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ABSTRACT 
The graph-based geometric constraint solving technique works in two steps. First the geometric problem 
is translated into a graph whose vertices represent the set of geometric elements and whose edges are the 
constraints. Then the constraint problem is solved by decomposing the graph into a collection of 
subgraphs each representing a standard problem which is solved by a dedicated equational solver.  
 
In this work we report on an algorithm to decompose biconnectedtree-decomposable graphs representing 
either underor wellconstrained 2D geometric constraint problems. The algorithm recursively first 
computes a set of fundamental circuits in the graph then splits the graph into a set of subgraphs each 
sharing exactly three vertices with the fundamental circuit. Practical experiments show that the reported 
algorithm clearly outperforms the treedecomposition approach based on identifying subgraphs by 
applying specific decomposition rules. 
 

1. INTRODUCTION 
Geometric models are data structures designed to represent and describe objects. The main properties 
encoded include geometric shape and topological properties.  
 
Computer Aided Design (CAD) systems are software applications built to help industrial designers in the 
product design cycle. Because the main activity of CAD systems is related to manage descriptions of 
objects, geometric models are at the core of such systems. Parametric CAD systems partially capture the 
design intent by defining functional relationships between dimensional variables and geometric elements, 
that is, by applying constraint-based geometric design.  
 
A paramount issue found in constraint-based geometric design is the constraint solving problem which 
can be roughly summarized as follows: Given a set of geometric elements and a set of constraints 
between them, place each geometric element in such a way that the constraints are fulfilled. The 
algorithms that solve geometric constraint problems are named solvers. The reader is referred to the work 
in [2, 9, 18], for an extensive review on geometric constraint solving algorithms. 
 
Among the existing solving methods we focus on constructive techniques. In these techniques the input is 
a geometric constraint problem represented as a geometric constraint graph. Then the graph is 
decomposed yielding as output a constructive plan, that is, a sequence of basic steps that describe how to 
build a solution to the constraint-based geometric problem. Basic steps correspond to elemental 
operations which are solved with dedicated algorithms. 
 
When decomposing geometric constraint graphs two different cases can be considered according to the 
graph connectivity. For 0 and 1 connected graphs, there is a smooth approach. We refer to [12] for the 
details. For biconnected graphs, the approach is far more difficult. In what follows we focus on this class 
of graphs. 
 
In this work we introduce a new algorithm to decompose biconnected tree-decomposable graphs 
representing either under- or wellconstrained 2D geometric constraint problems. The algorithm is based 
on the decomposition of a graph in the set of bridges induced by a fundamental circuit. It is inspired by 
the work of Miller and Ramachandran, [14], developed with the aim of finding the set of triconnected 
components of a given graph. The approach does not need a set of rules defined a priori which identify 
subgraphs with specific configurations. It figures out the decomposition by a direct computation First the 
algorithm computes a set of fundamental circuits in the graph. Then a fundamental circuit is conveniently 
selected and the graph is split into a set of subgraphs each sharing exactly three vertices with the selected 
fundamental circuit, following the tree decomposition technique reported in [13]. 
 



2 
 

The rest of the paper is organized as follows. In Section 2 we review some previous work related to 
graph-based, constructive geometric constraint solving methods. In Section 3 we recall basic terminology 
of graph theory, define the basic geometric constraint solving we are dealing with, and the tree 
decomposition of a constraint graph. Section 4 is devoted to the new decomposition algorithm. Section 5 
reports on the runtime resulting from empirically testing the algorithm. Finally, in Section 6 we offer a 
brief summary and outline future work. 
 
2. RELATED WORK 
Many attempts to provide general, powerful and efficient constructive graph-based techniques to solve 
geometric constraint problems have been reported in the literature. For an extensive review see the works 
in [5, 7, 8, 11, 16]. These techniques decompose the geometric constraint graph into a set of basic 
subgraphs where each of them represents a standard problem which can be solved by a fixed algorithm 
or an equational solver.  
 
Hoffmann et al. [7, 8] described a flow-based method for decomposing the graph of a geometric 
constraint problem based on degrees of freedom calculations. The method first introduces dense graphs 
which are considered the basic graphs that will not be further split. The algorithm decomposes a given 
constraint graph into a set of dense subgraphs using a network flow algorithm. This approach is general 
however operations needed to solve dense graphs can be arbitrarily complex and not necessarily have 
geometric meaning.  
 
A family of graph-based algorithms carry out the constraint graph decomposition by applying a set of 
predefined rules which preserve geometric meaning. These algorithms have a limited scope but are 
efficient and solve a substantial set of geometric constraint problems arising in constraint-based 
parametric modeling. Owen in[16] described a top-down algorithm for computing a decomposition of an 
arbitrary constraint graph. The algorithm recursively splits the graph into split components. The algorithm 
terminates when the graphs cannot be split further. At the end of the analysis the original graph has been 
decomposed into a set of basic subgraphs. The algorithm closely follows the triconnected components 
decomposition of [10]. In [13], it is proved that the worst case running time complexity of this algorithm 
is O(n2). 
 
Fudos and Hoffmann, [5], reported on two graph-based constructive approaches to solve systems of 
geometric constraints. The top-down method is roughly equivalent to the method by Owen, [16]. The 
bottom-up method, named reduction analysis, begins by computing a set S of basic subgraphs. Then 
graphs in S are iteratively merged until a unique graph which contains all the geometric elements in the 
problem is obtained. Fudos and Hoffmann claim the algorithm to have a O(n2) runtime complexity in the 
worst case.  
 
Gao et al. in [6], report on a method that from the constraint graph extracts a binary connectivity tree, 
called C-tree, according to a well defined set of rules. For each node in the C-tree, the left child represents 
a subproblem which can be solved. Then the subtree rooted in the right child is recursively visited and 
merged with the rigid body coming from the left child. The method is essentially equivalent to those 
described above. 
 
The tree decomposition of a constraint graph was introduced by Joan-Arinyo et al. in [13]. We shall 
review this concept in Section 3. Tree decompositions have been also useful from a theoretical point of 
view. Moreover, they are also a suitable representation for constructive plans. Tree decomposition is the 
technique underlying the graph-based geometric constraint solving framework SolBCN, [19], that has 
been used to develop the technique reported here. 
 
In these approaches, the graph decomposition is carried out by splitting it into three subsets of vertices 
that pairwise share just one element. These shared vertices are called hinges. In general, hinges are 
identified by an almost exhaustive search therefore it is a time consuming computation. Thus devising 
efficient algorithms based on direct computation of hinges would be a great accomplishment. 
 
3. PRELIMINARIES 
In this section we recall basic terminology of graph theory, define the basic geometric constraint solving 
we are dealing with, and the tree decomposition of a constrint graph. For more information we refer the 
reader to the works by Hoffmann et al., [9], Joan-Arinyo et al., [13, 12], Whitney, [21], Even, [3], and 
Thulasiraman and Swamy, [20]. 
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3.1 Graph Concepts 
A graph G = (V,E) consists of a set of vertices V , also called nodes, and a set of edges E. An edge e  E 
is a pair of vertices e = (vi, vj) such that vi, vj  V. Vertices vi and vj associated with and edge e are called 
the end vertices of e. In general, V (G) will denote the set of vertices and E(G) the set of edges of a graph 
G. A graph can be represented by a diagram in which a vertex is symbolized by a dot and an edge by a 
line segment connecting two dots. 
 
The number of edges incident on a vertex v is called the degree of the vertex, and is denoted by d(v).  
 
A walk in a graph G = (V,E) is a finite alternating sequence of vertices and edges [v0, e1, v1, e2, . . . , vn−1, 
en, vn] beginning and ending with vertices such that vi−1 and vi are the vertices bounding edge ei, 1 ≤ i ≤ n. 
A walk is a trail if all its edges are distinct. Note that any trail is itself a graph. A trail is open if its end 
vertices are distinct. An open trail is a path if all its vertices are distinct. A closed trail is a circuit if all its 
vertices except the end vertices are distinct. Clearly, vertices in a circuit have a cyclic order, that is, 
circuits C = {c1, c2, . . . , cn−1, cn} and C’ = {cn, c1, c2, . . . , cn−1} are the same circuit. Thus, once a circuit 
has been defined and a given vertex selected as the first in the cycle, we can consider that vertices are 
always labeled as C = {c1, c2, . . . , cn−1, cn} without loss of generality. 
 
A graph G = (V,E) is connected if there exists a path between every pair of vertices in G, otherwise G is 
disconnected. The maximal connected subgraphs of a disconnected graph G are the connected 
components of G.  
 
Let G = (V,E) be a connected graph. According to [20], we say that a vertex v  V is an articulation 
vertex if the subgraph induced in G by {V (G) − v} is disconnected. A vertex v  V is an articulation 
vertex if and only if there are vertices u,w  V , with u ≠ v and w ≠ v such that v is on every u − w path. 
 
A non-separable or biconnected graph G = (V,E) has no articulation vertices, otherwise it is separable. 
See [21].  
 
A biconnected component of a connected graph G is a maximal biconnected subgraph of G. A connected 
graph can be decomposed into biconnected components. For any biconnected graph G = (V,E), given a 
pair of vertices u, v  V with u ≠ v, there are, at least, two disjoint paths u − v. 
 
The connectivity of a graph G is the minimum number k of vertices that must be removed to disconnect 
G. If the connectivity of G is k, we write κ(G) = k. For a disconnected graph G, κ(G) = 0. For a connected 
graph G, we have κ(G) ≥ 1. A separable graph G has κ(G) = 1. For a biconnected graph G has κ(G) ≥ 2. A 
graph G with κ(G) ≥ 3 is called triconnected. Biconnected graphs can be decomposed into triconnected 
components.  
 
A graph is said to be acyclic if it has no circuits. A tree of a graph G is a connected acyclic subgraph of G. 
A spanning tree T for a graph G is a tree that connects all the vertices in V . The edges of a spanning tree 
T are called the branches of T. The edges of G that are not in T are called the chords.  
 
Let G = (V,E) be a graph with |V | = n and let G’ be a graph such that G’  G. Following [20], G’ is said to 
be a spanning tree of G if and only if G’ is acyclic, connected, and has n − 1 edges. 
 
Let G = (V,E) be a graph with |V | = n and |E| = m. Let T be a spanning tree to G with b1, . . . , bn−1 

branches and c1, . . . , cm−n+1 chords of T. The graph resulting from adding to T one chord, say ci, contains 
exactly one circuit C which consists of the chord ci and those branches of T that lie in the unique path in T 
between the end vertices of ci. The circuit C is a fundamental circuit of G with respect to the chord ci of 
the spanning tree T. 
 
The m−n+1 possible fundamental circuits C1, . . . , Cm−n+1 of G with respect to the chords of the spanning 
tree T of G is known as a set of fundamental circuits.  
 
Consider a graph G = (V,E). We say that G is embeddable in a surface Σ if G can be drawn in Σ in such a 
way that: (1) each vertex v  V is represented by a point in Σ, (2) each edge e  E is represented by a 
continuous curve c  Σ connecting the two points which represent its end vertices, and (3) no two curves 
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share any point but the vertices. Such a drawing is called an embedding of G in Σ. A graph G embedded 
in the Euclidean plane is said to be planar. 
 
Let G be a graph, Σ the Euclidean plane and D an embedding of G in Σ. A face F of D is a maximal 
region of Σ bounded by edges of D such that for any pair of points (x, y) in F, there is a continuous curve 
c that connects x to y with c  F 
 

 
Figure 1: Case study. Geometric problem defined by constraints. 

 

3.2 The Basic Constraint Problem 
In this paper we focus on the basic constraint problem defined as follows. Given a set of geometric 
elements and a set of constraints between them, place each geometric element in such a way that the 
constraints are fulfilled. We consider 2D geometric constraint problems defined by a set of geometric 
elements like points, lines, line segments, circles and circular arcs with fixed radius, along with a set of 
constraints like distance, angle, incidence and tangency between any two geometric elements. Figure 1 
shows an example of a geometric problem defined by constraints. The problem includes seven points, {a, 
b, c, d, f, g, h}, four straight segments, {L1, L2, L3, L4}, one fixed-radius circle, {C1}, and eleven 
constraints: point-point distance {d1, d2, d3}, angle betweeen two straight segments {α, β}, segment-circle 
tangency {tg1, tg2} and point-on {on1, on2, on3, on4}. 
 
The geometric constraint problem can be represented by means of a geometric constraint graph G = 
(V,E), where the 
nodes in V are geometric elements with two degrees of freedom and the edges in E are geometric 
constraints such that each of them cancels one degree of freedom. Figure 2 shows the graph G = (V,E) 
derived from the geometric constraint problem given in Figure 1 where the set of vertices is V = {a, b, c, 
d, f, g, h} and the set of edges is E = {(a, d), (a, c), (a, b), (b, c), (b, g), (b, f), (f, g), (f, h), (g,h), (h, d), (d, 
c)}. 
 

 
Figure 2: Case study. Constraint graph. 

 
Once a geometric constraint problem has been translated into a geometric constraint graph, solving the 
geometric constraint problem amounts to decompose the graph until basic configurations are found to 



5 
 

which standard equational solvers are applied. Therefore, devising feasible algorithms that efficiently 
decompose constraint graphs is paramount. 
 
3.3 Tree Decompositions 
Following Fudos and Hoffmann, [5], Joan-Arinyo et al. defined in [12] the concept of set decomposition 
as a way of partitioning a given abstract set. Let S be a set with at least three different members, say a, b, 
c. Let S1, S2, S3  S. We say that {S1, S2, S3} is a set decomposition of S if S1  S2  S3 = S and S1 ∩ S2 = 
{a} and S2 ∩ S3 = {b} and S1 ∩ S3 = {c}. Vertices a, b, c are called the hinges of the set decomposition, 
and S1, S2 and S3 are the clusters, [5]. Notice that a set decomposition is not necessarily unique. 
 
The set decomposition of a graph is defined as follows. Let G = (V,E) be a graph and let V1, V2 and V3 be 
subsets of V. Then {V1, V2, V3} is a set decomposition of G if it is a set decomposition of V and for every 
edge e  E, V (e)  Vi for some i, 1 ≤ i ≤ 3. Roughly speaking, a set decomposition of a graph G = (V,E), 
is a set decomposition of the set of vertices V such that does not break any edge in E. 
 
Finally, we define the concept of tree decomposition of a graph. Let G = (V,E) be a graph. A 3-ary tree T 
is a tree decomposition of G if: (1) V is the root of T, (2) each node V’  V of T is the father of exactly 
three nodes, say {V’1, V’ 2, V’3}, which are a set decomposition of the subgraph of G induced by V’, and 
(3) each leaf node contains exactly two vertices of V. 
 
Geometric constraint graphs for which there is a tree decomposition are known as tree decomposables, 
that is, the associated geometric constraint problem is solvable by the tree decomposition approach. It is 
said that the underlying constraint problem is quadratically solvable becasue it can be solved after 
translating it into a set of degree two equations. 
 
4. THE ALGORITHM 
Let G = (V,E) be a geometric constraint graph. Given a set of hinges {v1, v2, v3}  V , a set 
decomposition of G can be trivially computed. Moreover, a recursive application of set decompositions 
yields a tree decomposition of G. Therefore, the problem of computing a tree decomposition of G can be 
reduced to computing sets of hinges. 
 
4.1 Algorithm Overview 
The algorithm, outlined in Figure 3, computes one decomposition step by splitting a graph into three 
connected components. It is based on the following result (the proof is omitted for the sake of 
conciseness) 
 
Theorem Let D be a planar embedding of a biconnected graph G = (V,E). Then, vertices {v1, v2, v3}  V 
are hinges of V if and only if there are two faces F1 and F2 in D whose bounding edges have vertices V 
(F1), V (F2) such that {v1, v2, v3}  V (F1) ∩ V (F2). 
 
The algorithm proceeds as follows. Let G = (V,E) be a biconnected geometric constraint graph derived 
from a geometric constraint problem. First a spanning tree for the graph G is computed by applying a 
depth-first search. Then the associated fundamental circuits {C1, . . . ,Cn} are identified. 
 
INPUT: biconnected constraint graph G = (V,E), |V | ≥ 3 
OUTPUT: a set of hinges {v1, v2, v3}  V , if one exists 
 
Compute a spanning tree T of G 
Compute the set of fundamental circuits C of G according to T 
foreach Ci  C do 

Compute the set of bridges B of G with respect to Ci 

Compute the collapsed graph G’ 

Compute the merged graph G’’ 

Compute the planar embedding D of G’’ 

foreach F  D do 
foreach {v1, v2, v3}  F do 

       if {v1, v2, v3}  Ci then 
        return {v1, v2, v3} 
endif 

    endfor 
 endfor 
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endfor 
return  
 

Figure 3: Decomposition of a biconnected graph. 
 
 
According to [12], any set of hinges of G must be a subset of the vertices of some fundamental circuit Ci of G. 
Therefore we fix one of the faces, F1, F2, by restricting the search for hinges to faces bounded by fundamental 
circuits. The search is performed in a planar embedding D of a graph G’ resulting from transforming the given graph 
G according to the bridges (to be defined later on) induced in G by the fundamental circuit under study. If the 
algorithm fails in finding a fundamental circuit with a set of hinges, the input graph cannot be decomposed by our 
method. In what follows we detail each step in the algorithm. 
 

4.2 Computing Fundamental Circuits 
To illustrate the ideas, in what follows we will refer to the case study graph G = (V,E) depicted in Figure 2. 
 
To identify a set of fundamental circuits, first a spanning tree T to the constraint graph G is computed using a depth 
first spanning tree algorithm, [20]. Assume that vertex d is chosen as the initial node for T. Then Figure 4a shows the 
resulting depth first spanning tree of G where edges in T are in bold lines and chords are drawn as dotted lines. Since 
each chord induces one fundamental circuit, there are five fundamentals circuits, shown in Figure 4b. The algorithm 
to connect each circuit is trivial and we do not detail it here. 

 
4.3 Computing Bridges 
Given a constraint graph G = (V,E) and one circuit C  G, our algorithm computes the set of bridges induced in G by 
the circuit C, [3, 12]. 
 
First we define the concepts of non-singular and singular components of a non-separable graph induced by a subset of 
vertices. Let G = (V,E) be a non-separable graph and let S  V . Consider the partition of the set V − S into classes 

 
Figure 4: Case study. a) Spanning tree. b) Fundamental circuits C1, C2, C3, C4 and C5. 

 

 
Figure 5: a) Graph. b) Classes. 
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such that two vertices are in the same class if and only if there is a path connecting them which does not include any 
vertex of S. Let ≡ denote this relationship and assume that V − S/≡ = {K1, . . .,Km}. With each class Ki we associate a 
subgraph H = (V’,E’)  G defined as  
 
1. V’  Ki 

 
2. V’ includes all the vertices of S which are connected by an edge to a vertex of Ki in G 
 
3. E’  E contains all edges of G which have at least one end vertex in Ki 

 
The subgraph H = (V’,E’) is a non-singular component of G induced by S. 
 
To illustrate the concept of non-singular component, consider the graph G = (V,E) in Figure 5a and let S = {d, e, g, 
f}. Then V − S = {a, b, c} and there is just one induced class K1 = {a, b, c} shown in Figure 5b enclosed in a dotted 
line. The associated non-singular component is the subgraph with vertices V’ = {a, b, c, e, d, f} and edges E’ = {(a, b), 
(a, c), (b, c), (b, e), (c, d), (c, f)}, denoted as H1 in Figure 6a. 
 
With each edge (u, v) such that u, v  S we associate a subgraph in G, called singular component, with vertices V’ = 
{u, v} and edges E’ = {(u, v)}. For example, with edge (e, f) in Figure 5 we associate the singular component denoted 
H6 in Figure 6a. Similarly, with each edge in S, we associate a singular component. Notice that a set of vertices S 
induces a graph decomposition into a set of singular and non-singular components such that two components share no 
edges, and the only vertices they can share are vertices of S. 
 
 

 
Figure 6: a) Components. b) Bridges. 

 
Now we define the concept of bridge. Let H be the set of singular and non-singular components induced by S � V in 
the graph G = (V,E). A bridge, Bi, is a component Hi  H such that the vertices of its edges are not contained in S. A 
bridge is said to be singular if the corresponding  component is singular otherwise it is non-singular. The attachment 
of a component Hi is the set of vertices shared with S, at(Hi) = V (Hi) ∩ S. Figure 6b shows the bridges B1 and B2 

corresponding to components H1 and H6. B1 is a non-singular bridge while B2 is singular. The attachments are 
respectively at(B1) = {e, d, f} and at(B2) = {e, f}. 
 
In the case study shown in Figure 2, assume that S is the fundamental circuit C4 = [d, a, c, b, f, g, h] shown in Figure 
4b. The components induced in G by C4 are  

H1 = ({a, b}, {(a, b)}) 
H2 = ({c, d}, {(c, d)}) 
H3 = ({b, g}, {(b, g)}) 
H4 = ({f, h}, {(f, h)}) 

 
Notice that Hi, 1 ≤ i ≤ 4 are also the bridges with respect to C4. Moreover, in this case, all the bridges are singular. 
Figure 7 outlines the algorithm that computes the set of bridges. 
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4.4 Computing the Collapsed Graph 
Once a set of bridges has been identified, we simplify the given graph. We start by introducing some required 
concepts. 
 
A star graph is a connected graph G = (V,E) with one distinguished vertex x  V , called center, the degree of which 
 
INPUT: biconnected graph G = (V,E), |V | ≥ 3, C a fundamental circuit of G  
OUTPUT: The set of bridges B induced by C in G 
/* Compute the singular bridges */ 
foreach a, b  V (C) do 

if (a, b)  E and (a, b) ‘  C then 
B := B  ({a, b}, {(a, b)}) 

endif 
endfor 
/* Compute the non-singular bridges */ 
N = V − V (C) 
Let G’  G be the graph induced by N  V 
foreach G’’  ConnectedComponents(G’) do 

foreach (v,w) such that v  V (G’’),w  V (C) do 
    if (v,w)  E(G) then 
        Add (v,w) to G’’ 

    endif 
endfor 
Add G’’ to B 

endfor 
 

Figure 7: Computing the set of bridges. 
 

 
Figure 8: Star graph example. 

 
is d(x) > 1 and such that for each vi  V with vi ≠ x, d(vi) = 1. Figure 8 depicts a star graph example. 
 
Let B = (VB,EB) be a bridge. We define the star graph of B, noted s(B), as the graph with vertices {x}  at(B) and 
edges {(x, v) | v  at(B)} where x is a new vertex. We will refer to s(B) as a star bridge. 
 
Let G = (V,E) be a graph and C a fundamental circuit of G. Let B = {B1, . . . , Bn} be the set of bridges induced by C 
in G. The collapsed graph of G is the graph resulting from replacing each bridge Bi  B with the corresponding star 
bridge s(Bi). 
 
Considering that in the case study depicted in Figure 4a, the bridges induced in G by the circuit C4 are H1,H2,H3,H4, 
the collapsed graph resulting by replacing each bridge Hi  with its star bridge Si = s(Hi) is shown in Figure 9a. 
 

4.5 Computing the Merged Graph 
We will further simplify the collapsed graph by merging sets of star bridges into larger star bridges. The resulting 
graph will be called the merged graph. 
 
Let B = {B1, . . . , Bn} be the set of star bridges in a collapsed graph. Let Bi and Bj be two different star bridges in B. 
We define the merging of Bi and Bj as the star bridge Bij = (VB,EB) with VB = {x}  at(Bi)  at(Bj) and EB = {(x, v) | v 

 at(Bi)  at(Bj)} where the center x is a new vertex. 
 
 



9 
 

 
Figure 9: a) Collapsed graph. b) Merged graph. 

 
Let B be the set of bridges induced in a graph G by the circuit C and let Bi,Bj  B. We say that Bi and Bj interlace if 
one of the two following conditions hold: 
 

1. There are four different vertices a, b, c, d  C with a, b  at(Bi) and c, d  at(Bj) such that they are placed 
in C in the sequence [a, c, b, d], or 
2. The attachments at(Bi) and at(Bj) share three vertices.  

 
Now computing the merged graph is straightforward. Choose two different interlacing star bridges, say Bi and Bj, and 
replace them with their star merge Bij . Repeat this process until no two stars interlace. Since no two star bridges 
interlace in a merged graph, the merged graph always has a planar embedding. See Even, [3]. 
 
Figure 9b shows a merged graph corresponding to the collapsed graph in Figure 9a. Notice that star bridges S1 and S2 

have been merged into S12, and star bridges S3 and S4 have been merged into S34. Clearly the merged graph is a planar 
graph. 
 

4.6 Computing the Planar Embedding 
Algorithms to compute planar embeddigns of planar graphs trace back to as far as F´ary [4]. More recent 
developments are collected by Nishizeki and Chiba in [15] and by Skiena [17]. However, having in mind the 
properties of our merged planar graph and the specifity of the embedding we are looking for, we have developed an 
ad hoc simple algorithm. 
 
Although we are not interested in actually drawing a picture of our constraint graphs, recalling some standard basic 
properties of planar graphs drawings will help in our rational. A planar graph can be drawn in the two-dimensional 
space with no two of its edges crossing. Such a drawing of a planar graph is called a plane drawing. 
 
Any plane drawing separates the plane into distinct regions bordered by graph edges called faces. As a simple 
example, any embedding of a circuit C into the plane separates it into two faces: the region inside the circuit, say Fb, 
and the (unbounded) region outside the circuit, say Fu. The unbounded region outside the graph’s embedding is called 
the outer face. See Figure 10. 
 

 
Figure 10: A circuit embedded in the plane defines two faces Fb and Fu. 

 
Let C be the circuit considered in the constraint graph and G be the induced merged graph. We start the embedding of 
G by trivially embedding C. Before proceding to include the bridges of G in the initial embedding, we need to 
introduce a few more concepts. 
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Since a circuit and the star bridges it induces in a graph share the vertices in the bridges attachments, we will consider 
that vertices in a bridge attachment are sorted accordingly to the vertices in the circuit. If C = {c1, c2, . . . , cn} is the 
circuit under consideration, in what follows the closed interval [c1, c3], called segment, will denote the subset of 
vertices {c1, c2, c3} while the open interval (c1, c3) will denote the subset of vertices {c2}. 
 
The span of a bridge B, noted sp(B), is the open interval over V (C) whose lower and upper bounds are respectively 
the first and last vertices in the attachment at(B).  
 
The set of segments defined by B, noted se(B), is the set of segments over V (C) defined by two consecutive vertices 
in the attachment at(B). 
 
Figure 11 shows a circuit with vertices {c1, c2, . . . , c10} and a bridge B with attachment at(B) = {c1, c7, c9}. The span 
of B is sp(B) = (c1, c9) = {c2, c3, c4, c5, c6, c7, c8} and the set of segments defined by B is se(B) = {[c1, c7], [c7, c9]}. 
 
Let F be a face in a given planar embedding of a graph with respect to a given circuit C. We say that the characteristic  
vertices of F is the set ch(F) = {v | v  V (F) ∩ C}. Note that ch(F) is always a segment of C. 
 

 
Figure 11: A bridge B attached to a circuit. 

 
INPUT:A circuit C and a set of merged bridges B = {B1, . . . , Bn} 
OUTPUT: a planar embedding D 
 
Sort the set of bridges B 
D = {Fu} 
for Bi in B do 

Select F  D such that at(Bi)  ch(F) 
Remove F from D 
Add to D the face characterized by ch(F) − sp(B) 
for I in se(B) do 
    Add to D the face characterized by ch(F) ∩ I 
endfor 

endfor 
return D 

Figure 12: Computing the planar embedding of the merged graph. 
 
The embedding is computed as a list of faces each represented by a circuit that defines the face border. Assume that 
the embeding of the considered circuit C is D = {Fu}, illustrated in Figure 10. Then star bridges Bi  B are iteratively 
included in the current embedding following the algorithm outlined in Figure 12. We assume, without loss of 
generality, that each new star bridge is embedded (it is drawn) in a face different from the one labeled Fb, thus face Fb 

is never split and we will ignore it in what follows. 
 
First the set of bridges is sorted according to decreasing number of vertices in the spans. When two bridges have the 
same number of vertices in their spans, they are sorted according to increasing number of vertices in the attachments. 
Then, for each bridge Bi to be added to the current embedding, we identify the face where it should be embedded. 
Clearly, if D = {F1, . . . , Fm, Fu} is the current embedding, Bi should be embedded in a face, say Fk, such that at(Bi)  
ch(Fk). Since bridges do not interlace, two merged bridges at most share vertices that are bounds of bridges spans and 
faces are just embeddings of bridges, face Fk is unique. Then face Fk is replaced with the set of faces that Bi induces in 
it, defined as follows 
 

1. One face Fk1 whose border is defined by replacing in the border of Fk the set of vertices sp(Bi) � ch(Fk) 
with a new vertex xk1.  
2. For each segment in se(Bi) = {S1, . . . , Sj, . . . , Sn} a new face Fk(j+1) is included the border of which is 
defined by appending to the segment Sj the vertex xk1. 

 
To illustrate how a new bridge is added, assume that the current embedding is the one depicted in Figure 11 and that  
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the next merged bridge to be included is Bi given in Figure 13. Since at(Bi) = {c1, c3, c4, c6}  ch(F1), the face to 
be replaced is F1. The set of new faces includes F’ 1 plus F3, F4 and F5, shown in Figure 14. The tree of segments is 

 
Figure 13: A bridge to be included in the embedding in Figure 11. 

 
Figure 14: Embedding after including a new merged bridge Bi. 

 
given in Figure 15 and the list of faces is 

F’u = [c1, x, c9, c10]   F3 = [c1, c2, c3, xBi ] 
F1 = [c1, xBi, c6, c7, x]  F4 = [c3, c4, xBi ] 
F2 = [c7, c8, c9, x]   F5 = [c4, c5, c6, xBi ] 

 
Considering the case study, the embedding for the merged graph shown in Figure 9b is given in Figure 16 where the 
resulting embedding includes the faces {Fu, F1, F2, F3, F4, F5, F6}. The borders of the faces in the planar embedding 
are the circuits: 
 

Fu = [d, x12, b, x34, h]  F4 = [b, x34, f] 
F1 = [d, x12, a]   F5 = [f, x34, g] 
F2 = [a, x12, c]    F6 = [g,x34, h] 
F3 = [c, x12, b] 
 

The embedding is computed while building a linear range search tree, [1], to efficiently identify the face in the 
current embedding which must be replaced when a new bridge is embedded. Each tree node stores a segment of 
vertices and a pointer to the face it defines, stored in the list of faces. The root node stores the set of vertices of face 
Fu or, equivalently, the set of verices in the circuit under consideration. 
 

 
Figure 15: Tree of segments for the embedding in Figure 14. 
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Figure 16: Planar embedding for the merged graph given in Figure 9b. 

 
Figure 17: Embeding two bridges with two vertices in their attachments and the same span. 

 
To show that the sorting defined above guarantees that new bridges are added to the tree always as tree leaves, we 
need to consider four different cases. First, let Bi,Bj be two bridges such that |sp(Bi)| > |sp(Bj)|. Since bridges do not 
interlace, faces induced by Bi and Bj either are disjoint or the faces induced by Bj lie inside some face induced by Bi. 
Now consider the situation where |sp(Bi)| = |sp(Bj)|. First assume that |at(Bi)| ≥ 3 and |at(Bj)| ≥ 3. Since bridges do not 
interlace, faces induced by Bi and Bj must be disjoint. Therefore order does not matter. Second let |at(Bi)| ≥ 3 and 
|at(Bj )| = 2. Since bridges do not interlace, faces induced by Bi and Bj either are disjoint and the order does not matter 
or sp(Bi)  sp(Bj) and the face coming from Bj is included in the tree before faces induced by Bi. Finally let |at(Bi)| = 
|at(Bj)| = 2. If Bi and Bj are disjoint the ordering does not matter. If sp(Bi) and sp(Bj) are coincident the set of faces in 
the resulting embedding depends on the embedding sequence, see Figure 17. However note that the set of intervals 
generated in the circuit is coincident. Therefore the embedding order does not affect the set of hinges induced in the 
circuit. 

 
4.7 Computing Hinges 
Finally we have to search for hinges in the planar embedding. 
 
Let G = (V,E) be the constraint graph, C a circuit of G and D the planar embedding for the merged graph. We say that 
three vertices in C, say {a, b, c}, are hinges if there is a face F in D with F ≠ Fb such that {a, b, c}  ch(F). 
 
Therefore, to compute a set of hinges the algorithm searches for a face F  D such that |ch(F)| ≥ 3. Any subset of 
three vertices of F is a set of hinges. 
 
Consider the embedding shown in Figure 16. The set of faces is {F1, F2, F3, F4, F5, F6, Fu}. Since {d, b, h} is a subset 
of ch(Fu), {d, b, h} is a set of hinges. Therefore the initial graph given in Figure 2 can be tree decomposed into three 
clusters G1, G2 and G3 as shown in Figure 18. 
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Figure 18: Graph and clusters G1, G2 and G3. 

 
5. EXPERIMENTAL RESULTS 
To gain insight in the algorithm behavior and to perform a preliminary assessment of the algorithm runtime behavior, 
we have implemented it in the SolBCN framework which can be downloaded under a GNU General Public License 
(see [19]). 
 
The tests have been conducted on a standard desk computer with a Pentium IV at 3GHz processor and 1GB of core 
memory. The algorithm is implemented in Java using the Sun JDK. The tests were planned as follows. Two datasets 
were defined: 
 

1. D1: A set of 1000 randomly generated geometric constraint graphs with sizes ranging from 3 to 200 
vertices. All the graphs were well-constrained but not necessarily solvable by the tree decomposition 
approach. 
2. D2: A set of 1000 randomly generated of geometric constraint graphs with sizes ranging from 3 to 200 
vertices. All the graphs were under-constrained but not necessarily tree-decomposable. 
 

We implemented four versions of the decomposition algorithm: 
 

1. A1: this algorithm recursively applies a set of predefined rules to discover hinges that split the graph, as 
reported in [5, 13, 16]. 
2. A2: In this version first vertices of degree two are removed. Then algorithm A1 is applied. 
3. A3: This version is an improvement of A2 with specific treatment for 0-connected and 1-connected 
graphs. 
4. A4: is the algorithm presented in this work.  

 
Let SGs denote the set of graphs G such that s = |V (G)|. Notice that 3 ≤ s ≤ 200. We applied each algorithm version to 
each dataset. For each algorithm and each graph in a 

 
Figure 19: Behavior of the algorithms A1, A2, A3, and A4 on the dataset D1. 
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Figure 20: Behavior of the algorithms A1, A2, A3,and A4 on the dataset D2. 

 
data set, we recorded the algorithm runtime t(G). Then for each graph size s, we averaged the runtime values as 

 
The results yielded by these tests are represented in Figure 19 for dataset D1 and in Figure 20 for dataset D2.  
 
These results show that for both datasets the algorithm A4 introduced in this paper exhibits a noticeable improved  
behavior. For graphs G with |V (G)| ≈ 200, the runtime for the algorithm A4 is of about 200ms what allows interactive 
use in the SolBCN framework. 

 
6. SUMMARY AND FUTUREWORK 
We have presented a new algorithm to compute a decomposition tree of under- or wellconstrained treedecomposable 
geometric constraint graphs. The algorithm is based on directly computing sets of hinges by inspecting circuits of a 
particular planar embedding of the geometric constraint graph. The algorithm has been implemented and the 
empirical tests show a significant improvement with respect to treedecompositions based on applying a predefined set 
of rules. 
 
In the near future we plan to work following three main directions. The first one is to prove the algorithm correctness. 
Then, since experimental results suggest a quadratic behavior, we plan to carry out an in depth study of the algorithm 
complexity. The current implementation considers only sets of hinges including three vertices. This means that the 
algorithm decomposes only quadratically solvable graphs. We plan to extend the method scope by considering split 
subgraphs where hinges share with the circuits more than three vertices. 
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