as function of
cx will have the form of Figure 3.

Example 3.4 Consider Heuristic 2 of Figure 2. Let
lC’(U) represent that a is an index candidate, Cw(a) the
percentage of changes on a by workload W and j(.) is a
function like the one in Figure 3. Then heuristic 2 can
be modelled as follows:

E Cw(a) > 10%
THEN

=(lC(a)); m({=(IC(a))}) = f(a)
Sc; m(sc) = 1– f(a)

To clarify the meaning of the = operator we will consider
the secondary index selection problem. Suppose we have
a relation R consisting of attributea {a, b, c, .... n} and
the placement of R is already determined. We have the
t.nsk to select the most advantageous set of indices for R.

So, in this case secondary indices are the only permitted

access structures. We will model SC now as the set con-
taining all pcssible subsets of {a, b, ... . n}, because these

are the sets of candidate index sets. Thus SC will con-
tain 2“ elements.

Sc = {(a), (b), ... . (n), (a,b), (a,c) .. . .. (a,n), . ...
(n-l,n),(a,b,c),.., (a,b,c, .. ..n)}

Applying heuristic 2 of Figure 2 on SC (under the As-
sumption that the condition is satisfied) means that
all index sets are supported with ~(a) ezcept the
sets which contain an index on attribute a because
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an index on a is not supported. Titus, -(l~~(a)) is

equivalent with all index sets which clo not contain
a. So, m({=(lC(a)))) = f(f}) cun be replaced by

m({(b), (c), . ...(n) .(b, c), . ...(b. n), ... .
(n - I,n), (b, c,d), .. ...(b..n)}), n)}) = f(u)
Note, the set =(lC(a)) contain s2”-1 elements.

To express that the index set (a) is the only one which is
not supported but for example the set (u, b) is supported
we use the notation rn({=(lc([a]))} ). ❑

An adequate modelling of heurist ics into knowledge rules
requires in our approach for each heuristic an associated
belief function. If experts can not estimate a belief func-
tion for an heuristic then the heuristic is probably not
sufficient ly crystallized out.

Note, facts can be modelled by assigning a bpa with the
value 1.0 to the fact.

Briefly, we can say that each knowledge rule will propose
a number of storage configurations for one or more tables.
In general, the proposals generated by different rules can
support each other or can be conflicting. How to combine
the proposals will be treated in section 4.

4 Combining of belief functions

In section 3 we have modelled heuristics into rule-s con-
taining belief functions. For combining the belief func-
tions we will make use of the combination rule of Demp-
ster. This rule is most accessible when it is expressed in
terms of the basic probability numbers, and especially
when these basic probability numbers are depicted geo-
metrically.

To make the discussion about the combination rule easier
we introduce the notion of focal storage configuration. A
storage configurate ion S is called a focal storage configu-
ration if m(S) >0.

Suppose ml is the bpa for a belief function Bell and m2
the bpa for a belief function Belz, both defined over SC.
The focal storage configurations of Bell are represented
by SOi, i = 1,2,..., k and the focal storage configura-
tions of Be12 are represented by STj, j = 1,2,...,1. A
graphical representation of both belief functions is given
in Figure 4 in which the bps’s of the focal storage con-
figurations are depicted as segments of a line segment
of length one. Figure 5 shows how ml and m? can be
orthogonally combined to obtain a square.

The total surface of the square is one. The surface of a
subsquare is the bpa assigned to the intersection of the
focal storage configurations SOi and STj ancl is achieved
by multiplying the values of m(SOi) and m(S~ ). If the
intersection between two focal storage configurations is

eIIIljtY we want to (assign the value zero to the bpa ac-
cording ddlnitioll 3.1 equation (3). This ‘B realized by
discarding all tlw suhsquares corresponding to an empty
intersection and normalizing the remaining surfaces of
the suhsqu arc%such that the sum oft he surfaces of these
sulwquares is one. This process is realized by the follow-
iug combination rule of Dempster:

m(s)= 1;-’ ml(SOi)7712(STj)
. .

SOi nti’~ z S

in which S is a non empty set and

I{ = z ml(SOi)mz(STj)
. .

SOi (laAj # 0

For a proof of the formula we refer to Bhaf 761. Kia
called ‘the normalization constant and m is c~ed the
sum of Bell and Be12.

How to apply the rule of Dempster in the context of phyr+
ical database design will be explained with the following
example.

Exmnple 4.1 Suppose we have a relation R with the at-
tributes {a, b, c, d, e, f} and the permitted storage struc-
tures for R are hashing, secondary indexing and verti-
cal frabmlentation. Assume further that there are two
knowledge rules proposing storage configurations for R
with belief functions Bell and Be/2 with bpa ml and m2

respectively.

Let SC1 be the possibilities for hashing, SC2 the possi-
bilities of secondary index sets and SC3 the possibilities
of vertical fragments. Note, the possibilities of secondary
index sets and the possibilities of vertical fragments are
all subsets of R (thus the power set of R).
Then SCl = {hash[a], kh[b], . . .. hatrh~), in which
hash[z] means hashing on attribute z, SC1 =
{ZS[:];IS[b], .. . . IS[fl, ZS[a, b], .. .. ZS[a, f], .. . . IS[e,-fl,
ZS[a, b,c], . .. .. IS[a, b, c, d, e, f]), in which lSIZ] means
that x is an candidate index set, and SC3 =
{v[a],v(b] , ....v~l. v[a, b], .. ..tr[a. fl, .. ..v[e. fl, v[a, b,c],...,
v[a, b, c, d, e, fl}, in which V[Z] means that x is a parti-
tion. SC is now defined as the union of SC1, sC’2 and
SC3 .
By lC(Z) we mean that attribute z is an index candi-
date. This implies all index sets which contain z. Some
other notation that will be used in the following are
hush(*), IS(*) and v(*). By the statement “hash(x)

is supported” we mean all elements of SC1 are sup
ported. Analogous, the meaning of” ZS(*) is supported”
and “v(*) is supported” ia that all elements of SC2 r~
spectively all elements of SC3 are supported.

Let rule 1 produce the following bpw
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Figure 5: Combination of two belief functions Bell and Eel?

ml({hash~b], IC(c, rf)}) = 0.5,

ml({=lC(e, ~), =v(*)}) = 0.3 ancl ml(SC’) = 0.2

Let rule 2 produce tbe following bps:
m~({hash[b]}) = 0.4, mz({IS[c, e, a]}) = 0.4 and

m2({u[a, b]}) = 0.2

kt us take a closer look at rule 1. The expression
IC(C, d) in ml ({hash[b~, ZC(C, d)}) = 0.5 means t.htdl

index seta which contain an index on c or d as well as
hashing on attribute b are supported which a bpa of 0.5.
The number of index sets which contains an index on c
ordia2s+2s -24=4&

The expression ml({=IC(e, f), =1:(*)}) = 0.3 means

that there is no support at all for any verticrd pmtition
and that there is no support for the index sets which
contain an index on attribute e or ~ with a bpa of ().3.
This implies support for lmshing and for all index sets
which are a subset of {a, b, c, d} with a bpa of 0.3.

Combining the two belief function leads to Figure 6.
ln this figure ml({-JC(e, f), -u(*)]) is replaced by its
equivalent m~({hash(*), =lC(e, f)}).

The normalization constant is achieved by summing the
bps’s of the subsquares leading to a non empty intersec-
tion. Thus, the normalization constant is 0.72. Then,

the combined bpa is: m({hc.sh(b)}) = ‘zo~~~+mos =
0.56, rn({IC[c, e,a]}) = 0.39, ancl m({v[a, b]})= 0.06.

On basis of the combination OF the two rules we can

conclude that the storage of the relation by hashing on

attribute b and the index set (a, c, e) has reasonable sup
port. The clivision of the relation in two subrelations

(u, b) and (c, d, e, ~) is weakly supported.

The tool has now the choice to aend several storage
configurations to the optimizer for an estimation of the
cost in processing the workload defined on the database.
Then, the tool will choose the one with the lowest cost.
For example, the tool may decide to send all storage
configurations with a belief greater than 0.8 to the op
timizer. An example of a storage configuration which
satisfies this condition is the storage configuration which
has h,ashing on b as placement and the index set [c, e, a]
as access structures. Note, this storage configuration has
a belief of 0.95. c1

The combination rule provides a mechanism to combine
several rules so that it is possible to select a good storage
scheme whether the rules are conflicting or supporting
each other. In the example above it is illustrated how to
deal with conflicting rules. For example, rule 1 does not
support any vertical partition while rule 2 supports the
partition (a, b).

5 Conclusions

\Ye propose a framework of a tool which can help
a dntab,ase designer in the selection of good storage
schemes. Tlw tool is based on the combination of an
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optimizer and a knowledge based approach. In this way
we profit from the advantages of both approaches.. In
a combined approach the emph=ia lies on the ,aspects
of the knowledge based approach because. the knowledge
rules and the combination of these rules are responsible
for the generation of candidate storage schemes. This
means that we have to model rules ancl to perform the
combination of rules carefully. \Ve have imalysed about
60 rules of thumb which are used by physical design ex-
perts at the G AK. We discovered that these heuristics
can be classified into two types and we provicle tech-
niques how to model these heuristics in a proper way into
knowledge rules taking unccrfaintrj and ignore ncc into
account. Then we propose to combine these rules with
the combination rule of Dempster which h,as a mathe-
matical foundation. The combination of rules which are
conflicting and rules which are supporting each other can
be treated in the same way. So, the foundation of a tool
for physical database design has been achieved.

Such a tool is more powerful because it may be connected
to more advanced optimizers than the tool presented in
[FiST 88]. The knowledge system of the tool contains
information which takes care of the exponential conl-
plexity. This information is achieved by modelling the
knowledge and experience of experts in a founded way
which fits better “in practice. So, the knowledge system
of the tool may simulate the knowledge imd experience
of experta better thtan for example in the approaches of
[DaJe 88,RoSh 91]. In general experts are able to gener-
ate a number of good storage schemes on basis of their
knowledge and experience for a given workload and a
logical scheme. The limited number of storage schemes
proposed by the knowledge system will be pm.sed on the
optimizer to determine the one with the lowest cost.

The foundation of the tool h,as as ac]vantage that pro-
posed storage schemes can be better understood and pos-
sibly maintenance of the tool is easier.

Topics for further research are the implementation of the
tool, the connection of the tool with Ingres and the ap-
plication of the tool in designing large databases.
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