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ABSTRACT

2’s complement number system imposes a fundamental lim-
itation on the power and performance of arithmetic circuits,
due to the fundamental need of cross-datapath carry propa-
gation. Residue Number System (RNS) breaks free of these
bonds by decomposing a number into parts and perform-
ing arithmetic operations in parallel, significantly reducing
the breadth of carry propagation. Consequently, RNS arith-
metic has been proposed as a solution to improve the power-
efficiency of arithmetic hardware. However, limitations of
the expressiveness of RNS in terms of arithmetic opera-
tions together with overheads related to interaction with
2’s complement arithmetic make programmable processor
design that takes advantage of these benefits challenging.
In this paper we meet this challenge by multi-tier synergis-
tic co-design of architecture, micro-architecture, hardware
components, as well as compilation techniques. Our exper-
iments not only demonstrate simultaneous improvement of
up to 30% in performance and 57% reduction in functional
unit power consumption, but also that most of these benefits
can be exploited with automatically generated code.
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[Programming Languages]: Processors—compilers, op-
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1. INTRODUCTION

The omnipresence of personal wireless communication and
multimedia applications drives the demand for high perfor-
mance, power efficient, and low cost embedded processors
with rich digital signal processing (DSP) capabilities. Com-
putationally dominated by discrete convolution, embedded
DSP eventually boils down to the power efficiency of al-
gorithms dominated by interleaved series of additions and
multiplications. In this task, 2’s complement arithmetic suf-
fers from the fundamental limitation in delivering power effi-
cient computations. First, high-performance logarithmic de-
lay addition comes at the expense of exponential hardware
complexity. Second, in multiplication the partial product
reduction contributes quadratic hardware complexity and
linear delay to the final 2-operand addition.

The exploration of number representations more suitable
for high-performance power-efficient DSP has identified the
Residue Number System (RNS) as a promising alternative
for application specific DSP hardware [10, 18, 20]. In RNS
an integer X € [0, M) can uniquely be represented by a
set of residues {z1,...,x; : iz = |X|p,} characterized
by the moduli set P = {P,..., P} of relatively prime inte-
gers, where M = Hf.:l P; is system’s dynamic range. Con-
sequently, operations like o € {4, —, X} on operands X =
{z1,....,z;} and Y = {y1, ...,y } can be performed as XoY =
{]z1 0 y1|P1 s T 0 yl\Pl}7 i.e. on smaller, independent, and
parallel channels. Such decomposition greatly reduces both
the length of the carry propagation chain in addition, as well
as the size of partial product matrices (PPMs) in multiplica-
tion, leading to remarkable performance improvements along
with area and power savings.

Along with these great advantages RNS manifests cer-
tain limitations. Magnitude comparison and division do not
lend themselves to the same distributed and parallel com-
putational structure as addition and multiplication [1, 19].
Transcoding results into 2’s complement representation for
that leverage engages computationally intensive reverse con-
version [21]. Therefore, designing a programmable processor
using RNS is a challenging task as limitations make an RNS-
only processor too restrictive, while a hybrid processor that



supports both 2’s complement and RNS arithmetic may suf-
fer from conversion overheads that can eventually outdo all
advantages of fast and low-power computational units. Con-
sequently, there have been very few previous approaches to
RNS-based processor design, which are mostly focused on
power and area reduction rather than on improving appli-
cations’ performance [4, 9].

In this work we address the challenge of exploiting the
power and performance benefits of RNS arithmetic in a
RISC processor in a multi-tier manner. First, through a
series of synergistic instruction-set-architecture, microarchi-
tecture, and component design decisions we expose the con-
version overheads to the software through instruction set
augmentations. Second, we formulate the instruction selec-
tion problem for code generation for RNS processors, and
perform instruction scheduling to hide the conversion over-
heads and optimize performance. For practical demonstra-
tion purposes, we extend the Simplescalar ARM simulator
with RNS instructions, synthesize RNS components, and
add their delay and power parameters into the modified
simulator. Finally we enhance the GCC for ARM with
the code generation and instruction scheduling optimiza-
tions and evaluate power and performance of several DSP
benchmarks. As a result, we observe 21% improvement in
performance and 51% reduction in functional unit power
consumption during the execution of the compiled code.

The major novel contributions of this paper include:

1. a codesigned, optimized, architecture, microarchitec-
ture component design, and compilation techniques for
an RNS extension to the embedded RISC processor,

2. a design of an RNS multiplier that exploits properties
of redundant representation utilized by the extension,

3. a formulation and solution of an application mapping
problem on the proposed RNS extension that includes
both instruction selection and instruction scheduling,

4. an extensive experimental evaluation demonstrating
the undeniable performance gain and power efficiency.

The rest of this paper is organized as follows. First in
Section 2 we summarize related work both in the area of
RNS hardware component design, as well as few papers on
RNS programmable processor design. Then, in Section 3
we discuss Instruction Set Architecture (ISA) extension. In
Section 4 we elaborate on microarchitectural decisions. In
Section 5 we give details of our RNS hardware components
design. In Section 6 we discuss our synthesis and simula-
tion setup. In Section 7 we introduce our novel compilation
techniques. In Sections 8 and 9 we discuss our experimental
results performed on SimpleScalar simulator across the set
of benchmark applications and design corners. Finally, we
conclude our findings in Section 10.

2. RELATED WORK

A volumenous body of RNS-related literature focusing on
fast and power efficient design of computational and conver-
sion units has recently been surveyed in [1, 12]. Further-
more, many high-performance RNS-based ASICs have been
developed [10, 12, 18], as application specific hardware has
long been believed to provide a natural ecosystem for RNS-
based circuitry. However, these non-programmable archi-
tectures address different challenges than those of designing
programmable RNS-based processors.

Although the idea of designing an RNS-based RISC pro-
cessor was first stipulated almost 20 years ago [7], it has
received very little attention so far. Ramirez et al. [16] have
developed a 32-bit pure RNS SIMD architecture strictly tai-
lored for DSP applications. It utilizes RNS addition, sub-
traction, and multiplication, with conversion units hard-
wired into the pipeline. With an advantage of being ISA
compatible, such a design deals with conversion overheads
only at the hardware level disallowing any speculative ap-
proaches through application mapping. Recently Chavez
et al. [4] proposed more complete architecture of a RNS-
based RISC DSP with composite multiply-and-accumulate
block to perform additions, multiplications, and multiply-
and-accumulate operations. However, in that work, the pri-
mary focus was on power and chip area reduction, rather
than performance. In the follow-up paper they introduced
the concept of balanced moduli set and the considerations
about the implications on the multiplier design [5].

As the consequence of the absence of a programmable
RNS processor, there has been no publicized work on devel-
oping compiler techniques for such architectures. The prob-
lem is quite similar to that of compilation in the presence of
Instruction Set Extensions (ISEs) on which significant work
has been done, summarized in [6]. However, while ISEs are
composed of complex domain-specific operators optimized
in hardware and exposed to the compiler through ISA, RNS
extension improves performance of atomic operations and as
such can be considered orthogonal to ISEs. Consequently,
instruction set extension can still be defined over the top of
RNS extension to better exploit its benefits in specific appli-
cation domain — in fact the design of Chavez et al. [4] can
be classified as such. However our problem differs from the
traditional ISE problem where the objective is to find maz-
imal convex sub-graphs of the application’s dataflow graph,
while compiling for the RNS extension boils down to finding
mazimal connected sub-graphs which is a problem of signifi-
cantly lower computational complexity.

3. INSTRUCTION SET ARCHITECTURE

A first-cut approach to integrate RNS functional units into
the processor pipeline is to pad their inputs and outputs with
conversion logic [4]. The undeniable advantage of such ap-
proach is that all the necessary changes remain transparent
to the software. However, it implies that every fast RNS op-
eration involves necessary forward and reverse conversions.
Since conversions are essentially costly and parasitic, the
benefits of faster computations may eventually be overshad-
owed by these overheads. Consequently, the only choice is to
separate computations and conversions. Hence we add sep-
arate instructions for RNS computations (RADD, RSUB,
RMUL), and separate instructions for converting operands
from 2’s complement binary to RNS (FC), and vice versa
(RC). The hope is that the conversion operations may be
scheduled in parallel with some other computation to effec-
tively hide the conversion latency.

4. MICROARCHITECTURE DECISIONS

Multi-operand addition (MOA) using Carry-Save Adders
(CSA) plays a crucial role in the design of RNS functional
units [17]. CSA-based MOA produces separate carry C
and sum S vectors, that are typically reduced by a final
2-operand (modulo) adder to produce the final residue = =



|2C+S|p. However, due to end-around carry propagation 2-
operand modulo adders of width m are slower and consume
more area and power than regular adders of same width
[1]. Consequently, the advantage of datapath decomposi-
tion into narrower channels gets partially consumed by such
limitations. It is obvious though, and widely exploited in
application specific hardware [14, 15], that 2C + S is the
value congruent to the residue R. Therefore, computations
on (S, C) pairs can be aggregated and the final modulo ad-
dition can be delayed until the actual value of the residue
is required [17]. Hence, if we choose to represent operands
as (S,C) pairs, we may benefit from simultaneous speed,
area, and power improvements at the expense of representa-
tion redundancy. This is an important consideration since
although it reduces the complexity of the adder and the for-
ward converter, such a solution introduces additional com-
plexity to the multiplier and reverse converter as later dis-
cussed in Section 5. Eventually though, forward conversion
is required per input operand, additions are typically much
more frequent than multiplications, and reverse conversions
are rather infrequent. Therefore, as this work demonstrates,
such a representation boosts the profit of the RNS extension.
The storage of double-width operands can be achieved with
no or limited micro-architectural changes, as many RISC
processors allow registers and memory accesses as double
precision storage spanning two registers or memory locations
at the possible expense of additional load/store cycles.

5. COMPONENT DESIGN
5.1 Moduli Selection

Moduli selection is a crucial decision in designing efficient
RNS arithmetic and conversion units. Obviously, increasing
the number of moduli uniformly increases the speed and re-
duces the complexity /power consumption of computational
units [14]. Moreover, it provides quite an unique oppor-
tunity of conducting fast and low power computations on
large dynamic ranges which finds its use in certain appli-
cations e.g. cryptography [3]. Unfortunately, it also con-
siderably increases the complexity of the implementation of
the reverse conversion. We have previously demonstrated
[14, 15] that in the case of application-specific DSP hard-
ware such an overhead actually is dissolved in the advan-
tages of using small computational units, since the reverse
converter can be arbitrarily pipelined to match the speed
of computational stages, and power and speed advantages
of very narrow channels make up for both the advantages
as well as the pipelining overhead. On the other hand, for
smaller dynamic ranges, the set {2 —1,2",2" 4+ 1} is widely
used as it enjoys certain properties that make the design of
both computational units as well as the reverse converter
unit uniformly efficient. However, due to the differences
in 2" — 1, 2", and 2" + 1 channel implementations, this
set is not well-balanced [5], i.e. typically features a signifi-
cant amount of slack between the fastest 2" and the slowest
2™ 4+ 1 channel. It was relatively straightforward to con-
clude that to avoid that disadvantage faster channels should
operate on more input bits. Consequently, the moduli set
{2 —1,2F,2" 4+ 1} : k > n as well as some amendments
to the modulo 2" 4+ 1 multiplier were proposed in [5] to ad-
dress this issue. While we are facing the same challenge,
our microarchitectural choice to use (C,S) pairs for inter-
nal representation allows us to mitigate multiplier imbalance

more systematically (see discussion in Section 5.5). Besides,
extending the concept of balancing we evaluate moduli sets
{2"—1,2%,2" +1} : k > n not only for inter-channel balance
in the multiplier, but also for balancing the delays between
the critical path pipeline components in an attempt to ef-
ficiently utilize the slack in between their implementations.
In this part of our exploration we target to balance the mul-
tiplier and reverse converter delays as they are much larger
than that of the adder, and as such their speeds decide the
system clock cycle. Then we are reusing the remaining slack
in other faster RNS components armoring them with the ca-
pacity of performing more operations within a single clock
cycle (e.g. 3-operand RNS addition).

5.2 Periodicity Property

We employ the periodicity property of RNS arithmetic
to generate fast, efficient, and regular designs of RNS func-
tional units. Both 2" —1 and 2" + 1 moduli enjoy the period-
icity of sequences of residues |2|2n 11 with respect to n [17].
lLe.Vi,je NU{0},neN:i<n
gitni — olitinl, _ o (1)

2n—1

gi+nj _ (_1)]'2|i+jn\n _ (_1)j2i (2)
2741

Eq. (1) and (2) and the distributivity of |-| over modulo
addition imply that in a binary weighted representation, bits
at positions i + nj are equivalent in weight (with respect
to sign in case of |-|,.,, operations), when considered for
modulo operations. Thus bits of equivalent weight can be
arranged in width n end-around carry CSA structures [17].

5.3 Binary-to-RNS (Forward) Conversion

Forward converters compute residues of the 32-bit input
integer X and produces a pair (S, C) for each channel. |X|,x
is as simple as a slice of k least significant bits of X with
carry vector C' = 0. For 2" £ 1 channels we directly apply
the technique from [17], i.e. the periodicity allows us to chop
X into p slices of length n. Hence from Eq. (1) and (2):

p—1 p—1
Xpn_y =D 2" X; =X
=0 2n 1 =0 on 1
p—1 p—1
Xy =D 27X =D (DX
i=0 on 41 i=0 ony1

Thanks to that, adding the terms X; through X, is a
straightforward application of end-around carry CSA tree
that forms a Multi-Operand Modulo Adder (MOMA) [17].
In the second equation, for each negative vector, for each bit
position converter employs the trivial equality:

—bi2' = —(1—b;)2" = 52" —2° b € {0,1}

Consequently, bits in the negative terms are inverted for the
CSA addition, and for each inversion we accumulate a cor-
rection of —2° for the inverted bit at position 7. Since there
is always a constant number of inversions in the CSA tree,
the modulo of resultant correction is added as extra layer of
full-adder cells [17]. In fact, adding a constant binary vec-
tor in this layer allows for further constant-0 or constant-
1 simplifications of full-adder cells according to bits of the
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Figure 1: RNS Channel Multipliers

correction. It is important to note that the choice of repre-
senting operands in (S, C') form obviates the need to add a
final 2-operand modulo adder stage for combining S and C.

5.4 RNS Adder

The high speed of RNS addition allows us to design a 3-
operand RNS adder that is still significantly faster than its
2-operand 2’s complement counterpart (Table 2). Obviously,
fOI‘ every channel it adds X1 = (Sl, 01), X2 = (SQ, Cz), and
X3 = (53,C3), and produces Y = (5, C). Therefore in fact,
the adders for the 2" + 1 channels are structurally identical
to the respective forward converters with p = 6 including
the correction layer for the 2" 4+ 1 channel. Again, the adder
for the 2% channel does not require end-around carry prop-
agation and is a CSA tree in with all bits of weight greater
than 2* discarded. The 2-operand subtraction can be imple-
mented by augmenting the inputs of the adders with logic to
conditionally negate-and-correct the second operand, based
on a control signal activated by the RSUB instruction.

5.5 RNS Multiplier

Multiplication is the first component for which even under
redundant (S, C) representation delay varies with the input
size. Hence it is also the first component to exercise the
trade-offs springing out from the redundant representation
as well as n and k selection. There are three architectural
choices to consider. Carrying out the multiplication directly
on the redundant (S1, C1) and (S2, C2) operands is definitely
overly expensive as it roughly quadruples the size of par-
tial product matrices. Computing residues |S1 + 2C1|yn_,
and | Sz + 2Cs|,n  ; involves fairly expensive 2-operand mod-
ulo addition particularly unfavorable in the case of 2™ + 1
modulus. However, we can take advantage of the iden-
tity ’|X|P * \Y|P‘P = |X *Y|p, and produce intermediate
operands in the form of X{ = 51 +2C; and X} = S5 + 2Cs.
Hence we can use regular adders and save on modulo addi-
tions at the expense of one additional row and column of the
PPM (Fig. 1). A by-product of that choice is also that it also
efficiently reduces the imbalance between 2" — 1 and 2" + 1
channel delays, since it does not exercise the imbalance be-
tween the modulo 2" +1 and 2" —1 2-operand adders. In fact,
with this design, 2" —1 and 2" 4 1 channels of the multiplier
are structurally almost identical and the only imbalance is
caused by the correction layer of 2" + 1 channel. Finally,
the implementation is straightforward. Partial products are
generated for each channel then aligned according to peri-
odicity and added in an end-around CSA tree. As in the
modulo 2" + 1 adder, the modulo 2" 4+ 1 multiplier needs a
fixed correction. Obviously in the 2* channel bits at posi-
tions ¢ > k are being discarded throughout CSA addition.

With the design of a multiplier, we evaluate alternative
moduli sets for balance. The RNS multiplier delays in dif-

Table 1: Multiplier delays for different moduli sets

Moduli set Multiplier delay (ns) | Del.span
(29 —1,21829 +1) 2.10,2.55,2.50 0.45
(2% — 1,216 28 1 1) 2.10, 2.40, 2.80 0.70
(29 — 1,219,294 1) 2.10, 2.20, 2.50 0.40
(2% —1,217,28 +-1) 2.10,2.45,2.80 0.70

ferent {27 — 1,2%,2" + 1} 32-bit dynamic range configura-
tions are extracted into Table 1. Using the delay span across
channels as the balancing metric, we selected the moduli set
{2m —1,2F 2" + 1} = {2° — 1,2'%,2° 4 1} for implementa-
tion. Some additional discussion of the interaction between
the multiplier and the reverse converter will also be given in
the following section.

5.6 RNS-to-Binary (Reverse) Conversion

RNS to binary conversion boils down to the hardware
implementation of the equation stated by the Chinese Re-
mainder Theorem (CRT). For our design we start from
the so-called new formulation [21] of the CRT which states
that given a set of residues {z1,...,2;} for the moduli set
{Px, ..., P}, the integer number X can be calculated as fol-
lows:

-1 i
X =x1+Pi-imi(z2 — 1) + Zmz(]:[ Pj)(ziy1 — ;)
im2 =2 M, P,
such that:
lmiPilp,p, p =1, [mu—1PiPa Pl =1
For | = 3, we have,

X=x1+P- |m1(:r2 — $1) + mQPQ(CL‘g — 1‘2)‘132}33 (3)

such that
|m1P1\P2P3 = 17 |’I7’L2]31P2|P3 =1

It is straightforward to observe that the assignment of mod-
uli such that P; = 2F allows for the computation of X as a
concatenation of the residue z; and the value Y:

Y = ‘ml.’L'Q —mizx1 +moPoxs — mQPQxQ‘PQPS (4)

Similar considerations as in the case of the multiplier make
us conclude that due to the redundant (C,S) representa-
tion, reverse converter has to be armored with input adders.
However, unlike in the case of the multiplier, now we choose
modulo adders that provide proper residues for each channel
(Fig. 2) in order to allow for more aggressive optimization
of the CRT equation as discussed below.

The hardware implementation of various forms of the CRT
equation for {2" — 1,2k 2n + 1} moduli set for & # n has
been considered in the literature for both k& > n [5] and
k < n [13]. However neither the detailed derivation of the
converter from [5] nor the qualitative comparison of the al-
ternatives is known so far. Although the choice of k£ < n
[13] results in simpler hardware that essentially implements
custom 3-operand addition, this design suffers from a very
limited choice of n and k. In fact for 32-bit dynamic range,
the sole possible choice is n = 12 and k = 9. As RNS mul-
tiplication is more likely to achieve the closest inter-channel
balance between odd and even moduli for n < k < 2n, such



a choice would rather impair the speed of the whole system.
Consequently, the system as a whole does not really benefit
from the high speed of the reverse converter.

For k > n, Eq. (3) can be reduced to 4-operand addition
provided proper residues from each channel are fed to the
converter [5]. That is likely to yield higher power consump-
tion and larger delay than the converter of [13], but a full
range of n and k choices are achievable, hence the multipli-
cation can be optimally balanced, while still the converter’s
delay may match closely the multiplier delay. In fact, we
found the delay of this design vary modestly with differ-
ent choices of n and k. Consequently the input adders that
reduce the (S, C) pairs in each channel are the components
primarily impacted with the particular n and k choice. How-
ever, logarithmic in delay prefix adders are far less sensitive
to small variations in bit-width than the partial product ma-
trices of the multiplication. Thus, the multiplier remains the
primary component to consider for inter-channel balance.

The derivation of the reverse converter for the selected n
and k directly follows these straightforward congruences.

LEMMA 1. Vn € N;i,k € NU{0}:2in >k

‘22in—k2k -1

(227 -1)
PROOF.

’221‘7171@21@ 2in

(2n—1)(2n—1) - ‘ (22n—-1)

—ol2inly, — 90 — 1 []
LEMMA 2. Vn € N;i,k€e NU{0}:in > k+1

Qinfkflzk(Zn + 1) 1

(2m—1)
PROOF.

27Ln7k712k(2n + 1)‘

_ ’2(724»1)7171 _’_mel)
)

(2n—1 (27 -1)

from Eq. (1):

’2\<i+1>n—1|n 4 olin=1l,

_ ‘2\*”" + 2|*1|n

(27 —1) (27 —1)

a

The lemmas lead directly to the following corollary.

COROLLARY 1. If Py =28, P, =2" +1,P3 =2" — 1 in
the Eq. (3) then Vi € N : 2in > k, 22" 7% s g valid integer
assignment for mi, andVj € N :in > k+1, 2" 7% 1 s 4
valid integer assignment for ma in the Eq. (3).

A direct consequence of this corollary and Prop. 1 from [13]
is that the form (4) of Eq. (3) can be implemented as:
Y = |y1 +y2+ys + yalozn_y
where the binary representation of each of the components
can be obtained by bit manipulation on residues z1, x2, x3:
2n—k—1

k—1
2n—k i — 1
) = 2" E 21371,1' +4 E 2°
n_
2 L =0 1=0

2n—k
Y1 = ’—2 T1

2n—k—1
Y2 = ‘2 T2

n
2" —k—1 )
=2 E 22‘%272'
22n 1
=0

X(S,0)  Xy(SC)  X4(S.0)
[ L1 L1

1+35768 | I+5,5 I I+ I

Figure 2: RNS-to-binary (reverse) converter

Table 2: Synthesis results

Arithmetic Unit Area Pow. | Del. | PxD
(A\?) (mW) | (ns) |(mW-ns)

32-bit Brent-Kung Adder | 11032 | 1.03 14 1.442

Modulo 29 — 1 Adder 2464 0.29 0.7 0.203
Modulo 21% Adder 3982 0.45 0.7 0.315
Modulo 29 + 1 Adder 5841 0.67 0.7 0.469

Modulo Adders 12287 | 1.41 0.7 0.987

32-bit Multiplier 211927| 48.52 | 4.2 203.78

Modulo 2° — 1 Multiplier | 21647 | 4.97 2.8 13.92

Modulo 2T Multiplier 30850 | 7.13 2.8 19.96

Modulo 29 + 1 Multiplier | 50915 11.95 | 2.8 33.46

Modulo Multipliers 103412| 24.05 | 2.8 67.34

Binary-to-residue 2° — 1 | 2287 0.26 0.7 0.182

Binary-to-residue 2T

Binary-to-residue 2° + 1 | 5081 0.61 0.7 0.427

Binary-to-residue 7388 0.87 0.7 0.609

Residue-to-binary 52382 | 11.60 | 2.8 32.48

k—n
3n—k—1 Q-
=2 E ZT2,i
22n _ 1

=0

ys = ‘—QSn_k_lxg

2n—k—1

n—2
422k Z 2! 4 Z 2ii2,k—n+1+i
i=0 i=0

ya = ‘22n7k71 (2”5{33 + -733)

k—n
3n—k—1 ]

24m —1
=0

n—1 2n—k—2
2n—k—1 i i
+2 E 2'z3; + E 2'%3 k- nt1+4i
1=0 =0

Using 2 layers of end-around CSA of the width 2n on such
permuted forms we can compute Y which, when concate-
nated with z1 yields the final value of integer X. The orga-
nization of the circuit is shown in Fig. 2.

6. SYNTHESIS AND SIMULATION SETUP

We designed RNS components in RTL Verilog and syn-
thesized using the 0.18 OSU standard cell library with the
Cadence Encounter~ RTL Compiler. Along with those,
we synthesized the 32-bit 2’s complement Brent-Kung adder
and the 32-bit 2’s-complement multiplier obtained from the



ARITH project [8]. Timing constraints for the synthesis
were initially set to minimum delay, then relaxed to main-
tain the integral ratios between components. As expected
the final synthesis results (Table 2) indicated significant per-
formance and power advantages: (i) 2-operand RNS addi-
tion and multiplication were 2X and 1.5X faster than their
2’s complement counterparts; and (ii) power consumption
of RNS multiplication was =~ 50% of its 2’s complement
counterpart. Note also, that the total power consumption
of RNS multiplication and reverse conversion was actually
lower than the power consumption of the 2’s complement
multiplier. Hence, intuitively, application mapping on RNS
extension should benefit from substantial reduction in com-
putational units power consumption even when performance
improvements were not possible to generate. This intuition
will be strongly confirmed with our experimental results dis-
cussed further in the paper.

In the next step we have enhanced an existing RISC pro-
cessor with the results of our architectural exploration. First,
we have made the assumption that 2’s complement adder
determines the cycle duration in the pipeline. The ratio-
nale behind such assumption is straightforward. The adder
quite commonly constitutes the critical path of the proces-
sor’s datapath, hence no other component that operates in
single cycle is slower than the adder. Although this leaves
an RNS adder with a lot of unutilized slack, reducing the
pipeline cycle time to match RNS adder delay would not
only force making integer addition multi-cycle, but also im-
ply the necessity of thorough consideration of the impact
of this design decision on other pipeline components that
we otherwise omit in our analysis. While this would be a
valid design space point to explore, such efforts are beyond
the scope of this work. Hence, in order to otherwise exploit
unutilized slack in RNS components, based on the synthe-
sis results, we fit into the pipeline binary-to-RNS conversion
unit for single-cycle conversion of two binary operands, and
a single-cycle 3-operand RNS adder. Consequently, RNS
multiplication and RNS-to-binary conversion are 2 cycle op-
erations. Finally, 2’s complement multiplication is 3 cycle.
We also include a separate RNS register file. RNS opera-
tions read from and write to this separate register file, while
the forward conversion and the reverse conversion transfer
data between the normal and the RNS register file.

Finally, in order to evaluate the proposed architecture we
have augmented the SimpleScalar ARM simulator [2] with
RNS arithmetic components, register file, and the instruc-
tion set extensions. We have also amended the GCC as-
sembler for SimpleScalar ARM to recognize these new in-
structions. On the resultant platform we have run hand-
optimized assembly code for kernels from several multime-
dia, image processing, and digital signal processing domains.
The resulting runtimes as well as total functional unit power
dissipation observed in the experiment are summarized in
Fig. 3. For the purpose of power dissipation modeling, we
consider the dynamic power of functional units estimated
as the product of the functional unit power obtained from
synthesis (Table 2), and the number of executions of the
operation implemented by the functional unit.

The results of manually optimized runs (Fig. 3) demon-
strate performance improvements that range from 8.62% for
the LL-Hydro benchmark to more than 51% for 2D-DCT,
with almost 30% improvement on average. Operations rep-
resented by these benchmarks form the core of the variety of

image processing and DSP building blocks like color space
transformation, geometric transformations, edge detection,
digital filters, etc. Additionally, functional units power dissi-
pation reduction of up to 57% (Matmul) and ~ 52% on aver-
age, can be obtained as direct result of the lower power con-
sumption in RNS functional units. Hence it is apparent that
an RNS-equipped embedded microprocessor is able to offer
simultaneous performance and power dissipation improve-
ments. However, for the application programmer, these ben-
efits may come at the price of tedious manual manipulation
of assembly code and as such bear a prohibitive productivity
overhead. In the following sections we demonstrate that to a
significant extent these manipulations can be formalized as
algorithmic compilation techniques and embedded into the
standard C compiler.

7. CODE GENERATION

The two main tasks in generating code for a hybrid RNS
processor are instruction selection and instruction schedul-
ing. Instruction selection for RNS extension involves map-
ping arithmetic operations onto RNS instructions. However,
since RNS hardware works only with RNS representation,
conversions must be added at the beginning and at the end
of each block of RNS instructions. Once mapping is com-
pleted, RNS instructions are subject to be scheduled with
the objective to minimize runtime.

We formulate and solve these problems at the basic block
level. A basic block is a continuous list of instructions, in
which control flow has just one point of entry and one point
of exit. In the basic block the data flow can be represented
by a directed acyclic Dataflow Graph Gpra(Vbora, Epra),
where a vertex v € Vpra represents a computation and an
edge (u,v) € Eprg represents a dependency between ver-
tices v and v, such that v consumes a value produced by
u. We also define PRED(v) = u € Vpra : (u,v) € Epra
and SUCC(v) = w € Vprg : (v,w) € Eprg. A DFG ver-
tex v € Vprg representing integer addition, multiplica-
tion, or subtraction is an RNS eligible node. A subgraph
Gres(Vres, Eres) C Gpra(Vbra, Epra) which is a con-
nected component induced by a set of vertices Vres = {v €
Vbra : vis an RNS eligible node} is an RNS eligible sub-
graph. Gres(Vres, Eres) that is not a proper subgraph of
any other RNS eligible subgraph is a mazimal RNS eligible
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Figure 3: Performance and power improvements
over various manually optimized benchmark kernels



subgraph Gyrres(Vmres, Evres). Gres(Vres, Eres) is
profitable with respect to a metric M, if mapping of Gres
to RNS instructions improves the metric M. The instruc-
tion selection problem can be defined as follows: Given
Gprca(V,E), find all profitable Gmres. Each profitable
Gumres can be mapped onto the RNS extension, with ap-
propriate conversions at the boundaries.

7.1 Instruction Selection

The instruction selection algorithm (Alg. 1) takes as input
the G prg of the basic block and marks all MRESs. Then for
each marked MRES it estimates its profitability with respect
to cycle time using a profit model that includes conversion
overheads. Profitable MRESs are then mapped to utilize
RNS instructions. The algorithm FIND_MRES (Alg. 2),
finds all MRESSs, given the DFG of a basic block. First an
RNS eligible node in the basic block is picked as the seed
node, then the MRES is grown by the breadth-first search
ignoring edge directions.

THEOREM 1. Given a DFG Gprc(Vore, Epra), algo-
rithm FIND_MRES finds all subgraphs of Gpra that are
mazimal RNS eligible subgraphs.

PrOOF. We state and prove the following statements:

The subgraphs marked by FIND_MRES procedure in the
graph Gpra(Vbra, Epra) are RNS eligible subgraphs.

Lines 5-16 of FIND_MRES are the same as a breadth
first traversal (BFT) in an undirected graph with v, as the
starting node. Lines 10-12 ensure that only nodes that are
RNS eligible nodes are expanded in the BFT and only those
are marked to be part of an MRES at Line 11.

2. The RNS eligible subgraphs marked by FIND_MRES
procedure in the graph Gpra(Vora, Epra) are mazimal.

Suppose that a MRES GMRES(VMRES,EMRES) that is
a subgraph of the Gpra(Vbra, Epre) marked by the pro-
cedure FIND_MRES is indeed not maximal. Then Jv €
Vimres s.t. 3u € PRED(v) U SUCC(v) s.t. u is an RNS
eligible node, but v ¢ Vires. Since v € Vyres, it must
have been queued at line 11 and eventually dequeued at line
6. There are two cases:

e y was already visited, in which case, it would also have
been marked to be part of MRES at line 11 (because
u is RNS eligible) in a previous iteration.

e 1 was not visited, in which case, it will now be marked
to be part of the MRES, since it is RNS eligible.

In both cases, we find that u € Vaysrges, which is a contradic-
tion of our original premise. Therefore Gy rrs is maximal.
3. The procedure FIND_MRES marks all possible mazximal
RNS eligible subgraphs.
Suppose that there is an MRES Gy res(Vvres, EMRES)
of Gpra(Vbra, Epra) that was left unmarked after at the

Algorithm 1 MAP2RNS

Require: Set Spp consisting of DFGs for every basic block
Ensure: All graphs in Spp, with all mapped profitable MRESs

1: for all G € S do
Do FIND_MRES(G) [Alg. 2]
for all MRESs, Gyrres found in G do
profit «— ESTIMATE_PROFIT(GyRES)
if profit > 0 then
Transform Gparrges to use RNS instructions

Algorithm 2 FIND_MRES

Require: Gpra(Vpra, Epra): DFG of basic block
Ensure: Gppg with all MRESs marked

1: Let Q be a queue of nodes

2: MRES_ID « 1

3: while All nodes in Vprg are not visited do

4: Pick an unvisited RNS Eligible Node vs and add it to Q
5 while Q is not empty do

6: v «— Node dequeued from Q

7 for all w € PRED(v) USUCC(v) do

8: if w is not visited then

9: Mark u as visited.

10: if u is RNS Eligible then
11: u.mres «— MRES_ID
12: Add u to Q

13: MRES_ID «+— MRES_ID + 1

14: Return G

completion of FIND_MRES run. Since Viyrrrs only con-
tains RNS eligible nodes and since they are unmarked, it
means they were also not visited by FIND_MRES. Since
line 3-4 ensure that all unvisited nodes are considered for
seed nodes, Gy rEs can remain unmarked only if it was not
a subgraph of the original DFG, which is a contradiction.
Thus all MRES that exist in the Gpra, are marked. [

The ESTIMATE_PROFIT is a simple function that com-
putes the profitability of MRES Gyvres(Vmres, EMRES)
mapping on RNS extension in number of cycles. The fol-
lowing rules are applied to calculate the profit: (a) every
pair of forward conversions is an overhead of 1 cycles; (b)
every reverse conversion is an overhead of 2 cycles; (c) ev-
ery 3-operand addition is a profit of 1 cycle; and (d) every
multiplication is a profit of 1 cycle.

7.2 Instruction Scheduling

After instruction selection, we obtain a legitimate code
for a hybrid RNS processor. However, there are at least two
cases where the generated code is not optimal and requires
explicit instruction scheduling. The first case is illustrated in
Fig. 4, which shows a simple loop in C language (Fig. 4a).
The basic block of this loop computes a weighted sum of
elements of two arrays. Since our transformation operates
at basic block level, it will place the forward conversions of
constants a, and b inside the basic block, which is inside
the loop (Fig. 4b). However, since a and b are not being
changed inside the loop, their forward conversions can be
moved outside the basic block (Fig. 4c).

The second issue is that for a series of addition, opti-
mizing compilers will typically generate a balanced binary

a= COMPUTE_a()
b = COMPUTE_b()
for i=0 to n do:

a= COMPUTE_a()
b = COMPUTE_b()

ar.a
FCb_r,b

1
Basic Block} , fori=0to ndo: Basic Block1'
'
'

a= COMPUTE_a()
b = COMPUTE_b()

for i=0to n do:
Frmmmmm e ——————
'

1 LOAD y[i]

'
\ result = a*x[i]+b*y[i] + + LOAD x[i] ] : LOAD x[i] ;
| STORE result i1 LOADY[i] i1 LOADyI] :
.................. + FCx_rx[i] v v FCxrx(i] '
E FCy_rylil . v FCy_ryli] :

: result_rns = a_r*x_r + b_r*y_r ' ’ result_rns=a_r*x_r +b_r*y_r 4

g RC result_rns,result ] + RCresult_rns,result .

! STORE result ! | STORE result 4

a) b) oo ) A !

Figure 4: Moving forward conversions out of the
loops
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Figure 5: Sub-optimal pairing of additions

tree of additions in an attempt to optimize the number of
2-operand additions. However, since in our hybrid RNS pro-
cessor, we have 3-operand adds, a binary tree does not yield
optimal addition scheduling since consecutive 2-operand ad-
ditions can be paired to form a 3-operand addition (Fig. 5a)
resulting in possible reduction of the number of levels of the
addition tree (Fig. 5b). Since we consider a hybrid proces-
sor with only one set of RNS resources we deal with the
addition scheduling by simply linearizing the addition tree
(Fig. 6). Hence, for an expression » 7 a;, containing n
additions, the maximum number of addition pairs is | % .
Consider the DFG in Fig. 6 (left). There are 7 additions in
the binary and only 2 pairs can be directly formed. How-
ever, if we linearize the structure of additions a maximum of
3 pairs can be formed (Fig. 6). Note however, that in case of
a hybrid processor that employs more than one set of RNS
resources reconstructing the addition tree as ternary would
yield additional performance benefits.

8. EFFECTIVENESS OF COMPILER

We have implemented the discussed compilation techniques
in GCC for ARM-SimpleScalar, and automatically gener-
ated code for all the benchmarks. As a result, we are able to
compare the execution times of benchmarks on unmodified
ARM architecture, along with three sets of RNS-optimized
code: manually optimized, compiled with instruction selec-
tion only (basic), and compiled with instruction selection
and scheduling (improved). Fig. 7 summarized the results
of these runs as %-improvement over benchmarks running
on an unmodified architecture. While manually optimized
code yields an average performance improvement of almost
30%, just instruction selection achieves only ~ 12% improve-
ment as conversion overheads are not effectively managed.
Enabling instruction scheduling enables more efficient han-
dling of conversion overheads and exploits addition pairing,
hence it is able to achieve = 21% performance improvement
on average. Note, that we provide no simulation results
for the compiled LL-hydro benchmark. This is because the
profit model does not report a performance profit for that
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Figure 7: Performance improvements over various
benchmark kernels and code generation techniques

benchmark, hence no mapping of code to RNS is done by
the compiler. That somewhat matches the experience from
manually optimized version of LL-Hydro, where the perfor-
mance benefits are rather small and indeed not achieved at
the basic block level. However, the power savings obtained
from manually optimized run indicate possible augmenta-
tions to the profitability metric in order to enable these
profits even with at performance improvement.

9. DESIGN SPACE EXPLORATION

Finally, we compare runtime vs. power consumption of the
RNS-equipped ARM processor with processors having vary-
ing number of 2’s complement adders and multipliers. The
result of this exploration is depicted in Fig. 8. We observe
that the power-performance product for RNS-equipped ARM
is quite superior to those configurations having more adders
and multipliers. This shows that in normal processors, while
increasing the number of functional units does translate into
improved performance, it comes at the cost of expending
greater power. In contrast, the presence of faster, power
efficient functional units and careful co-design enables RNS-
equipped processor to achieve great performance (closely
matching 2A,2M 2’s complement integer configuration) while
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Figure 8: Performance vs power comparison with
different adder/multiplier configurations.



dissipating in computational units just a fraction of power
dissipated by 2M,2A configuration, as well as significantly
smaller than 1A,1M configuration.

In general, with increasing amount of resources, applica-
tion performance saturates when existing instruction level
parallelism in the application is exhausted. RNS extension
breaks the saturation barrier by exploiting parallelism in-
herently through RNS representation. As a result significant
performance improvements can be delivered at much lower
power consumption. Although power benefits are confined
to arithmetic functional units only, they not only consume
significant portion of the processor’s power, but are also one
of the most important hot-spots [11].

10. CONCLUSION AND FUTURE WORK

In this work we have significantly elevated the baseline for
explorations of applicability of the Residue Number System
to the embedded processor design. We demonstrated the
benefits that RNS arithmetic has to offer to a low cost fixed-
point DSP embedded processor, if only the trade-offs are
vertically managed throughout the design. The maximum of
~ 57% power and ~ 30% performance improvements we ob-
tained for manually optimized DSP kernels strongly disprove
the sustaining stigma that RNS arithmetic is restricted to
application specific hardware only. Moreover, our multi-tier
synergistic design approach enabled us to exploit the ben-
efits of RNS hardware through a handful of novel compiler
techniques, that with average performance improvement of
~ 21% closely matches the manually optimized code and
extend the leverage of RNS hardware to high-level program-
ming languages.

The compiler technique introduced in this work could also
benefit from improving the profit model to model instruc-
tion execution more accurately, as well as extending analy-
sis of programs to larger blocks of the program graph, i.e.
the hyperblock or superblock level. Resultantly, more sub-
graphs containing RNS-eligible operations could be mapped
for performance and power benefits. Additionally, more ag-
gressive optimizations of the ISA and its implementation still
seem to be possible, including matching the system clock to
RNS components’ delays rather than 2’s complement com-
ponents’ delays. That would allow to utilize the slack that
still exists between these two alternatives. Finally, new lan-
guage constructs can be introduced to guide the compiler in
identifying code that could profitably be mapped to RNS.

In the application specific hardware inexpensive and easy
to parallelize forward conversions are typically neglected and
the reverse conversion is considered to be the dominant over-
head of RNS. Interestingly, in our experiments we have found
forward conversions to be much more likely to limit the
achievable speed-up of certain algorithms than reverse con-
versions. With parallel execution limited by the memory
interface and limited capacity of the register file, forward
conversions are likely to outnumber reverse conversions by
orders of magnitude. While compiler techniques can be de-
vised to hide these latencies more efficiently, a natural ex-
ploration direction is to move them out of the processing
pipeline — e.g. into the cache memory between levels 1 and
2 or integrate with loads and stores.
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