
Probabilistic Modeling of Data Cache Behavior

Vinayak Puranik
Indian Institute of Science

Bangalore, India
vinayaksp@csa.iisc.ernet.in

Tulika Mitra
National Univ. of Singapore

Singapore
tulika@comp.nus.edu.sg

Y. N. Srikant
Indian Institute of Science

Bangalore, India
srikant@csa.iisc.ernet.in

ABSTRACT
In this paper, we propose a formal analysis approach to estimate the
expected (average) data cache access time of an application across
all possible program inputs. Towards this goal, we introduce the
notion of probabilistic access history that intuitively summarizes
the history of data memory accesses along different program paths
(to reach a particular program point) and their associated proba-
bilities. An efficient static program analysis technique has been
developed to compute the access history at all program points. We
estimate the cache hit/miss probabilities and hence the expected ac-
cess time of each data memory reference from the access history.
Our experimental evaluation confirms the accuracy and viability of
the probabilistic data cache modeling approach.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Modeling techniques; D.2.8 [Software
Engineering]: Metrics—Performance Measures; F.3.2 [Logics and
Meanings of Programs]: Semantics of Programming Languages—
Program Analysis

General Terms
Performance, Verification

1. INTRODUCTION
Multimedia-dominated consumer electronic devices (e.g., digital

camera, cell phones, audio/video recorders and players) are the ma-
jor drivers of the embedded systems market today. These devices
operate under soft real-time constraints and hence require the tim-
ing constraints to be satisfied most of the time. For example, a video
player might impose the constraint that the MPEG decoder must
process 30 frames per second. However, the system can still toler-
ate marginally slower frame rate and hence some missed frames oc-
casionally. Thus, the embedded software running on devices with
soft real-time constraints should be analyzed to ensure that timing
constraints are satisfied frequently enough.

Most embedded software, in particular, multimedia software ex-
hibit significant variability in their timing behavior [13]. In a com-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EMSOFT’09, October 12–16, 2009, Grenoble, France.
Copyright 2009 ACM 978-1-60558-627-4/09/10 ...$10.00.

plex software, the large number of feasible program paths are ex-
ercised in different ways by different program inputs resulting in
variable execution time. Additionally, the escalating performance
requirements of embedded systems are forcing the designers to
migrate towards complex hardware platforms. These platforms
involve processors with performance enhancing features such as
pipelines, caches, and branch prediction. These features further in-
crease the timing variability [20]. For example, given a fixed pro-
gram executing on a fixed architecture, the cache miss rate can vary
widely across the different program inputs [14].

The timing variability issue is addressed currently in two dif-
ferent ways. The first approach borrows techniques from the hard
real-time systems domain to provide worst-case timing guarantees.
As hard real-time systems are mostly safety-critical in nature, they
cannot afford to miss any deadline. Therefore, research in the past
two decades have focused on developing program analysis meth-
ods to derive a bound on the worst-case execution time (WCET)
of software [9, 15]. Unfortunately, employing the WCET value in
design leads to major over-dimensioning of the system resources.
In other words, the designer cannot exploit the somewhat relaxed
timing constraints in soft real-time systems.

An alternative approach for soft real-time systems that is slowly
gaining traction is the probabilistic schedulability analysis [10, 6,
5]. Probabilistic analysis techniques offer better resource dimen-
sioning by ensuring that the timing guarantees are satisfied fre-
quently enough (but may not be always). Most proposals in prob-
abilistic schedulability analysis assume that the the execution time
distributions of the tasks are known. The distribution of execu-
tion times also plays an important role in design space exploration,
compiler optimizations and parallel program performance predic-
tion for partitioning, scheduling, and load balancing [17, 12].

But how do we obtain the execution time distribution of a com-
plex software running on an equally complex high-performance ar-
chitectural platform? The prevailing practice is to simply simulate
or execute the program on the platform with a “representative" set
of inputs and derive an execution time distribution. Clearly, this ap-
proach is quite ad-hoc and the distribution is as good as the choice
of the program inputs. It should be mentioned here that it is ex-
tremely difficult, if not impossible, to choose a representative set
of program inputs for a complex software with millions (and some-
times billions) of possible inputs. In summary, existing approaches
are inadequate in accurately deriving the execution time distribu-
tion of a soft real-time embedded software.

Static program analysis techniques can potentially offer a formal
and rigorous approach towards deriving the execution time distri-
bution of programs. A few static analysis approaches have been
proposed in the literature in this context [17, 12, 4]. These ap-
proaches either completely ignore the architectural timing effects

or leave it as future work. However, the architectural features (in
particular the memory hierarchy) have major impact on the execu-
tion time variation. Indeed, instruction and data cache modeling for
WCET estimation have received considerable attention from the re-
search community [9, 15]. In contrast, the recent instruction cache
modeling work by Liang and Mitra [14] is so far the only attempt to
include architectural timing effects in probabilistic execution time
analysis. In this paper, we present a static program analysis method
for probabilistic data cache modeling to estimate the expected exe-
cution time of a software across all possible inputs.

Data cache modeling is significantly more challenging compared
to instruction cache modeling. An instruction is always fetched
from the same memory address. But a single instruction can access
a number of data memory locations. The set of memory locations
accessed and their sequencing are hard to predict at compile time,
especially for programs with irregular data access patterns. There-
fore, timing variability is introduced in data caches not only by the
control flow context in which an instruction is executed (which is
the case for instruction cache), but also by the values of program
variables that determine the sequence of data memory locations ac-
cessed by an instruction.

Liang and Mitra [14] introduce the concept of probabilistic cache
states to capture the instruction cache state at any program point.
A probabilistic cache state is nothing but a set of concrete cache
states each associated with their probabilities. The number of con-
crete instruction cache states at any program point is bounded by
the number of control flow contexts and is quite small in practice.
However, the number of concrete data cache states can quickly be-
come exponential as a single instruction (with a large set of poten-
tial data memory access locations) can generate multiple concrete
cache states. Therefore, in this work, we apply an abstraction on
the concrete cache states to capture all possible cache states at any
program point and their probabilities in a compact representation
with minimal loss of accuracy, as verified by the experimentation.
We call this abstract cache state probabilistic access history. We
define various operators that can work with probabilistic access
history and present a program analysis technique to compute this
abstract cache state at every program point. Finally, we show how
the expected access times of the data memory reference (and from
there the expected program execution time) can be derived given
the probabilistic access histories.

2. RELATED WORK
Static estimation of cache behavior of programs has been exten-

sively studied using the technique of Abstract Interpretation with
abstract cache domains [7]. An extension has been proposed in
[11] for data caches. However, an important step which is a pre-
requisite for data cache analysis, namely, address computation has
not been discussed. Significant research has been carried out on
modeling the data cache behavior of programs [8, 16, 19]. The
work in [8] contributes methods for the worst-case timing analy-
sis of data caches and set-associative caches. A bounded range of
relative addresses for each data reference is determined using data
flow analysis. Categorizations of data references are produced by a
static cache simulator. The Cache Miss Equations (CME) approach
is used in [16] for analyzing worst case data cache behavior. [19]
describes techniques to estimate the WCET of executable code on
architectures with data caches. Abstract Interpretation is used for
tracking address computations and cache behavior. Techniques de-
veloped in [18] are employed to compute a safe approximation of
the set of memory locations that can be accessed by any data mem-
ory reference. The results of address analysis are used to predict
data cache behavior using the Abstract Interpretation technique.

After the computation of worst case execution costs for each basic
block, an approximation of the overall worst case cost is obtained
by solving an Integer Linear Program.

However, all the above data cache analysis techniques have been
developed in the context of WCET analysis and hence the data
cache is modeled for the worst-case scenario. In contrast, our work
aims to model the data cache behavior for the determination of the
mean execution time of a program across inputs.

3. OVERVIEW
In this section, we present a formal problem definition and an

overview of our probabilistic data cache modeling approach.

Problem Definition. Given the executable program code and data
cache parameters, our goal is to model the data cache behavior dur-
ing program execution over multiple inputs. In particular, we com-
pute the data cache hit/miss probability and hence the mean execu-
tion time of each data memory reference instruction in the program.
Subsequently, we determine the mean execution time of the input
program.

Note that ideally the static analysis technique should derive the
probability distribution function of the execution time. However,
such elaborate analysis will be, in general, computationally expen-
sive and often of little practical value. Instead, we characterize
the execution-time distribution through its mean. If necessary, our
work can be easily extended to include additional statistical mo-
ments (such as variance, skewness and kurtosis) so that the distri-
bution can be completely reconstructed [12]. Thus, our work can
be used to compute an (unsafe) estimate of the worst case execution
time (WCET) and the best case execution time (BCET) of tasks.

Assumptions. We make the following assumptions about the in-
puts available to our analysis technique and the platform.

• We model set-associative data caches with perfect Least Re-
cently Used (LRU) replacement policy.

• The statistical information about the loop bounds (i.e., the
mean iteration count for each loop across all possible pro-
gram inputs) and the truth probability of the conditional branches
are available to our analysis framework. This information
can be derived through either program analysis [4], user an-
notation, comprehensive profiling, or a combination of these
approaches. We assume that the statistical information about
the program control flow across all possible inputs are de-
rived external to our analysis framework and is not the focus
of this paper.

Intuition behind Data Cache Modeling. In LRU replacement
policy, the contents of data cache at any program point p are given
by the most recent memory blocks accessed along the path ending
at p. In other words, if we know the list of memory blocks ac-
cessed along a path ending at p, arranged according to ‘recent ac-
cesses first’ order, then we can predict the exact contents of the data
cache at p. When there exist multiple paths ending at p, clearly, the
contents of data cache at p depend on the actual path taken.

In static analysis we must account for all program paths from the
entry point of the program to any point p. Intuitively, our idea is to
maintain lists of memory blocks accessed along each path that ends
at p, arranged according to ‘recent accesses first’ order, along with
the probability of each path. Clearly, this information gives us all
possibilities of the contents of the data cache at p, along with the
probability that the data cache contains a particular set of memory
blocks at p. This enables us to compute the data cache hit/miss
probability of a memory block access at p.

Maintaining separately the lists of memory blocks accessed along
each path from the entry point of a program to a point p is expen-
sive, because the number of paths that end at p may grow exponen-
tially. Moreover, as discussed in section 1, even for the same path,
there can be many possible cache contents depending on the exact
data memory locations accessed by the instructions along the path.
Hence, we introduce an abstraction. In this abstraction, we group
together the blocks which are ith recently accessed on each path
before ending at p, for i = {1, 2, . . .}. With each memory block
m contained in the set corresponding to the ith recent access, we
associate the probability of the path ending at p, on which m oc-
curs as the ith recent access. Thus, in this representation, each ith

recent access is a set of memory blocks, and each memory block in
the set has a probability value associated with it.

The data cache hit/miss probability of an access to memory block
m at program point p is determined as follows. First, we convert the
abstract collection of recent accesses into separate lists of individ-
ual memory blocks, where each list has memory blocks arranged
according to ‘recent accesses first’ order. These lists are derived
by taking a cross-product of all ith{i = 1, 2, . . .} recent accesses.
Then, with each individual list of memory blocks, we associate a
probability value which is equal to the product of probability values
associated with each memory block (of the list). A list of memory
blocks (arranged in ‘recent accesses first’ order) gives the possible
contents of the data cache at p and the probability value associated
with the list gives the probability that the data cache contains this
particular set of memory blocks. In theory, we need to keep track
of all the memory blocks accessed along a path from program entry
point to p. However, we conclude that, in practice, it is sufficient to
keep track of only a constant number of accesses.

4. DATA CACHE MODELING
The data cache analysis problem comprises of two important

sub-problems: calculating addresses of memory accesses and infer-
ring cache behavior. We adapt the techniques developed in [18] for
the first sub-problem, namely, calculating addresses of memory ac-
cesses (or address analysis). For the second sub-problem, namely,
inferring cache behavior (or cache analysis), we describe a static
analysis technique to determine the data cache hit/miss probability
and hence the mean execution time of data memory reference in-
structions of the program. Subsequently, given the mean execution
time of memory reference instructions within the program and the
program statistical information about the loop bounds and the truth
probability of conditional branches, the mean execution time of the
whole program in the presence of data cache is computed.

4.1 Program Representation
Given a program, we first construct the Control Flow Graph

(CFG) for each procedure in the program. Our analysis is flow sen-
sitive, context insensitive. Hence, CFGs for individual procedures
are linked together at call and return points to form a SuperGraph.
We assume that the SuperGraph and every loop body corresponds
to a directed acyclic graph (DAG). If the SuperGraph (or a loop)
contains other loops within its body, then the inner loops are rep-
resented by dummy nodes. Thus, whenever we refer to ‘nodes’ or
‘basic blocks’ of a DAG, we include both the actual basic blocks of
the program and the dummy nodes representing the DAGs of inner
loops.

Given conditional branch truth probabilities and mean loop bounds,
we can compute the basic block and edge frequencies.The basic
block execution frequency NB (of a basic block B) is defined rela-
tive to the start basic block of the innermost loop it is in. The edge
execution frequency f(B′ → B) (of an edge B′ → B) is defined

as the probability that B is reached from B′. Additionally, We de-
fine the probability of a path, Pr(B′ → · · · → B) as the product
of execution frequencies of edges that constitute the path.

4.2 Address Analysis
An important aspect of data cache analysis is determining the

memory addresses accessed by data reference instructions. For im-
mediate addressing, address determination is straightforward. How-
ever, in most cases addresses are computed by program instructions
before the access is made. Also, the address set for data references
may not be a singleton set, in for example, array references. Hence,
we need a mechanism to determine the set of memory locations that
are accessed by the data reference instructions. We adapt the anal-
ysis technique described in [18] for this purpose.

[18] proposes the Circular Linear Progressions (CLP) abstract
domain for static analysis of executable code.

A CLP is represented as a 3-tuple (l, u, δ), where l, u ∈ Z(n), δ ∈
N(n), and the parameter n denotes n-bit representation. The com-
ponents denote the starting point, ending point and positive step
increment, respectively. The finite set of values abstracted by the
CLP C(l, u, δ) is computed by the concretization function

conc(C) = {ai = l +n iδ|a0 = l, as = u, i ≤ s, i ∈ N ∪ {0}}

where +n denotes addition in n-bits, which is addition modulo 2n.
The CLP abstract domain is used to track the values of statically

identifiable memory locations and registers at program points. This
is achieved by abstract transfer functions that are defined for a wide
range of operations. For a data reference instruction, the abstract
values of memory locations and registers (at the program point) are
used to compute the set of memory locations that may be accessed.
For our purpose, we assume that this analysis technique gives us
a safe-approximation of the set of memory locations that can be
accessed by any data memory reference.

Now, we describe our cache modeling framework, by introduc-
ing the concept of access history. Intuitively, access history refers
to a history of memory block accesses along path(s) ending at a
program point.

4.3 Cache Terminology
A cache memory is characterized by four major parameters: ca-

pacity C, block or line size B, associativity A, number of sets K.
The capacity is the number of bytes in the cache. The block

or line size is the number of contiguous bytes transferred between
the main memory and the cache. The associativity is the number
of lines in a set where a particular block may reside. Depend-
ing on whether a block can reside in any cache line or in exactly
one cache line or in exactly A cache lines of a set, the cache is
called fully-associative or direct mapped or A-way set-associative,
respectively. For A-way set-associative cache, the replacement pol-
icy (e.g., LRU, FIFO etc.) decides the block to be evicted when a
cache set is full.

We consider memory as a set of blocks of size B each, M =
{m0,m1, . . .}. Each memory blockm always maps to exactly one
set of the cache and hence each cache set can be modeled inde-
pendently. In the discussion that follows, we consider cache as a
set of A lines. We assume perfect Least Recently Used (LRU) re-
placement policy, where the block replaced is the one that is unused
for the longest time. To indicate that absence of a memory block
access, we introduce an element ⊥.

4.4 Concrete Access History
We first introduce the concepts of concrete access and concrete

access history. These concepts are used later to introduce the no-

Figure 1: A program path with four memory accesses and the concrete
access history h at the end of the program path.

tion of probabilistic access and probabilistic access history.

DEFINITION 1. (Concrete Access). A concrete access refers to
a single memory block m ∈ M ∪ {⊥}.

DEFINITION 2. (Concrete Access History). A concrete access
history is a vector h = 〈h[1], h[2], . . .〉 of unbounded length, where
h[i] is a concrete access. If h[i] = m, then m is the ith most
recently accessed memory block. We define h⊥ = 〈⊥〉 as an empty
concrete access history.

Given a concrete access history h and n > 0, distinct(h, n)
gives the first n distinct concrete accesses in h. By the definition of
concrete access history, distinct(h,A) gives the memory blocks
that currently reside in the cache.

DEFINITION 3. (Cache Hit). Given a concrete access history
h and a concrete access m,

hit(h,m) =

1 if m ∈ distinct(h,A)
0 otherwise

DEFINITION 4. (Concrete Access History Update). We define
� as the concrete access history update operator. Given a concrete
access history h and a concrete accessm, h�m defines the access
history after memory access m.

h�m =

8<: h, if m = ⊥
h′, where h′[1] = m

h′[i] = h[i− 1], i > 1

Figure 1 shows an example of a program path with four memory
accesses along the path and the concrete access history h at the
end of the program path. The first entry in h is the most recent
access, second entry is the second most recent access and so on.
Note that access history is different from abstract cache state [11]
in that a memory block may appear multiple times in the access
history as seen in figure 1. Thus, the length of the access history
is not bounded by the associativity of the cache. The length of the
access history is equal to the cache associativity only in the case
of a direct mapped cache. For higher associativity, a larger access
history is desirable for better precision.

4.5 Probabilistic Access History
The concrete access history at any program point is dependent on

the program path taken before reaching this point. A program point
may be reached through multiple program paths leading to different

Figure 2: P1, P2 & P3 are program paths ending at point p. H is
the probabilistic access history at p. {h1, . . . , h8} are concrete access
histories obtained by taking a cross-product of probabilistic accesses in
H . Pr(hi) is the probability associated with concrete access history hi.

possible access histories. Hence, in probabilistic data cache model-
ing we must model the probability of each access history possible
at a program point. Hence, we introduce the notion of probabilistic
access history.

DEFINITION 5. (Probabilistic Access). A probabilistic access
is a 2-tuple: 〈M,X〉, where M ⊆ M ∪ {⊥} is a set of con-
crete accesses and X is a random variable. The sample space of
the random variable is M ∪ {⊥}. Given a concrete access m,
we define Pr[X = m] as the probability of the concrete access
m in M . If m /∈ M , then Pr[X = m] = 0. By definition,
(
P

m∈M∪{⊥} Pr[X = m]) = 1.

DEFINITION 6. (Probabilistic Access History). A probabilis-
tic access history is a vector H = 〈H[1], H[2], . . .〉 of unbounded
length, where H[i] is a probabilistic access. If H[i] = 〈M,X〉,
then 〈M,X〉 is the ith most recent probabilistic access. This means,
for each concrete access m ∈ M , Pr[X = m] is the probabil-
ity that m is the ith most recently accessed memory block. In-
tuitively, Pr[X = m] is the probability of the path on which m
occurs as the ith most recently accessed memory block. We define
H⊥ = 〈〈{⊥}, X〉, P r[X = ⊥] = 1〉 as an empty probabilistic
access history.

A probabilistic access history can also be described as follows:
Given H , where H[i] = 〈Mi, Xi〉, i = {1, 2, . . .}, define a set
HCP as the cross-product of the sets Mi, i = {1, 2, . . .}. Since
for each i, Mi ⊆ M ∪ {⊥}, we can see that each element of
HCP is a concrete access history. That is, considering each Mi =
{mi1 ,mi2 , . . .}, then each h ∈ HCP is of the form 〈m1j ∈
M1,m2j ∈ M2, . . .〉, where mij ∈ M ∪ {⊥}. We define the
probability of each h ∈ HCP as,

Ph =
Y

i={1,2,...}

Pr[Xi = mij] mij ∈Mi, j = {1, 2, . . .}

Since for each i, (
P

m∈Mi
Pr[Xi = m]) = 1, we can see thatP

h∈HCP
Ph = 1. Thus, a probabilistic access history can also

be viewed as a collection of concrete access histories such that, the

sum of the probability of each concrete access history is 1. Theoret-
ically, it can be guaranteed that, the set of concrete access histories
obtained from a probabilistic access history is always a superset of
the actual concrete access histories at a program point. Hence, the
set of possible cache states we get is always a superset of the actual
concrete cache states possible at that point.

Figure 2 shows an example of three program paths P1, P2 and P3

ending at point p, where Pr(Pi) is the probability of path Pi. H is
the probabilistic access history at p and each entry of H is a prob-
abilistic access. For example, the most recent probabilistic access
of H consists of memory blocks m2, with probability (indicated as
a superscript for memory block in the figure) 1/2 (corresponding
to the paths P1 & P2 on which m2 is the most recent access) and
m4, with probability 1/2 (corresponding to path P3 on which m4

is the most recent access). H can also be viewed as a collection of
concrete access histories {h1, . . . , h8} where Pr(hi) is the prob-
ability associated with hi. Note, the set {h1, . . . , h8} is an over-
approximation of the actual concrete access histories {h2, h3, h6}
at p.

DEFINITION 7. (Cache Hit/Miss Probability). Given a prob-
abilistic access history H and a concrete access m, the cache hit
probability PHit(H,m) of memory access m is,

PHit(H,m) =
X

h∈HCP ,hit(h,m)=1

Ph

DEFINITION 8. (Probabilistic Access History Update for Con-
crete Access). We define E as the probabilistic access history up-
date operator. Given a probabilistic access history H and a con-
crete access m, H E m defines the probabilistic access history
after concrete access m.

H E m =

8<: H, if m = ⊥
H ′, where H ′[1] = 〈{m}, X〉, P r[X = m] = 1

H ′[i] = H[i− 1], i > 1

In data cache analysis, the address set for data references may
not be a singleton set, as described in section 4.2. Therefore, we
describe a mechanism to update a probabilistic access history H
with a safe-approximation of the set of memory locations that can
be accessed by a data memory reference.

Let the address set of a memory reference be {m1, . . . ,mr}. In
our analysis we assume that all the r references are equally likely,
i.e., the instruction refers to each address with equal probability.
Therefore, we treat the address set as a probabilistic access 〈M,X〉
where M = {m1, . . . ,mr} and Pr[X = mi] = 1/r, 1 ≤ i ≤ r.
Then, we updateH with eachmi ∈M separately and “merge” the
resulting probabilistic access histories.

First, we formally define the “merging” operation for probabilis-
tic access histories.

DEFINITION 9. (Probabilistic Accesses Merging). We define
⊕ as the merging operator for probabilistic accesses. It takes in n
probabilistic accesses 〈Mi, Xi〉 and a corresponding weight func-
tion w as input s.t.

Pn
i=1 w(〈Mi, Xi〉) = 1. It produces a merged

probabilistic access 〈M,X〉 as follows.

⊕(〈M1, X1〉, . . . , 〈Mn, Xn〉, w) = 〈M,X〉 where, M =

n[
i=1

Mi,

P r[X = m|m ∈M] =
X

∀i,m∈Mi

Pr[Xi = m]× w(〈Mi, Xi〉)

Figure 3: Merging operation for probabilistic access histories.

The concrete accesses in M is the union of all the concrete ac-
cesses in M1, . . . ,Mn and the probability of a concrete access
m ∈ M is a weighted summation of the probabilities of m in the
input probabilistic accesses.

DEFINITION 10. (Probabilistic Access Histories Merging). We
define ⊕∗ as the merging operator for probabilistic access histo-
ries. It takes n probabilistic access histories H1, H2 . . . Hn and a
corresponding weight function w as input s.t.

Pn
i=1 w(Hi) = 1.

It produces a merged probabilistic access history H as follows.

⊕∗(H1, . . . , Hn, w) = H where,

H[i] = ⊕(H1[i], . . . , Hn[i], w) i = {1, 2, . . .}

In other words, the probabilistic access history H is obtained
by merging the ith most recent probabilistic accesses in each of
H1, . . . , Hn, for i = {1, 2, . . .}. Figure 3 shows an example of the
merging operation for two probabilistic access histories.

Now, we define the operator to update a probabilistic access his-
tory H with a probabilistic access 〈M,X〉.

DEFINITION 11. (Probabilistic Access History Update for Prob-
abilistic Access). Given a probabilistic access history H and a
probabilistic access 〈M,X〉, where M = {m1, . . . ,mr}, H E
〈M,X〉, defines the probabilistic access history after probabilistic
access 〈M,X〉.

H E 〈M,X〉 = ⊕∗(H E m1, . . . , H E mr, w) where,

w(H E mi) = Pr[X = mi]

5. ANALYSIS OF PROGRAM
As mentioned earlier, given an executable program, we first con-

struct the SuperGraph of the program. We assume that every loop
(within the SuperGraph) has a single entry point (through the loop
start node) and a single exit point (through the loop end node). As
the first step, we isolate the CFG of every loop by replacing the
loop body with a “dummy” node. If a loop contains other loops
within its body, we isolate the CFGs of inner loops before the outer
loop. Thus, we ensure that the body of the SuperGraph (and of ev-
ery loop) corresponds to a directed acyclic graph (DAG). We are
now ready to analyze the program.

The goal of our analysis is to compute the probabilistic access
history at every program point, and use this information to com-
pute the data cache hit/miss probability and hence mean execution
time for each data reference instruction. We start with the analysis

of the SuperGraph DAG, visiting the nodes of the DAG in a re-
verse postorder sequence. Note that, every node in the body of the
SuperGraph (and every loop) DAG is either an actual basic block
of the program or a dummy node representing a loop body. If the
node is an actual basic block, we update the incoming probabilistic
access history with the memory references within the basic block,
simultaneously calculating the data cache hit/miss probability for
each memory reference (before updating the probabilistic access
history with the memory reference). In the case of a dummy node,
we first compute a “summary” of the accesses within the loop rep-
resented by dummy node, before using the “summary” information
to analyze the loop DAG.

5.1 Analysis of DAG
Let start and end be the unique start and end basic blocks of a

DAG. Let Hin
start and Hout

end be the incoming and outgoing proba-
bilistic access histories of the DAG, respectively. For the analysis
of the SuperGraph and for the summary of a loop, we consider
Hin

start = H⊥. Now, to perform the analysis of the DAG, we con-
sider each of its basic blocks one by one (in a reverse postorder
sequence) and do the following: (a) Compute the basic block’s in-
coming probabilistic access history; (b) For each data memory ref-
erence within the basic block first compute the data cache hit/miss
probability (and hence compute the mean execution time of the data
reference instruction) and then update the probabilistic access his-
tory with the memory reference; (c) Compute the basic block’s out-
going probabilistic access history.

Let Hin
B and Hout

B be the incoming and outgoing probabilis-
tic access history of a basic block B, respectively. Let genB =
〈m1, . . . ,mk〉 be the sequence of memory blocks accessed within
B. Then

Hout
B = Hin

B E m1 E . . .mk

That is, the outgoing probabilistic access history of a basic block
is derived by repeatedly updating the incoming probabilistic access
history with the memory accesses in B. In order to generate the
incoming probabilistic access history of B from its predecessors’
outgoing probabilistic access history, we employ the merging oper-
ator ⊕∗.

Let in(B) = {B′, B′′, . . .} define the set of predecessor basic
blocks. Then, we define the weight function w as w(Hout

B′) =
f(B′ → B), where B′ ∈ in(B) is a predecessor of block B.

Hin
B = ⊕∗(Hout

B′ , Hout
B′′ , . . . , w)

In the previous subsection we described the mechanism to up-
date a probabilistic access history H with a safe-approximation of
the set of memory locations that can be accessed by a data memory
reference. Alternately, we can treat the address set as an r − way
branch, where each branch is taken with equal probability 1/r.
Therefore, we update the incoming probabilistic access history H
with individual addresses mi and merge the results using the ⊕∗
operator.

5.2 Summary of Loop
Let Hin

L and Hout
L be the incoming and outgoing probabilistic

access histories of a loop L. Let start and end be the unique
start and end basic blocks of the DAG corresponding to the body
of L. Then, Hin

L = Hin
start and Hout

L = Hout
end. In the previous

subsection, we have described the method for deriving the incom-
ing and outgoing probabilistic access histories of each basic block
of a DAG starting with an empty probabilistic access history, i.e.,

Figure 4: DAG1 and DAG2 and the probabilistic access histories
after the execution of the corresponding DAGs, H1 and H2. DAG3

is the sequential execution of DAG1 and DAG2, H3 is the result of
concatenation of H1 and H2 (Edge probabilities are indicated).

Hin
L = H⊥. However, for a loop iterating multiple times, the in-

put probabilistic access history at the start node of the loop body is
different for each iteration.

Let us add the subscript 〈n〉 for the nth iteration of the loop.
First, we note that Hin

start〈1〉 = Hin
L = H⊥. Then for iteration

n > 1

Hin
start〈n〉 = Hout

end〈n−1〉

Thus, Hin
start〈2〉, . . . , H

in
start〈N〉 can be computed directly from

Hout
end〈1〉, . . . , H

out
end〈N−1〉 respectively (here,N is the expected loop

bound of L). Hout
end〈1〉 is derived from Hin

start〈1〉 by the analysis of
the loop DAG (as described in previous subsection). However, in
order to compute Hout

end〈i〉, 2 ≤ i ≤ N we do not need to traverse
the complete loop DAG. Instead, we observe the following. Con-
sider the execution of two program fragments (DAGs) each starting
with an empty access history. Let, the probabilistic access history
after the execution of the first and second fragments be H1 and H2

respectively. Then the probabilistic access history after the exe-
cution of the two fragments sequentially is the “concatenation” of
H1 and H2. Formally, we define the “concatenation” operator as
follows.

DEFINITION 12. (Concatenation of Concrete Access Histories).
Given two concrete access histories h1 and h2, where the length of
h2 is k

h1 � h2 = h where h = h1 � h2[k] · · ·� h2[1]

DEFINITION 13. (Concatenation of Probabilistic Access His-
tories). Given two probabilistic access historiesH1 andH2, where

the length of H2 is k, i.e., H2 = 〈〈M1, X1〉, . . . , 〈Mk, Xk〉〉 and
Pr[Xi = ⊥] = 0, 1 ≤ i ≤ k

H1 �H2 = H where H = H1 �H2[k] · · ·�H2[1]

That is, the most recent access of H1 becomes the (k + 1)th

most recent access of H1 � H2, the second most recent access of
H1 becomes the (k + 2)th most recent access of H1 �H2, and so
on.

However if ∃i, P r[Xi = ⊥] > 0, then the definition of � oper-
ator changes. Let i be the smallest value s.t. Pr[Xi = ⊥] > 0. We
add H1[1] to H2[i] with a probability value Pr[Xi = ⊥], H1[2]
to H2[i + 1] with a probability value Pr[Xi = ⊥] and so on.
Consider the resulting probabilistic access history as the changed
H2. Once again, let i be the smallest value s.t. Pr[Xi = ⊥] >
0. Continue as above until H1[1], H1[2], . . . are appended as the
(k + 1)th, (k + 2)th, . . . most recent accesses of H1 �H2.

Figure 4 shows an example for computing the probabilistic ac-
cess history after the sequential execution of two program frag-
ments (DAG1 and DAG2) by applying the “concatenation” op-
erator on the probabilistic access histories after the execution of
individual program fragments (H1 and H2).

Now, we can compute the outgoing probabilistic access history
of loop L for each iteration (i.e., Hout

end〈i〉, 2 ≤ i ≤ N) by applying
the � operator.

Hout
end〈i〉 = Hin

start〈i〉 �Hout
end〈1〉, 2 ≤ i ≤ N

The final probabilistic access history after N iterations starting
with empty probabilistic access history, i.e.,Hin

L = H⊥, is denoted
as Hgen

L where

Hgen
L = Hout

end〈N〉

Intuitively, Hgen
L gives the history of accesses at the end of N

iterations of the loop.
The data cache hit/miss probability of a memory reference within

a loop depends on the input probabilistic access history, Hin
B of

the corresponding basic block B, which in turn is dependent on
Hin

start〈n〉 of the loop L. Computing the data cache hit/miss prob-
ability of the memory reference in each iteration can be expensive
as it involves computing the cross product of sets of accesses (of
each probabilistic access) in the probabilistic access history (Def-
inition 7.). Instead, we observe that we only need to compute an
“average” probabilistic access history, Havg

L at the start node of
the loop body. This captures the input probabilistic access history
of the loop over N iterations. Thus, Havg

L is defined in terms of
Hin

start〈n〉 for 1 ≤ n ≤ N as

Havg
L = ⊕∗(Hin

start〈1〉, . . . , H
in
start〈N〉, w)where,

w(Hin
start〈i〉) = 1/N

Thus, the objective of summarizing a loop L is computing the
probabilistic access histories, Hgen

L and Havg
L .

The � operator is also used for the following. During the anal-
ysis of the DAG that contains L we directly derive the outgoing
probabilistic access history of L by “concatenating” the incoming
probabilistic access history with Hgen

L . Also, when we analyze
the loop DAG in the context of the whole program, we compute
the probabilistic access history at the start node of the loop, Hin

L

by “concatenating” the incoming probabilistic access history with
Havg

L .

5.3 Analysis of Whole Program
In the previous subsections we described the analysis of a DAG

and the summarization of a loop. We put these together to analyze
the whole program. The calculation of the mean execution time of
the input program happens as a part of the analysis.

Algorithm 1: analyze_program
1: D ← DAG corresponding to SuperGraph
2: exec_time_program← analyze_dag(D,H⊥)
3: return exec_time_program

Algorithm 2: analyze_dag (D,Hin
D)

1: exec_time_dag ← 0
2: for all node B in D do
3: if B is first node of D (reverse postorder sequence) then
4: Hin

B ← Hin
D

5: else
6: Compute Hin

B

7: end if
8: exec_time_node← analyze_node(B,Hin

B)
9: exec_time_dag ← exec_time_dag +

exec_time_node ∗NB

10: end for
11: return exec_time_dag

Algorithm 3: analyze_node (B,Hin
B)

1: exec_time_node← 0
2: if B is representative node then
3: L← Loop represented by B
4: N ← Expected loop bound of L
5: (Hgen

L , Havg
L)← Summarize L

6: D ← DAG corresponding to L
7: Hin

D ← Hin
B �Havg

L

8: exec_time_node← analyze_dag(D,Hin
D) ∗ N

9: Hout
B ← Hin

B �Hgen
L

10: else
11: Compute exec_time_node & Hout

B

12: end if
13: return exec_time_node

The analysis of the program starts with a call to analyze_program
(algorithm 1), which returns the mean execution time of the pro-
gram. analyze_program calls analyze_dag (algorithm 2) pass-
ing the SuperGraph DAG and H⊥ as parameters. The SuperGraph
DAG and the constituent DAGs are analyzed via recursive calls to
analyze_dag and analyze_node (algorithm 3).

analyze_dag considers each node B of the input DAG D in a
reverse postorder sequence. If B is the first node of the DAG, then
the incoming probabilistic access history of D, Hin

D becomes the
incoming probabilistic access history of B, Hin

B . Otherwise, Hin
B

is computed as described in subsection 5.1. Next, analyze_dag
calls analyze_node passing B and Hin

B as parameters. The mean
execution time of the node returned by analyze_node is multiplied
by the node frequency NB and summed up to compute the mean
execution time of the DAG.

analyze_node checks if B is a dummy node that represents a
loop L. If so, it first summarizes L to compute Hgen

L and Havg
L

as described in 5.2, and then calls analyze_dag with the DAG
corresponding to loop L and Hin

B � Havg
L as parameters. The

mean execution time of the DAG returned by analyze_dag is mul-
tiplied by the expected loop bound of L to compute the mean ex-
ecution time of the loop L represented by dummy node. Also, the
outgoing probabilistic access history of B, Hout

B is computed as
Hin

B �Hgen
L . If B is not a dummy node, then the mean execution

time of B and Hout
B are computed as described in subsection 5.1.

6. ANALYSIS MODES
In data cache analysis each data reference is represented by a

safe-approximation of the set of memory locations that can be ac-
cessed by the instruction. For example, the access of each indi-
vidual array element at a program point (inside a loop) results in
the approximation consisting of a set of memory blocks that rep-
resent the entire array. Thus, larger the array, larger is the size
of the approximation. Further, an address approximation ignores
the frequency and ordering of accesses within the approximation.
This information is very important in determining the existence of
spatial and temporal reuse. Therefore, as the approximation size
increases, the data cache analysis becomes less precise (the loss
of information about the frequency and ordering of accesses in the
approximation becomes costly).

We deal with this problem by adapting a technique of access
sequencing, proposed in [19]. In this technique, we employ both
partial physical and virtual unrolling of loops. Partial physical un-
rolling of the outer loop partitions the iteration space into regions.
We alternately select a region to be analyzed in either expansion
or summary modes. The summary mode is described in subsec-
tion 5.2. The expansion mode can be visualized as virtual unrolling
of the loop nest over the region and performing the analysis over
this virtually unrolled loop. Expansion mode maintains sequencing
within the region. In this mode, both Address and Cache Analy-
sis are carried out simultaneously. The address computed for any
reference in any pass is immediately used for data cache hit/miss
probability calculation and to update the current probabilistic ac-
cess history. The mean data reference instruction execution time is
summed up as we analyze the basic blocks of a loop in this mode.
This summed up value represents the mean execution time for the
region analyzed in expansion mode.

To incorporate expansion mode of analysis, we only need to
change the algorithm analyze_node. If B is a representative node,
we first check if the loop L represented by B must be analyzed in
summary or expansion mode. If L must be analyzed in summary
mode, then the algorithm remains the same. However, if L must
be analyzed in expansion mode, then Hin

B is considered as the in-
put probabilistic access history for loop L and then, L is analyzed
in expansion mode. The value returned by expansion analysis is
considered as the mean execution time of L.

Consider a loop nest L1 containing L2. Let the expected loop
bounds of L1 and L2 be n1 and n2 respectively. Then, summary
mode takes time proportional to n1 +n2, whereas expansion mode
takes time proportional to n1∗n2. Selection between the two modes
is governed by a tradeoff between tightness of analysis and analysis
time and can be controlled by the user of the analysis. The user
specifies fraction, approximate fraction of total iteration space to
be analyzed in expansion mode and samples, number of regions
over which the fraction to be analyzed in expansion mode is to be
distributed.

7. EXPERIMENTAL EVALUATION
We have evaluated our probabilistic data cache modeling tech-

nique on a set of benchmarks chosen from [3]. The edn_ pro-
grams are subroutines in the edn benchmark. We have adapted the

implementation of the address analysis framework of [19]. This
framework is implemented for the ARM7TDMI architecture[1].
We have implemented our cache modeling framework also for the
ARM7TDMI architecture. The sources of the benchmarks are com-
piled with gcc to create ARM7 executables.

Our focus is on the data cache modeling technique and hence we
present our results in terms of the mean data cache misses for the
benchmarks. Clearly, it is infeasible to calculate the actual mean
data cache misses of a program across all possible inputs (this is
exactly the problem we are trying to solve). Instead, we approxi-
mate the same by observing the average cache misses across mul-
tiple inputs of the program. These observed cache miss numbers
are obtained by running the executable on the Simplescalar/ARM
simulator [2] (with a configurable cache model added).

As mentioned earlier, we also need the mean loop bound and
conditional branch truth probabilities for each benchmark as input
to our framework. This information can be derived through pro-
gram analysis [4] external to our framework. However, our inten-
tion is to evaluate the accuracy of our data cache modeling tech-
nique. We want to avoid the inaccuracy in program statistical in-
formation estimation from affecting the accuracy of our analysis.
Hence, we profile the benchmarks with the same program inputs
used to obtain the observed mean cache misses. The profiler feeds
our framework with mean loop bounds and truth probabilities of
conditional branches. Note that the mean loop bound and condi-
tional branch truth probabilities are underlying architecture inde-
pendent. Hence, these values can be obtained by profiling applica-
tions on any architecture, only once, and then reused for different
instances of static data cache analysis for different cache configu-
rations.

Table 1 shows the result of our analysis for the following data
cache configuration: Associativity = 1, Block size = 16 bytes, Total
cache size = 1KB. We observe that the analysis is very accurate for
direct mapped caches when the absolute data cache misses are low.
For a direct mapped cache, we need to record only the most recent
access that maps to each cache set to predict the exact contents of
the cache. Hence, the probabilistic access history has a length of 1.
As a result, the calculation of hit/miss probability for each memory
reference and the loop analysis are fast. That is, for a direct mapped
cache our analysis is efficient both in terms of memory usage and
analysis time. The ∗ entries in the table (edn_iir, edn_mac and
matmult) indicate that the benchmarks were analyzed in expan-
sion mode with an expansion of 20% (fraction = 0.2). For the
remaining benchmarks expansion was not required. For edn_iir,
edn_mac and matmult, it was observed that a higher number of
memory blocks from address approximations mapped to the same
cache set. That is, at many program points the most recent access
(for many cache sets) comprised of a higher number of memory
blocks. Hence, the benchmarks required to be analyzed in expan-
sion mode. Note that a large number of memory blocks in the most
recent access does not in itself lead to imprecise results; but com-
bined with the actual order and frequency of the accesses this may
contribute to imprecision. We explain this phenomenon with an
example.

Consider a loop L with the expected loop bound N = 8 and
a single data reference inside the loop body. Let the address set
of the memory reference comprise of two blocks m1 and m2 (as-
sume that both m1 and m2 map to the same cache set). Using the
description of section 5.2, we figure out that the probabilistic ac-
cess history of the loop Havg

L comprises of three blocks m1, m2

and⊥ with associated probabilities of 7/16, 7/16 and 1/8, respec-
tively. This means that the hit probability for the access inside L
as given by the analysis is 7/16. Now in reality, if the order of

accesses is m1 (4 times) followed by m2 (4 times), then the actual
hit probability is 3/4 which is greater than the value returned by
the analysis. On the other hand, if the order of accesses is m1 and
m2 alternating each other, then the actual hit probability is 0 which
is less than the value returned by the analysis. This effect is more
pronounced when there exist a large number of blocks in the prob-
abilistic access history. However, if there existed a much tighter
address analysis which could give us the ordering and/or frequency
information of the accesses in an access set, then our data cache
analysis would be more precise. A step in this direction is a proba-
bilistic address analysis similar to our probabilistic cache analysis
and we are working towards such an analysis technique.

We also considered a cache configuration with Associativity =1,
Block size =16 bytes, Total cache size =2KB and found that our
analysis was quite accurate for all the benchmarks and no expan-
sion was required.

In order to evaluate the quality of the analysis when the absolute
data cache misses are high, we scaled up each benchmark by en-
larging the loop iteration space and the size of data sets wherever
possible (jfdctint is an exception as the program is designed for a
specific data set size). In tables 2, 3 and 4 we show the results of
our analysis for three different data cache configurations: (a) As-
sociativity = 1, Total cache size = 1KB;(b) Associativity = 2, Total
cache size = 1KB; and (3) Associativity = 4, Total cache size =
2KB. The Block size is 16 bytes.

For each benchmark, first we show the mean data cache misses
computed by the analysis with 0% expansion. We observe that
without any expansion the analysis is not very useful. Larger itera-
tion space and larger data sets result in larger address sets for data
reference instructions. When address sets are large, a higher num-
ber of blocks map to the same cache set. As explained previously,
in the absence of a more informative address analysis the actual or-
der and frequency of the block accesses may affect the precision of
our analysis. This necessitates the analysis of portions of iteration
space in expansion mode. The analysis in expansion mode is con-
trolled by two parameters namely, fraction and samples (section 6).
From our experiments we observed that increasing the amount of
expansion (value of fraction) progressively improves the quality of
analysis results. In tables 2, 3 and 4 we show the results for an
expansion of 20%, 40% and 50%. A higher value of samples im-
plies that more regions are selected for expansion. But, for smaller
expansion values each such region only gets smaller. Hence, for
expansion of up to 20% we restricted the samples to 2 and for ex-
pansion greater than 20% we set samples as 4. For programs with
nested loops (bsort, edn_fir, matmult), we particularly observed that
increasing expansion increased the analysis time. For most bench-
marks there was a marked improvement in analysis results at 40%
expansion. For latsynth a 20% expansion itself brought the anal-
ysis results close to observed values. However, bsort and matmult
showed a very gradual improvement.

Apart from the values of fraction and samples, the size of the
probabilistic access history also plays an important role in deciding
the accuracy of the results. Expansion is more likely to produce sin-
gleton address sets for each memory reference and hence calls for a
larger probabilistic access history especially when the associativity
of the cache is high. We explain this with an example.

Consider a loop L with the expected loop bound N = 6 and
a single data reference inside the loop body. Also, let the address
set of the memory reference be {m1,m2} where both m1 and m2

map to the same cache set. Let the actual order of accesses (and
also that determined by the address analysis in expansion mode) be
m1,m2,m2,m2,m2,m1. If associativity = 2, then clearly except
for the very first accesses ofm1 andm2, all other accesses result in

a cache hit. But even with an access history size of 4, the analysis
cannot detect the last accessm1 as a cache hit. However, we cannot
arbitrarily increase the length of probabilistic access history. In
summary mode of analysis, each probabilistic access may contain
many memory blocks and thus a larger access history implies larger
analysis time. Therefore, in our experiments we gradually increase
the size of the access history with increasing expansion. For most
benchmarks the maximum access history size was 10 to 15. But,
for some benchmarks (like matmult) we considered a maximum
access history size of 30 for better results. In all the cases, the
actual runtime of our analysis was in the order of seconds.

8. CONCLUSIONS
Data caches contribute to significant variability in the program

execution time. In this work, given a program and a data cache con-
figuration, we capture the variability in cache access time across
all program inputs through fast and accurate static program anal-
ysis. This is achieved by introducing the notion of probabilistic
access histories that can compactly summarize all possible cache
states (along with their probabilities) at any program point for LRU
set-associative caches. Our experimental evaluation shows that the
abstraction causes minimal loss of accuracy specially when used in
conjunction with selective loop unrolling. In the future, we would
like to propose a probabilistic address analysis to improve the pre-
cision of our data cache analysis and extend our work to estimate
the complete probability distribution function of the program exe-
cution time.

9. REFERENCES
[1] ARM7TDMI. Technical Reference Manual.

"http://www.arm.com/pdfs/DDI0210B_7TDMI_R4.pdf".
[2] Simplescalar/ARM. "http://www.simplescalar.com/v4test.html".
[3] WCET Project/Benchmarks. "http:

//www.mrtc.mdh.se/projects/wcet/benchmarks.html".
[4] L. David and I. Puaut. Static Determination of Probabilistic Execution Times.

In ECRTS, 2004.
[5] A. Burns et al. A Probabilistic Framework for Schedulability Analysis. In

EMSOFT, 2003.
[6] J.L. Diaz et al. Stochastic Analysis of Periodic Real-Time Systems. In IEEE

RTSS, 2002.
[7] M. Alt et al. Cache Behavior Prediction by Abstract Interpretation. In SAS,

1996.
[8] R. T. White et al. Timing Analysis for Data Caches and Set-Associative Caches.

In IEEE RTAS, 1997.
[9] R. Wilhelm et al. The Worst-Case Execution-Time Problem - Overview of

Methods and Survey of Tools. ACM Trans. Embedded Comput. Syst., 7(3),
2008.

[10] S. Manolache et al. Schedulability Analysis of Applications with Stochastic
Task Execution Times. ACM Trans. Embedded Comput. Syst., 3(4), 2004.

[11] C. Ferdinand and R. Wilhelm. On Predicting Data Cache Behavior for
Real-Time Systems. In LCTES, 1998.

[12] H. Gautama and A. J. C. van Gemund. Static Performance Prediction of
Data-Dependent Programs. In WOSP, 2000.

[13] E. A. Lee. Computing needs time. Commun. ACM, 2009.
[14] Y. Liang and T. Mitra. Cache Modeling in Probabilistic Execution Time

Analysis. In DAC, 2008.
[15] T. Mitra and A. Roychoudhury. Worst-Case Execution Time and Energy

Analysis. In The Compiler Design Handbook: Optimizations and Machine
Code Generation, pages 1–1 to 1–48. CRC Press, second edition, 2007.

[16] H. Ramaprasad and F. Mueller. Bounding Worst-Case Data Cache Behavior by
Analytically Deriving Cache Reference Patterns. In IEEE RTAS, 2005.

[17] V. Sarkar. Determining Average Program Execution Times and their Variance.
In PLDI, 1989.

[18] R. Sen and Y. N. Srikant. Executable Analysis using Abstract Interpretation
with Circular Linear Progressions. In MEMOCODE, 2007.

[19] R. Sen and Y. N. Srikant. Wcet Estimation for Executables in the Presence of
Data Caches. In EMSOFT, 2007.

[20] L. Thiele and R. Wilhelm. Design for time-predictability. In Design of Systems
with Predictable Behaviour, 2004.

Table 1: Results (Associativity = 1, Block size = 16 bytes, Total cache size = 1KB)

Benchmark Total cache accesses Observation Analysis
(Mean cache misses) (Mean cache misses)

bs 32 7 7.12
bsort100 29631 31 31.00

cnt 1364 37 36.99
edn_fir 10678 37 36.78
edn_iir 1840 115 112.99∗

edn_latsynth 615 28 27.99
edn_mac 1835 81 79.99∗

jfdctint 313 20 20.00
matmult 4572 115 114.85∗

Table 2: Results (Associativity = 1, Block size = 16 bytes, Total cache size = 1KB)

Benchmark Total cache Observation Analysis (Mean cache misses)
accesses (Mean cache misses) Expansion 0% Expansion 20% Expansion 40% Expansion 50%

bs 653 166 394.43 313.27 176.81 176.06
bsort100 195,615 589 929.84 861.53 793.33 726.47

cnt 5,264 236 538.92 234.28 234.78 234.72
edn_fir 41,328 252 267.32 252.92 252.95 252.97
edn_iir 3,640 215 1528.10 722.53 252.67 212.99

edn_latsynth 4,842 168 1448.69 181.19 165.99 165.99
edn_mac 3,237 181 873.77 369.82 178.99 178.99
jfdctint 313 20 20.00
matmult 6,001 415 1814.22 1486.01 1030.36 874.23

Table 3: Results (Associativity = 2, Block size = 16 bytes, Total cache size = 1KB)

Benchmark Total cache Observation Analysis (Mean cache misses)
accesses (Mean cache misses) Expansion 0% Expansion 20% Expansion 40% Expansion 50%

bs 653 166 397.23 310.29 153.10 136.81
bsort100 195,615 847 2,151.28 1,044.77 992.97 957.77

cnt 5,264 220 533.13 389.11 254.84 229.60
edn_fir 41,328 131 223.99 189.36 186.19 144.19
edn_iir 3,640 243 1349.61 563.25 276.62 229.34

edn_latsynth 4,842 153 1464.68 194.02 135.96 128.96
edn_mac 3,237 163 697.60 124.66 178.27 165.71

jfdctint 313 20 20.00
matmult 6,001 170 1,618.11 865.65 412.29 345.91

Table 4: Results (Associativity = 4, Block size = 16 bytes, Total cache size = 2KB)

Benchmark Total cache Observation Analysis (Mean cache misses)
accesses (Mean cache misses) Expansion 0% Expansion 20% Expansion 40% Expansion 50%

bs 653 164 279.88 164.60 137.37 120.68
bsort100 195615 43 49.24

cnt 5,264 114 236.40 134.81 131.97 122.84
edn_fir 41,328 69 333.74 207.21 163.28 160.50
edn_iir 3,640 187 672.75 259.59 175.84 179.12

edn_latsynth 4,842 108 452.63 138.90 115.05 116.35
edn_mac 3,237 111 297.90 106.53 106.69 105.16
jfdctint 313 20 20.00
matmult 6,001 104 371.49 317.62 199.62 199.10

