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ABSTRACT

An important step in model-based embedded system de-
sign consists in mapping functional specifications and their

1. INTRODUCTION

Synchronous reactive formalisms [1, 2] are modeling and
programming languages used in the specification and analy-

tasks/operations onto execution architectures and their ressources.sis of safety-critical embedded systems. They comprise (syn-

This mapping comprises both temporal scheduling and spa-
tial allocation aspects. Therefore, we promote an approach
which starts from loosely-timed/asynchronous models and
proceeds by refining them to fully synchronized ones, using
so-called clock calculus techniques under the architecture
constraints. In this paper we provide a modeling frame-
work based on an intermediate representation format, called
clocked graphs, for polychronous endochronous specifications,
which are the ones that can be safely considered for deter-
ministic distributed real-time implementation using static
scheduling techniques. Our formalism allows the specifica-
tion of both “intrinsic” correctness properties of the speci-
fication, such as causality and clock consistency, and “ex-
ternal” correctness properties, such as endochrony, which
ensure compatibility with the desired implementation archi-
tecture, including both hardware and software aspects. Us-
ing this formalism, we define a new method for distributed
real-time implementation of synchronous specification. The
move from (endochronous) synchronous specification to real-
time scheduled implementation is a seamless sequence of
model decorations.

Categories and Subject Descriptors

D.3.4 [Programming Languages|: Processors—Code gen-
eration, Optimization; D.4.7 [Operating systems|: Or-
ganization and Design— Distributed systems, Real-time sys-
tems and Embedded systems
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synchronous model, intermediate representation, clock cal-
culus, distributed real-time scheduling
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chronous) concurrency features, and are based on the Mealy
machine paradigm: Input signals can occur from the en-
vironment, possibly simultaneously, at the pace of a given
global clock. Output signals and state changes are then com-
puted before the next clock tick, grouped as one atomic re-
action, also called execution instant. Because common com-
putation instants are well-defined, so is the notion of signal
absence at a given instant. Reaction to absence is allowed,
i.e., a change can be caused by the absence of a signal on a
new clock tick. Since component inputs may become local
signals in a larger concurrent system, absent values may have
to be computed and propagated, to implement correctly the
synchronous semantics.

When an asynchronous, possibly distributed implementa-
tion is meant, where possibly distributed components com-
municate via message passing, the explicit propagation of
all absent values may clog the system to a certain extent.
A natural question arises: when can one dispose of such ab-
sent signal communications? Sufficient conditions, known
as (weak) endochrony [3, 4, 5], have been introduced in the
past to figure when the absent values can be replaced in the
implementation by actual absence of messages without af-
fecting its correctness and determinism. These conditions
establish that compound reactions that are apparently syn-
chronous can be split into independent smaller reactions that
are asynchronously feasible in a confluent way (as coined by
R. Milner [6]), so that the first one does not discard the sec-
ond. This is also linked to the Kahn principles for networks
[7], where only internal choice is allowed, in order to ensure
that overall lack of confluence cannot be caused by input
signal speed variations.

In this paper, we use these theoretical results as the foun-
dation of a new method for distributed real-time implemen-
tation of synchronous specifications. Following the tradi-
tional approach in compiler development, our method is
centered around a new intermediate representation format,
called clocked graphs (CG). On one hand, this format allows
the faithful representation of specifications written in high-
level synchronous languages like Esterel [8], Scade/Lustre
[9], Signal [4], or discrete Scicos [10], including some struc-
tural information that can be used for efficient code gener-
ation purposes. On the other hand, a C'G specification is



close enough to the target machine code to allow fine ma-
nipulations such as scheduling, allocation, and optimization.
We focus in this paper on the real-time implementation of
CG specifications on distributed hardware architectures (a
large corpus of work exists on the translation of high-level
synchronous specifications into intermediate representations
related to ours).

The C'G representation is based on the separation of com-
putations, under the form of a dataflow graph, from control,
under the form of clocks which identify the synchronous ex-
ecution instants where the dataflow elements are executed.
The two parts are interconnected, as all computations and
communications are associated a clock defining their execu-
tion condition, and clocks may depend on values computed
by the dataflow.

We stress the clock-driven specificity of our method. Clocks
are logical activation condition defining the sequence of syn-
chronous execution instants where some computation or com-
munication takes place. While such activation conditions are
traditionally represented with events, the activation events
associated with our clocks are logical, in the sense where they
are computed by the system itself at each execution instant,
and not received from the exterior (e.g. under the form of
interrupts). This model is nowadays common in computer
science and engineering, even at hardware level where clock
gating techniques are used to minimize power consumption.

The implementation of our C'G specifications is defined
as a sequence of transformations which gradually add infor-
mation to the representation. The first implementation step
is to make explicit the dependencies between the compu-
tations of the various logical clocks in a clocked graph with
dependencies (CGd). Then, we provide conditions deter-
mining when such a graph is endochronous. Endochrony
being a scheduling-independence criterion, we know that for
endochronous clocked graphs (CGe), untimed asynchronous

simulation is deterministic and equivalent with the synchronous

semantics.

The last step of our implementation process produces a
real-time schedule by assigning real-time dates and execu-
tion ressources (processors and buses) to each element of
a CGe. This approach, inspired from the AAA/SynDEx

methodology [11], results in a scheduled clocked graph (CGsch)

that describes the real-time scheduling of one clock cycle.
The execution of the scheduled implementation is an infinite
repetition of such execution instants. The difficulty here is
to ensure the consistency between the logical clocks of the
CGle specification and the real-time dates and ressource al-
locations of the C'G'sch scheduled implementation. We pro-
vide a scheduling algorithm ensuring by construction these
consistency properties, and we compare it with the existing
one of SynDEx. For simplicity, we restrict ourselves to sim-
ple target hardware architectures formed of a unique asyn-
chronous message-passing broadcast bus that connects a set
of (possibly different) sequential processors. We also make
the simplifying assumption that the bus is reliable, which is
realistic in certain settings for real-life buses such as CAN
[12, 11], pending the use of fault tolerant communication
libraries and a reliability analysis that are not covered in
this paper. Our scheduling technique also works for static
TDMA buses such as TTA or FlexRay (static segment), but
does not take full advantage of the time-triggered nature
of these architectures. Future work will cover better im-
plementations on time-triggered and heterogenous architec-

tures and more complex interconnect topologies.

2. RELATED WORK

Our work is closely related to the work of Benveniste et al.
on tagged systems [13]. Indeed, the main originality of our
work — the combination of logical clocks and “real” time in a
single formalism — occurs in the form of a time refinement,
which can be modeled using tag refinements. The difference
is that we also need to deal with spatial allocation issues,
causality, and that we focus on specific time models in order
to give efficient implementation algorithms.

The second main inspiration of this work is the AAA /SynDEx

methodology for distributed real-time implementation of syn-
chronous specifications [11]. The scheduling approach we
use here is much inspired from the SynDEx one. The dif-
ference is that SynDEx does not treat clocks as first-class
citizens, allowing their definition only through structured
dataflow constructs. By consequence, execution conditions
of a specification are often pessimistic, which also pessimizes
the implementation. Our work provides, on one hand, a
more flexible language supporting better specifications and
implementations and on the other hand, a more general for-
mal framework for reasoning about the correctness of such
implementation processes.

The third main inspiration of our work is the previous
work on endochrony, already mentioned above. Our work
extends this line by proposing a formalism combining the
manipulation of endochronous logical clocks with that of
“real” time. In this sense, it goes beyond results on the im-
plementation of the Signal/Polychrony language [14]. Also
related to Signal are the results of Kountouris and Wolinski
[15] on the scheduling of hierarchical conditional dependency
graphs, a formalism allowing the representation of data de-
pendencies and execution conditions. The main difference
with our work is that we focus on timed and distributed
implementation, whereas Kountouris and Wolinski focus on
optimizing mono-processor untimed implementations.

The intermediate representation proposed in this paper is
also inspired from the large corpus of work concerning clock
analysis and the compilation of synchronous languages.

We also mention here the large corpus of work on opti-
mized distributed scheduling of dataflow specifications onto
time-triggered architectures [16, 17]. Given the proximity
of the specification formalism, we insist here on the work of
Caspi et al. on the distributed scheduling of Scade/Lustre
specifications onto TTA-based architectures [18]. The main
difference is that in TTA-based systems communications
must be realized in time slots that are statically assigned
to the various processors.

3. INTERMEDIATE REPRESENTATION

This section defines the syntax of clocked graphs. A clocked
graph is a dataflow graph G whose elements (nodes and arcs)
are labelled with clocks. We first introduce the clock defi-
nition language, which is the focus of our approach. Then,
we introduce the dataflow constructs, and conclude with an
example.

3.1 Clocks

Clocks represent execution conditions defining when a com-
putation or communication is performed, or when some data
is available to be used in computations. In our purely syn-



instant |1 2 3 4 5 6 7 8 9
outputportz |5 4 3 2 1 0 -1 -2 -3
true|1 1 1 1 1 1 1 1 1

x>0(1 1 1 1 1 0 0 0 O
on*fo 1 0 1 0 1 0 1 O
oo0n*jo o 1 0 1 0 1 0 1
(z>0A(OD)*|O 1 0 1 0 0O O O O
(on*.o(01)fo o 0o 0 1 0 0 0 1

Figure 1: Examples of clocks

chronous setting, clocks are functions associating to each
execution instant a value of 1 ({rue, active) or 0 (false, in-
active). A computation or communication whose clock is ¢
will be executed in the execution instants where c is true.
We define here the syntax allowing the definition of clocks.

Regular repetitions of active and inactive instants, such
as data-independent counters, are specified using ultimately
periodic infinite Boolean words of the form w;(w;)*, where
wy, wp are finite words over {0, 1}, and w;(wy)* stands for
the infinite word starting with w; and continuing with an
infinite sequence of wy. For instance, 11(001)* stands for
11001001001 .... The constant clocks are denoted true =
(1)* and false = (0)*.

Conditional data-dependent computations are represented
using Boolean expressions over the output ports of the dataflow
nodes.! For instance, if o is an integer output port of dataflow
node n, o = 3 is the clock defining the execution instants
where o has a value of 3. Similarly, o1 = o2 intuitively de-
fines execution instants where 01 equals 0o2. Much effort will
be dedicated in the following sections to ensure that the ar-
guments needed to compute such clocks are available when
the Boolean expressions are evaluated.

These elementary clocks (constants, ultimately periodic
words, and Boolean atoms) can be composed using:

e The Boolean combinators A, V, and =, which work
instant-wise. For instance, c¢1 A ¢z is true at execution
instants where both ¢1 and co are true. We also denote
with ¢1 \ c2 = c1 A =2 the difference operators on
Booleans and clocks.

e The subclock operator ci.c2, which evaluates c2 only
on instants where ¢; is true. The subclock operator
is different from a simple conjunction. When ¢z is a
ultimatelly periodic word, we advance in ¢z only when
¢y is true. When ¢z is a Boolean expression, we need
its arguments only when c; is true.

Fig. 1 gives examples of clocks, both elementary and com-
posed.

3.1.1 Clock semantics

In the synchronous model, each variable (output port of a
dataflow node') is cither absent in an execution instant, or
is assigned a unique value that will be used in computations
throughout the instant. To facilitate notations, we shall
append to the data domains of all the output ports of the
specification a special value L that denotes the absence of
a value in a given execution instant. When a dataflow node

LAll dataflow constructs are defined in Section 3.2. We also
explain there why only node outputs are considered.

is not executed in a given instant, all its outputs are set to

L. Given a domain D, we shall denote D+ =D U {L}.
Using this notation, we can represent each clock ¢ with a

predicate defining the instants where the clock is active:

c:Nx H

OGUnEN O(n)

D, — {0,1}

where N is the set of all dataflow nodes of the specification,
O(n) is the set of output ports of node n (defined in the
Section 3.2), and N is the set of positive integer indices of
execution instants.

This interpretation of clocks as predicates naturally orga-
nizes the clocks in a Boolean algebra where the Boolean com-
binators have their usual meaning.? We denote with < the
partial order between clocks, where ¢; < c2 means that at
each execution instant cs is true whenever ¢; is true. Given
that the subclock operator is non-standard, we list here some
of its properties: true.c = c.true = ¢, false.c = c.false =
false; associativity: (a.b).c = a.(b.c); left distributivity of
the binary Boolean operators: c.(c1 op c2) = c.c1 op c.ca.

Determining clock inclusion or equality (a form of satisfi-
ability modulo theories) is undecidable in the general case,
because it involves the complexity of dealing with the func-
tions of the dataflow nodes. However, various sufficient con-
ditions (and associated decision algorithms, known as “clock
calculi”) have been proposed for clock inclusion and equality,
ranging from simple syntactical ones (as in SynDex [11]), to
BDD-based techniques like those of Kountouris and Wolin-
ski [15]. All scheduling algorithms proposed later in this
paper are design to function with such sufficient conditions,
instead of exact equality and inclusion tests.

3.2 Clocked graphs

A clocked graph is a pair G = (N, A) formed of the set of
dataflow nodes N and the set of arcs A. Each node n € N/
has a set of named input ports Z(n), a set of named output
ports O(n), and a clock clk(n). The name of a port p is
denoted name(p), and we assume that the ports of a node
have all different names. The port of name name of node n
shall be denoted with n.name. Each input and output port
p is assigned a data type (a domain) Dp.

Each dataflow arc a € A connects one output port denoted
src(a) to one input port denoted dest(a) upon a communi-
cation condition (a clock) denoted clk(a). Therefore:

AC (U O(n)> X <U I(n)) x C
neN neN
where C denotes the set of all clocks that can be defined

using the previously-defined syntax. Each arc has a data
domain D, and we require that for all arc a € A we have:

Dsrc(a) = Ddest(a) =D,

There are two types of dataflow nodes: computations and
delays. Computation nodes represent atomic stateless com-
putations (function calls) that are completed inside one ex-
ecution cycle. The state of the system is maintained by the
delays, which allow data to be passed from one execution
cycle to the next (but otherwise perform no computation).
We denote with A'C the set of computation nodes, and with
N2 the set of delays.

2Note that our interpretation means that the set of clocks
is a tag system, in the sense of Benveniste et al. [13].
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Figure 2: Basic dataflow nodes (identity is a special
kind of computation block)

For each computation node n € N¢, we assume an im-
plementation (a piece of code in a library) is provided that
takes as input one value for each input port i € Z(n) and
produces one value for each output port o € O(n). The
computation needs not be deterministic, to allow the mod-
eling of sensors. It is assumed, however, that no hidden
dependencies (e.g. side effects on unspecified variables) ex-
ist between implementations of different nodes, or between
successive computations of a given computation node. The
computation is assumed to be atomic, in the sense where
all inputs are read before performing the computation and
before all output is produced.

One particular type of computation node is the identity
node that has one input port, named 4, one output port,
named o, and whose function is identity (copy the value
from the input port to the output port). To an identity
node n we associate its domain D,,, which is the domain of
its input and output ports.

A delay § € N2 of clock clk(d) specifies the passing of
values between the successive execution instants defined by
clock 6. A delay § has a data domain Ds, one input port
i of type Ds, one output port o of type Ds, and one initial
value dg € Ds. In the first execution instant where clk(0)
is true, § produces o through the output port, and reads a
new value through the input port. In subsequent execution
instants where clk(9) is true, the output port produces the
value previously input through i.

We use for dataflow nodes the simple graphical represen-
tations of Fig. 2. Delay nodes are labelled with A, identity
nodes are labelled with I D, and other computation nodes
(including non-deterministic ones) are labelled with their
computing function.

This paper being focused on code generation and schedul-
ing problems that are of a global nature, we do not give
provisions for interconnecting dataflow specifications. Our
formalism only allows the specification of complete systems,
where acquisition of data and actuation is represented with
computation nodes (non-deterministic for the sensing part).
However, extending the formalism to allow composition can
be easily done.

Derived dataflow blocks.

The semantics of our format will be directly defined for the
previously-defined “primitive” dataflow constructs. How-
ever, we allow the definition of derived dataflow constructs
that serve as syntactic sugar at specification time, and which
may be directly used (for efficiency purposes) by analysis
and optimization algorithms. The definition of a derived
dataflow block includes the syntax of the block, and its
semantics under the form of an expansion over primitive
dataflow. Fig. 3 provides one example of derived block: the
classical memory cell that can be written and read at differ-

C,“ Co

i@ ID

XeJ

Ci Co

| |
& S a0

(a)

Figure 3: The memory cell written on clock ¢; and
read on clock c¢,: graphical representation (a) and
semantics by expansion (b).

ent rates (as opposed to the synchronizing message passing
philosophy of delays).? Its definition by expansion is given
in Fig. 3, and also shows the form of our dataflow specifica-
tions.

3.3 Example

We give in Fig. 4 the intermediate representation corre-
sponding to the simple SynDEx synchronous specification
of Fig. 5. The specification represents a system with two
switches (Boolean inputs) controlling its execution: high-
speed (HS) vs. low-speed (—HS), and fail-safe (F'S) vs.
normal operation (—F'S). In the low-speed mode, more op-
erations can be executed, whereas in the fail-safe mode the
operation that gets executed (N) does not use any of the
inputs, because the sensors or treatment chain are assumed
to be faulty (control is done using default values).

The behavior of our C'G representation is: Nodes F'S_IN
and HS_IN have clock true, so they are executed at each
execution cycle to read F'S and HS. If HS = false then
clock =HS is true for the instant, which triggers the exe-
cution of F1, followed by F2 and F3. Otherwise, execute
G (on clock HS). Clock dependencies, such as clock HS
depending on the output port HS_IN.H S, are not explicit.
Both F1 and G are computing through their output ports
named I D the SynDEx-level output value ID of the hierar-
chical conditional node C1. The execution of M (on clock
—FS) can start after ID is received from either F'1 or G.
The execution of N can start as soon as we can determine
that F'S is true for the instant.

Dataflow blocks having no dependency between them can
be executed in parallel. For instance, if F'S = true then
N can be executed as soon as F'S is read, independently of
the execution of F'1, F2, F3, or G. On the contrary, the
computation of M must wait until both F'S and ID have
arrived.

3.4 Clocked graph semantics

The previously-defined formalism allows the representa-
tion of programs written in languages such as Esterel [8],
Scade/Lustre [9], Signal [4], or discrete Scicos [10]. In par-
ticular, it is flexible enough to allow the definition of se-
mantics compatible to the semantics of the aforementioned

3The functioning of the memory element is as follows: Whenever
reading and writing occur in the same synchronous instant, the input
value is directly copied to the output, hence the ¢; A ¢, clock on the
arc between the two identity blocks. When reading occurs without
writing (clock ¢, \ ¢;), the value is taken from the delay element. Each
write updates the value of the delay (clock ¢;). In instants where the
cell is read, but not written (clock ¢, \ ¢;), we need to explicitly refresh
its delay value (the loopback arc from the output to the input of the
delay).
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Figure 4: Example of specification in our formalism
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Figure 5: Corresponding SynDEx specification

languages.

However, our goal is the definition of efficient implementa-
tions, so we are not only interested in specification correct-
ness. Indeed, the remainder of the paper is mostly dedicated
to the definition at the level of our intermediate representa-
tion of:

e “Intrinsic” correctness properties of the specification
that should be included in all the semantics assigned
to the format. Classical correctness properties used in
synchronous program analysis, such as causality and
clock consistency, fall in this category.

e “External” correctness properties ensuring compatibil-
ity with the desired implementation architecture, in-
cluding both hardware and software aspects. Such
properties are:

— The absence of reaction to signal absence [19],
which ensures that a distributed implementation
can be constructed that uses absence of messages
to encode the signal absence of the synchronous
model.

— Endochrony [3], which ensures the existance of a
static schedule, which can be computed offline.

— Real-time schedulability [20], which ensures that
a schedule exists satisfying the desired real-time
constraints.

These properties remain compatible with the semantics of
the high-level programming languages, in the sense where
they identify (efficiently) implementable sub-classes of se-
mantically correct programs. At the same time, however,
the definition of these properties requires the refinement of
the C'G specification into a real-time implementation.

In this section we only define some of the “intrinsic” cor-
rectness properties corresponding to the synchronous hy-
pothesis. The next sections shall continue with the intro-
duction of endochrony and scheduling properties.

o=10

READ_INT® o

Figure 6: A globally non-causal example

To ensure compliance with the synchronous hypothesis
and the atomicity assumption for node executions, the com-
putation of the dataflow nodes must satisfy at each execution
instant 3 correctness properties:

No uninitialized data: All the inputs of a node n are
computed and transmitted in instants where n is exe-
cuted. Formally, we require that:

e for all n € N and for all ¢ € Z(n) we have:

clk(n) < \/ clk(a)

acA,dest(a)=1
e for all a € A we have clk(a) < clk(src(a)).

Note that we allow data to be computed and transmit-
ted in instants where it is not needed.

Single assignment: Each input of a node n is received
from at most one source at each execution instant (no
write conflict is possible). Formally, we require that
for all ai,as € A with dest(a1) = dest(az) we have
clk(a1) A clk(a2) = false.

No causality cycle: All cycles in the dataflow graph ei-
ther contain a delay node, or have the conjunction
of all conditions of all arcs equal to false. This con-
dition, specific to the synchronous approach, ensures
that the computation of each cycle can be performed
in bounded time.

A good abstraction of the last condition is the absence of
cycles that contain no delay. However, the acyclicity of the
dataflow is not sufficient to ensure by itself the causal cor-
rectness of a specification. Indeed, the computation of the
clocks may induce additional causal dependencies. For in-
stance,we want to reject specifications such as the one in
Fig. 6, where the output of a sensor (o) is used to compute
its clock. We deal with these issues in the next section.

4. EFFICIENT IMPLEMENTATION:
USING ENDOCHRONY

We explained in the introduction that endochrony [3] is
a scheduling-independence property allowing us to encode
signal absence with absence of messages. By consequence,
endochrony allows us to perform no computation in parts of
the system that are semantically inactive (something which
is not possible in the general synchronous model). More-
over, endochrony ensures that an asynchronous simulation
of the specification gives the same results as the synchronous
one. Thus, endochrony identifies synchronous specifications
that allow a deterministic and efficient implementation over
asynchronous implementation architectures.

We introduce in this section a notion of endochronous
clocked graph (CGe)that combines endochrony with dataflow
acyclicity using a notion of endochronous clock which we de-
fine. The choice is natural, because (1) endochrony is a



sufficient property ensuring the static schedulability of the
computations in a synchronous specification, and (2) global
acyclicity is a sufficient condition which can be checked us-
ing low-complexity algorithms and ensures the absence of
causality cycles.

4.1 Clock with dependencies

The definition of endochronous clocked graphs is based
on associating to each clock of the clocked graph a data
support — the set of all the output ports used in its com-
putation, along with the clocks defining the instants where
these output ports are needed. In practice, this means that
each dataflow element (node or arc) z is assigned not just
a clock clk(x), but also a support supp(x). We call clocks
with dependencies the pairs < clk(x), supp(z) > formed of a
clock and its support.

The support of a clock with dependencies ¢ is a set of
pairs 0@Qc,, where o is an output port of some node n, and
Co is a clock defining the instants where the value of o is
used in the computation of ¢. We call the pair 0Qc, the
sampling of o on the clock c¢,. Intuitively, the support of a
clock gives sufficient data for some algorithm to compute the
clock. For instance, a good support for the clock ¢ = (01 =
3) A (02 = 5) is {01@true, 02@Q(0; = 3)} which corresponds
to the following computation of c:

c = false ;
read(ol) ;
if (o1 == 3){
read(02) ;
if (02 == 5) c = true
¥

Note that a given clock can have several supports. For in-

4.2 Endochronous clock

Note that the definition of a clock with dependencies may
involve recursive computations of other clocks. To ensure
that the recursive computation process is finite, we intro-
duce the notions of endochronous support and endochronous
clock.

We shall say of a support s that it is endochronous when-
ever we can associate to each 0@c € s a subset depgN’A) (oQc)
of s such that:

o dep™ M (0@Qc) F ¢

e The dependency sets induce a “dependency” partial
order over the support set s (there are no cyclic de-
pendencies)

Intuitively, this means that there are some samplings in s
whose clocks depend on no output ports. Once read, the cor-
responding output ports allow the computation of new clock
samplings, a.s.o. until all the clocks of the samplings have
been computed and all corresponding output ports read. No
cyclic computation is possible.

We say that a clock with dependencies < ¢, s > is en-
dochronous whenever s is endochronous and s F ¢. Note
that the first 5 rules of the previous section can be used
to automatically transform any clock into an endochronous
one, by assigning it a support.

4.3 Endochronous clocked graph

Consider now a clocked graph where all clocks are clocks
with dependencies. We introduce a preorder < over the
the ports and arcs of the dataflow graph, defined by the

stance, the clock ¢ defined above also accepts {02@true, 01@(02 = Sybnerators:

as a support.

Of course, not all pairs formed of a clock and a support
are meaningful. For instance, < a = 3,{a@(01)*} > is not,
because a is needed for the clock computation at all instants,
not just once every two instants, as it is specified in the sup-
port. To identify meaningful clocks, we introduce the gen-
eration relation s k- ¢ stating that ¢ can be computed from
the output port samplings of s. This relation is inductively
defined by the following rules:

1. 0 F wi(wp)*, for all w;,w, € {0,1}*

2. {01Qtrue, ..., o0,Qtrue} - B(oy, ...
function B of arguments o1, ..., 0k

3. if s+ ¢ then st —¢

, o), for all Boolean

4. if s1 F ¢1 and s2 F c2 then s1Usa F ¢1 op ca for all
binary Boolean operator op

5. if s1 F ¢1 and s2 b ca, then
s1U{oQcy.c| 0@Qc € s2} Fci.co

6. if s - c and 0@c; € s and ¢c2 > c1, then
(s\ {o@Qc1}) U {oQca} ¢

7. if ¢y =cy and st ¢1 then st ca.

The first 5 rules naturally build a support for any clock by
inductively following its syntax. Rule 6 states that having
more information than is strictly necessary does not affect
computability. Rule 7 is the most difficult. It states that
if two syntaxes ¢1 and ca represent the same clock in the
clock algebra, then a support generating c; also generates
c2 (meaning that the algorithm used to compute ¢1 can be
used for cz).

e p < a for all outgoing arc a of a port p
e ¢ =< p for all incoming arc a of a port p

e o0 = z for all output port o and port or arc x such that
supp(x) contains o@c for some ¢

e | = o for all input port 7 and output port o of a node
n that is not a delay

With this definition, we shall say that the clocked graph
is endochronous if, by definition:

e = is a partial order relation, and

e if 0@Qc belongs to the support of some clock and o is
an output of node n, then ¢ < clk(n)

This criterion ensures a strong form of causal correctness,
amounting to acyclicity (including the computation of the
clocks), and ensuring the existence of a static schedule of all
the operations (including the computation of the clocks).

5. SCHEDULING CLOCKED GRAPHS

In this section, we provide a method for bulding distributed
real-time implementations of endochronous clocked graphs.
The definition of the method is intended to show that the our
model supports a realistic real-time implementation tech-
nique. Therefore, it is restricted to the simple bus-based
distributed architectures defined in the introduction. Ex-
tensions to cover more complex implementation architec-
tures with more complex interconnect topologies and dif-
ferent bus types (time-triggered, unicast) are the object of
ongoing work.
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Figure 7: Hardware architecture

We follow the SynDEx approach [11] by computing a sched-
ule for one execution cycle, the global scheduling being an
infinite repetition of the scheduling of a cycle. This corre-
sponds to the case where the computations of the different
cycles do not overlap in time in the real-time implementa-
tion.* Our scheduling method uses a greedy heuristic in-
spired from AAA/SynDEx, but deals with clocks in a finer
way, potentially resulting in better real-time schedules.

The remainder of the section is structured in three main
parts. We first define the timing information used as input
for our scheduling technique. Then, we introduce a model
of scheduled clocked graph (CGsch), obtained by decorating
endochronous clock graphs with spatial and temporal alloca-
tion information. We also define sufficient conditions ensur-
ing that the allocation information of an C'Gsch is compati-
ble with both the clocks of the initial endochronous clocked
graph and the underlying hardware architecture. The sec-
ond part introduces a simple scheduling technique generat-
ing schedules that satisfy the previously-defined correctness
(compatibility) properties. This last part includes a brief
comparison with the output of AAA/SynDEx.

5.1 Timing information

We explained in the introduction that we consider in this
paper simple distributed architectures formed of a unique

asynchronous or static TDMA message-passing reliable broad-

cast bus denoted B that connects a set of sequential proces-
sors P = {P; | ¢ = 1l.n}. Fig. 7 pictures an architecture
formed of 3 processors connected to the central bus.

The architecture is decorated with timing information that
specifes:

e The dataflow functions that can be executed by each
processor, and their duration on that processor. Each
processor has a list of timing information of the form
“node_name=duration”.

e The communication operations that can be executed
by the bus (the data types that can be sent atomically),
and the durations of the communications, assuming
the bus is free. The bus has a list of timing information
of the form “data_type=duration”.

The durations provided for computations and communica-
tions must be upper bounds obtained by some worst-case
execution time (WCET) analysis. Timing information for
one atomic node can be present on several processors, to

4The results of this paper can be extended to the case where
cycles can overlap by considering modulo scheduling tech-
niques.

denote the fact that the node can be executed by several
processors. For instance, node F3 can be executed on P2
with duration 3, and on P3 with duration 2. We assume
that writing a delay, reading a delay, and local communi-
cations (that do not use the bus) take no time. We shall
denote with dp(n) the duration of computation node n on
processor P. To represent the fact that a processor P can-
not perform computation n, we set dp(n) = co. We denote
with ds(D) the duration of a communication of a value of
type D over the bus (in the absence of all interference).

5.2 Scheduled clocked graph

In this section we introduce our model of scheduled clocked
graph, and give sufficient conditions ensuring that it cor-
rectly implements the semantics of the given endochronous
clocked graph.

By definition, a scheduled clocked graph is an endochronous
clocked graph (N, A) along with a schedule S of its elements
over the ressources of the chosen architecture. Such a sched-
ule is formed of:

e An allocation of the delays to processors determining
on which processor is stored the delay value between
execution cycles:

Sa N2 =P

e A set of scheduled functions assigning a processor and
a real-time date (an integer) to each computation of
the dataflow:

Sc: N =P xN

e A set of scheduled communications assigning to each
arc of the dataflow the emitter processor, a real-time
date, and an effective communication clock:

Sa: A—=PxNxC

e For each element of the graph z € N U A, a set of
scheduled communications assigning to each sampled
output of the support supp(x) an emitter processor, a
real-time date, and an effective communication clock:

Sz supp(x) — P x NxC

For convenience, we denote with:

e t, the real-time date associated by S to any computa-
tion node, arc, or sampled output of some support.

e Res(x) the processor associated with each node, arc,
or sampled output of some support (the execution pro-
cessor for dataflow functions, the storage processor for
delays, and the emitter processor for arcs and support
elements).

e c_clk(z) the effective communication clock associated
with an arc or sampled output.

o d(n) = dpes(n)(n) the duration of a scheduled compu-
tation node n.

e d(z) = dg(D,) the duration of the scheduled commu-
nication of an arc or sampled output x.



We say that the schedule S is partial when either Sa or S¢
is partial.® When S is a partial schedule of (N, .A), then we
allow its incremental completion using the following opera-
tor:

e If Sa(9) is undefined, then we denote with SU{ — P}
the partial schedule with (SU{d +— P})a(0) = P, and
which equals S everywhere else.

e Similarly, we define S U {n — (P,t)} whenever Sc¢(n)
is undefined, S U {a — (P,t,¢)} when S4(a) is unde-
fined, and SU{0Qc, — (P, t,c)} when S;(0Qc,) is not
defined.

Our definition implies that computations are executed on
the specification clock (the schedule defines no new clock).
However, communications can be realized on a different clock,
to avoid cases where a data is transmitted twice on the bus in
the same execution instant. In this paper, we interpret the
real-time date associated to communications and computa-
tions as the latest (worst-case) real-time date at which the
execution of the communication or computation will start.

Note that the definition of Sp implicitly assumes that we
make no use of specialized synchronization messages, nor
data encoding. We also assume that each operation is sched-
uled exactly once in S, meaning that no optimizing replica-
tion such as inlining is done. This hypothesis is common in
real-time scheduling.

5.3 Consistency of an cGsch

The properties of this section formalize the compatibil-
ity between the dates and ressource allocations of a sched-
uled clocked graph and the logical clocks of the underly-
ing endochronous clocked graph. These properties depend
on chosen target architectures, and extending the schedul-
ing techniques to new architectures consists in defining new
consistency properties.

5.3.1 Availability functions

Consider a schedule S of the endochronous clocked graph
(N, A). The execution condition defining the execution cy-
cles where the value of an output port o is sent on the bus
before date t is denoted clk® (o,t, B) =, and is defined as the
union of all the clocks e_clk(z), where e ranges over:

e the arcs a € A with sre(a) = o that have been sched-
uled such that tq + dp(a) <t

e the sampled ports 0@c € supp(y) (for some arc or node
y) that have been scheduled (S, (0@c)) such that t,ac+
dp(oQc) < t.

Obviously, clk® (o, t, B) is the execution condition giving the
cycles where o is available system-wide at all dates ¢’ > ¢.

Assuming o is a port of node n, we also define the exe-
cution condition clk®(o0,t, P) defining the cycles where o is
available on P at date ¢:

e If nisnot allocated on P (Res(n) # P), then clk® (0, t, P) =

clk® (o, t, B)

e If n is a delay node allocated on P (Res(n) = P),
then clk®(o,t, P) = clk(n), meaning that the value is

®Communication arcs may remain unassigned, for instance
when they represent local communications for which no code
is necessary.

available from the beginning of all execution instants
of n.

e If n is a computation node allocated on P at date t,,
then clk®(o,t, P) is clk(n) if t > t, + dp(n), and false
if not.

If ¢ is a clock with ¢ < clk(n), then we denote with
ready_date(P, o, ¢) the minimum ¢ such that clk®(o,t, P) >
¢, and with ready_date(B, o, c) the minimum date ¢ such
that clk® (o,t,B) > c.

Note that clk® (0,00, R) is the clock giving the instants
where o becomes available at some point on ressource R.

5.3.2 Consistency properties

The following properties define the consistency of a static
schedule S with the underlying endochronous clocked graph
(N, A) and the timing information that was provided. This
concludes the definition of our model of real-time schedule,
and allows us to reason about the correctness of the simple
scheduling algorithm defined in the next section.

Exclusive resource use.
A processor or bus cannot be used by more than one op-
eration at a time. Formally:

e On processors: If n1 and no are different scheduled
computation nodes with clk(ni) A clk(n2) # false, then
either tn, > (tn, +dp(n2)) or tn, > (tn, +dp(n1)).

e On the bus: If z1 and x5 are different scheduled arcs or
sampled outputs with e_clk(z1) A e_clk(z2) # false,
then either ty, > (to, +dB(x2)) Or tay > (to, +ds(x1)).

Causal correctness.

Intuitively, to ensure causal correctness our schedule must
ensure in a static fashion that when a computation or com-
munication is using the value of an output port o at time ¢ on
execution condition ¢, the port value has been computed or
transmitted on the bus at a previous time and on a greater
execution condition. Formally:

1. If S¢(n) = (P,t) is defined for a node n, then:

o clk®(o,t,P) > c for all 0Qc € supp(n)
o clk(o,t,P) > c for all 0@c € supp(a) if dest(a)
is an input port of n

o clk®(src(a),t, P) > clk(a) for all arc a with dest(a)
being an input port of n

2. To derive the rule ensuring that a delay has enough in-
put at the end of an instant, we simply set in the previ-
ous rules the date to co. More precisely, if Sa(n) = P
is defined for a delay node §, then:

o clk® (0,00, P) > c for all 0@Qc € supp ()

o clk® (0,00, P) > c for all 0@c € supp(a) if dest(a)
is an input port of §

o clk® (src(a), 00, P) > clk(a) for all arc a with dest(a)
being an input port of §

3. If Sa(a) = (P, ta,cq) is defined for an arc a with cq #
false and if n, is the source node of a, then:

e clk®(o,t,B) > c for all o@Qc € supp(a)



e Sc(ng) is defined and Res(n,) = P and t,, +
dng (S)ta

4. Assume that z € N U A, that o@c € supp(x), and
that o is a node of n,. Then, if Sz(0@Qc) = (P, t,c1) is
defined with ¢; # false we have:

e (; is generated by the data that has already tran-

sited the bus before date ¢ (the set of all o’ @clk® (o', t, B)

where o’ ranges over all the output ports of the
system.

o clk®(0,t,B) > ¢ for all o’Qc’ € dep? (0Qc)

Function 1 SchedulingDriver

Input: (N, A): endochronous clocked graph
timing information
Output: S: full schedule
S—10
while exists n with S¢(n) undefined do
choose such an n minimal in the sense of <
for all P processor with dp(n) # co do
(Sp, tp) « ScheduleOneNode(S,n, P)
Assign to S the Sp that minimizes tp
return

5.4 Scheduling algorithm

Our scheduling algorithm is a simple heuristic inspired
from the one of SynDEx, and which works on the primitive
subset of our format. It works by scheduling one dataflow
node at a time on the processor that minimizes its com-
pletion date. The main scheduling routine is Function 1.
Scheduling a node n on a given processor p is realized by
Function 2, and consists in: (1) scheduling the commu-
nications allowing the computation of clk(n), (2) schedul-
ing the communications allowing the acquisition of all in-
puts, and (3) scheduling the node at the earliest possible
date. The auxiliary function FirstAvailable(S, R,t,c,d) re-
turns the first slot of duration d available on resource R after
date ¢t and on the condition c.

Function 2 ScheduleOneNode
Input: S: partial schedule, P: target processor
n: yet unscheduled computation node (the clocked graph
and timing information are assumed global)
Output: S: schedule (partial or not), ¢: date on P where
n completes its execution
(8,t) « ScheduleEndoSupport(S, P, supp(n))
for all incoming arc of n do
(S.1) —
ScheduleEndoSupport(S, P, supp(a)J{src(a)Qclk(a)})
t «— max(t,t’)
t «— FirstAvailable(S, P, t,c,dp(n))
S—SU{n— (Pt)};t—t+dp(n)
return

The real complexity of the scheduling algorithm is hidden
in Function 3 which schedules the communications which
ensure that a given endochronous support is available on a
given processor P.

As explained in the introduction, our algorithm can han-
dle asynchronous or static TDMA buses. The only difference

Function 3 ScheduleEndoSupport

Input: S: partial schedule, P: target processor
s = {01Q@cy,...,0,Qc,}: endochronous support set such
that for all k& {01Qci,...,06.Qck} F cry1
(the clocked graph and timing information are assumed
global)

Output: S: schedule (partial or not), ¢: date on P where
the data in the support set become available
t<—0;k<—n; flag < true
while flag do

if clk® (o, 00, P) > ¢, then
t «— max(t, ready_date(P, op, cx)) ; k — k —1
else if o, output of a delay § not yet allocated then
S—SU{o—P};k—k—-1
else
flag «— false
for j:=1 to k do do
if clk®(0;,00,B) < ¢; then
to « maz(ready_date(B, o, ¢) | 0Qc € depS (0;Qc;))
Assign to ¢” the union of all effective clocks ¢’ of bus
communications of o; such that ¢’ A ¢; # false, and
to t" the greatest date of these communications.
to «— maz(to,t'")
to «— FirstAvailable(S, B, to,c; \ ', ds(0;))
Let n; be the source processor of o;
S 8Su {Oj@cj = (nj7t05 Cj \C”)}
t «— max(t, ready_date(B, o;, ¢;))
return

between the two cases is the FirstAvailable function which
gives a slot where some operation can be allocated. Our
algorithm, however, is better adapted to asynchronous ar-
chitectures, because the generated schedule does not take
advantage of the time triggers of a TDMA architecture.

The output of the scheduling for the example in Fig. 4 and
an asynchronous bus is given in Fig. 8. We simplified the
notations for space reasons. The figure also gives the result
of SynDEx for the same example (which is worse, because
of the coarser clock manipulations). The width of an oper-
ation (its support) inside its lane intuitively represents its
execution condition (the larger it is, the more its execution
condition is simple). Much like in Venn diagrams, the logical
relations between execution conditions of various operations
are given by the horizontal overlapping of supports.

6. CONCLUSION

We have introduced a new method for the distributed
real-time implementation of synchronous specifications. Our
method is built around a new clocked graph intermediate
representation, and works as a seamless series of transforma-
tions that add causality, time refinement or allocation infor-
mation on the clocked graph nodes and arcs. Endochrony, a
scheduling-independence property related to the Kahn prin-
ciple and the notion of confluence, is used as a criterion
ensuring efficient implementability. Endochronous clocked
graphs are transformed into scheduled graphs by assigning
real-time dates and ressources to their elements. We de-
fined the correctness of such a schedule graph, and provided
an algorithm for the scheduling of endochronous clocked
graphs on distributed architectures built around a single
asynchronous bus.



Generated by our technique

Generated by SynDEx (different lanes)

time P1 P2 P3 Bus P3 Bus
0 HS_IN@true
1 FS_IN@true
2
3 [F1@(HS=false) Send(P1,HS)@true Send(P1,HS)@true
4
5 C@QHS—true Send(P1,FS)@true Send(P1,FS)@true
6
7 N N
@ (FS=trud) fend(P1,ID @(FS=trud) Send(P1,ID)
° 2@ (HS=false) %%S::f:?slzgend(m,m @e(Hszfgdse)
9 [@(FS=fals¢
10 HS=true
11
- M Send(P2,IDg
1 FS=fal
2 0 (FS=false)Send(P1,V) @Q(FS=false
14 @ (HS=false)
15
F3@(HS=false
10 Send(P1,V)
17 M Q@(HS=false)
0 (FS=false
18
19
20 F3@(HS=false

Figure 8: The real-time schedules generated by our algorithm and by SynDEx. We only figure for the
SynDEx schedule the lanes that differ from ours. Time flows from top to bottom. We give here the schedule
for one execution cycle. An execution of the system is an infinite repetition of this pattern. The width of an
operation inside its lane intuitively represents clock inclusion and exclusion properties.

We are currently focusing on the extension of the for-
malism and scheduling techniques to cover (1) multi-period
implementations where all the computations and commu-
nications are not bound to a single global clock, and (2)
larger classes of implementation architectures, such as time-
triggered ones.
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