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ABSTRACT

Reversible logic is the basis for several emerging technologies such
as quantum computing, optical computing, or DNA computing and
has further applications in domains like low-power design and nan-
otechnologies. However, current methods for the synthesis of re-
versible logic are limited, i.e. they are applicable to relatively small
functions only. In this paper, we propose a synthesis approach, that
can cope with Boolean functions containing more than a hundred of
variables. We present a technique to derive reversible circuits for
a function given by a Binary Decision Diagram (BDD). The cir-
cuit is obtained using an algorithm with linear worst case behavior
regarding run-time and space requirements. Furthermore, the size
of the resulting circuit is bounded by the BDD size. This allows
to transfer theoretical results known from BDDs to reversible cir-
cuits. Experiments show better results (with respect to the circuit
cost) and a significantly better scalability in comparison to previous
synthesis approaches.
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B.6 [Hardware]: Logic Design

General Terms
Algorithms
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1. INTRODUCTION

Reversible logic [1, 2, 3] realizes n-input n-output functions that
map each possible input vector to a unique output vector (i.e. bi-
jections). Although reversible logic significantly differs from tra-
ditional (irreversible) logic (e.g. fan-out and feedback are not al-
lowed), it has become an intensely studied research area in recent
years. In particular, this is caused by the fact that reversible logic is
the basis for several emerging technologies, while traditional meth-
ods suffer from the increasing miniaturization and the exponential
growth of the number of transistors in integrated circuits.

In fact, reversible logic can help to face the enormous challenges
in the development of future computing machines: While for ex-
ample the increasing power consumption of electronic devices be-
comes a serious problem in current technologies, energy dissipation
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is reduced or even eliminated if computation becomes information-
lossless [1]. This holds for reversible logic, since data is bijec-
tivly transformed without loosing any of the original information.
Furthermore, reversible computation is the basis for quantum com-
puting [4]. In this domain it has been shown that important prob-
lems such as factorization can be solved exponentially faster than
by classical methods. Further applications of reversible logic can
be found in the domain of optical computing [5], DNA comput-
ing [2], and nanotechnologies [6].

However, currently the synthesis of reversible logic or quantum
circuits, respectively, is limited. Exact (see e.g. [7, 8]) as well as
heuristic (see e.g. [9, 10, 11, 12, 13, 14]) methods have been pro-
posed. But both are applicable only for relatively small functions.
Exact approaches reach their limits with functions containing more
than 6 variables [8] while heuristic methods are able to synthesize
functions with at most 30 variables [13]. Moreover, often a signifi-
cant amount of run-time is needed to achieve these results.

These limitations are caused by the underlying techniques. The
existing synthesis approaches often rely on truth tables (or sim-
ilar descriptions like permutations) of the function to be synthe-
sized (e.g. in [9, 10]). But even if more compact data-structures
like BDDs [11], positive-polarity Reed-Muller expansion [13], or
Reed-Muller spectra [14] are used, the same limitations can be ob-
served since all these approaches apply similar strategies (namely
selecting reversible gates so that the choosen function representa-
tion becomes the identity).

In this work we introduce a synthesis method that can cope with
significantly larger functions. The basic idea is as follows: First,
for the function to be synthesized a BDD [15] is built. This can be
efficiently done for large functions using existing well-developed
techniques. Then, each node of the BDD is substituted by a cas-
cade of reversible gates. Since BDDs may include shared nodes
causing fan-outs (which are not allowed in reversible logic), this
may require additional circuit lines.

As a result, circuits composed of Toffoli [3] or elementary quan-
tum gates [4], respectively, are obtained in linear time and with
memory linear to the size of the BDD. Moreover, the size of the re-
sulting circuit is bounded by the BDD, so that theoretical results
known from BDDs (see e.g. [16, 17]) can be transferred to re-
versible circuits. Our experiments show significant improvements
(with respect to the resulting circuit cost as well as to the run-time)
in comparison to previous approaches. Furthermore, for the first
time large functions with more than a hundred of variables can be
synthesized at very low run-time.

The remainder of the paper is structured as follows: Section 2
provides the basics of reversible logic and BDDs. Afterwards, in
Section 3 the synthesis approach is described in detail. Section 4
briefly reviews some of the already known theoretical results from
reversible logic synthesis and introduces bounds which follow from
the new synthesis approach. Finally, in Section 5 experimental re-
sults are given and the paper is concluded in Section 6.
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Figure 1: Two circuits realizing a full adder

2. PRELIMINARIES

To keep the paper self-contained this section briefly reviews the
concepts of reversible and quantum logic. We also describe the
basics of BDDs which are used as the main data-structure in our
synthesis approach.

2.1 Reversible and Quantum Logic

A logic function is reversible if it maps each input assignment to
a unique output assignment. Such a function must have the same
number of input and output variables X := {z1,...,z,}. Since
fanout and feedback are not allowed in reversible logic, a circuit
realizing a reversible function is a cascade of reversible gates. A re-
versible gate has the form g(C,T'), where C' = {zi,,...,xi, } C
X is the set of control lines and 7" = {z;,,...,2;} C X with
C NT = {is the set of target lines. C' may be empty. The gate
operation is applied to the target lines iff all control lines meet the
required control conditions. Control lines and unconnected lines
always pass through the gate unaltered.

In the literature, several types of reversible gates have been in-
troduced. Besides the Fredkin gate [18] and the Peres gate [19]),
(multiple controlled) Toffoli gates [3] are widely used. Each Toffoli
gate has one target line x;, which is inverted iff all control lines
are assigned to 1. That is, a multiple controlled Toffoli gate maps
(@1, @jy e, T ) 1O (X1, @i Ty -+ Ty, D Xy oo, T

The cost of a reversible circuit is defined either by the number
of gates or by so called quantum cost [20, 21]. The latter can be
derived by substituting the reversible gates of a circuit by a cas-
cade of elementary quantum gates [4]. Elementary quantum gates
realize quantum circuits that are inherently reversible and manipu-
late qubits rather than pure logic values. The state of a qubit for two
pure logic states can be expressed as |¥) = «|0) + 3|1), where |0)
and |1) denote 0 and 1, respectively, and o and 3 are complex num-
bers such that ||? +|3]? = 1. The most used elementary quantum
gates are the NOT gate (a single qubit is inverted), the controlled-
NOT (CNOT) gate (the target qubit is inverted if the single control
qubit is 1), the controlled-V gate (also known as a square root of
NOT, since two consecutive V operations are equivalent to an in-
version), and the controlled-V+ gate (which performs the inverse
operation of the V gate and thus is also a square root of NOT).

EXAMPLE 1. Figure 1(a) shows a Toffoli gate realization of
a full adder. A circuit realizing the same function by elementary
quantum gates is depicted in Figure 1(b).

Since quantum circuits are reversible, to realize a non-reversible
function (e.g. an n-input m-output function with n > m) it must
be embedded into a reversible one [22]. Therefore, it is often nec-
essary to add constant inputs and garbage outputs. The garbage
outputs are by definition don’t cares and can be left unspecified.

2.2 Binary Decision Diagrams

A Boolean function f : B" — B can be represented by a Binary
Decision Diagram (BDD) [15]. A BDD is a directed acyclic graph
G = (V, E) where a Shannon decomposition

f=Tife,=0 + Tifo,=1 (1 <i<n)

is carried out in each node v € V. In the following the node rep-
resenting fz,—o0 (fz;=1) is denoted by low(v) (high(v)) while x;
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Figure 2: BDD and Toffoli circuit for f = z1 @ =2
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Figure 3: Synthesizing fi1 = 1 Az2 and fo = x1 V x2

is called the select variable. The size k of a BDD is defined by the
number of non-terminal nodes.

The size of a BDD can be significantly reduced, if shared nodes
are exploited [15]. That is, if a node v has more than one pre-
decessor. Functions f : B" — B™ (i.e. functions with more than
one output) can be represented more compactly using shared nodes.
Further reduction can be achieved if complement edges [23] are ap-
plied. In particular, this enables the representation of a function as
well as its negation by a single node only. To keep the descriptions
easier, in the following BDDs without complement edges are used
for presentation while they are used in the experiments.

EXAMPLE 2. Figure 2(a) shows a BDD realizing the function
f = x1 @ x2. A BDD representing a function containing shared
nodes and including two outputs f1 = x1 Ax2 and fo = x1V T2 is
depicted in Figure 3(a). Edges from a node v to low(v) (high(v))
are marked with a small 0 (1).

3. SYNTHESIS APPROACH

In this section we describe how to derive a reversible circuit from
a given BDD representation. First the general idea (i.e. substituting
BDD nodes by a cascade of reversible gates) is introduced and dis-
cussed. Afterwards the overall synthesis algorithm is described in
detail.

3.1 General Idea

Boolean functions can be efficiently represented by BDDs [15].
Having a BDD G = (V, E), areversible network can be derived by
traversing the decision diagram and substituting each node v € V'
with a cascade of reversible gates. The respective cascade of gates
depends on the concrete type of the node v. For the general case,
Figure 4 shows a substitution with two Toffoli gates (and quan-
tum cost of six). This substitution can be applied to derive a com-
plete Toffoli network from a BDD without shared nodes. Thereby,
some inputs have to be set to constants, if the respective low(v) or
high(v) edge leads to a terminal node.
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Figure 5: Toffoli circuit for shared BDD

EXAMPLE 3. Consider the BDD in Figure 2(a). Applying the
substitution given in Figure 4 to each node of the BDD, the Toffoli
network depicted in Figure 2(b) results.

However, BDD packages make use of shared nodes. But since
shared nodes cause fan-outs (which are not allowed in reversible
logic) a modified substitution has to be applied. More precisely, the
values on the signals representing the shared node in the circuit to
be synthesized must be preserved until they are not needed by any
of the remaining nodes. The same holds for signals representing
select variables of the nodes since they are also often required more
than once. For example, in Figure 3(a) the value of variable z; is
needed by two nodes. As a result, in some cases the values of all
inputs of a BDD node have to be preserved. To represent this in
reversible logic, i.e. to “emulate” a fan-out, an additional line and
an adjusted cascade of gates as depicted in the first row of Table 1
is needed.

EXAMPLE 4. In Figure 5(a) a partial BDD including a shared
node ' is shown. Since the value of node f' is used twice (by
nodes f1 and f2), an additional line (the second one in Figure 5(b))
and the cascade of gates as depicted in the first row of Table 1 is
applied to substitute node fi. In doing so, the value of f' is still
available such that the substitution of node f2 can be applied. The
resulting circuit is given in Figure 5(b).

Using these two substitutions (the one from Figure 4 and the one
from the first row of Table 1), each BDD can be transformed to a
Toffoli network. However, as the remaining rows of Table 1 show,
better substitutions are possible, if terminal nodes occur as succes-
sors. For example, a node v with low(v) = 0 (fourth row) can be
synthesized with only one Toffoli gate. Identity nodes, i.e. nodes
with low(v) = 0, high(v) = 1, and a select variable z; (not
depicted in Table 1), can be represented by the same line as the in-
put x; and thus need no additional gate. Furthermore, due to the
additional line, which has to be added if either low(v) or high(v)
is a terminal, it is also possible to preserve all inputs of a node. In
particular for shared nodes, this allows better substitutions.

REMARK 1. One might expect, that a circuit line can be saved
if one of the edges low(v) or high(v) leads to a terminal node. But
this is not possible due to reversibility which has to be ensured when
synthesizing reversible logic. As an example consider a node v with
high(v) = 0 (second row of Table 1). Without loss of generality,

Table 1: BDD nodes and cascade of Toffoli gates with add. lines
BDD TOFFOLI CASCADE

f

Ayt
_’_a;,i

o/ \i low()) @@ low(f)
low(f) high(f) high(f)—————@high(f)
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low(f)—@—@ low(f)
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high(f)

Table 2: (Partial) Truth tables for node v with high(v) =0
(a) Without add. line (b) With additional line

x; low(xzy)| f - 0 z; low(zy)| f @ low(ws)
0 0 0 0 0 0 0 0

0 1 1 1 0 0 1 1 0 1

1 0 0 1 0 1 0 0 1 0

1 1 0 ? 0 1 1 0 1 1

the first three lines of the corresponding truth table can be embed-
ded with respect to reversibility as depicted in Table 2(a). However,
since f is O in the last line, no reversible embedding for the whole
function is possible. Thus, an additional line is required to make
the respective substitution reversible (see Table 2(b))".

Similar substitutions can also be applied to synthesize circuits
containing elementary quantum gates. This even reduces the re-
sulting quantum cost, since the nodes can be substituted at smaller
cost than the Toffoli gate cascades shown above. The same holds,
if complement edges are applied that may reduce the size of the
BDD. Due to page limitation the concrete substitutions are omitted
here but can be found in [24] where these aspects are studied in
detail. The respective elementary quantum circuit synthesis as well

"Due to the same reason it is also not possible to preserve the values
for low(v) or high(v), respectively, in Figure 4.



as the support of complement edges have been considered in the
experiments in Section 5.

3.2 Algorithm

Taking the general idea (substituting BDD nodes by cascades
of Toffoli or elementary quantum gates, respectively), a method
for synthesizing large functions in reversible logic can be formu-
lated: First, a BDD for the function f to be synthesized is created.
This can be done efficiently using state-of-the-art BDD packages
(e.g. CUDD [25]).

Next, the resulting BDD G = (V, E) is traversed by a depth-first
search. For each node v € V/, three checks are performed:

1. Node v represents the identity of a primary input (i.e. select
input)
In this case no cascade of gates is added to the circuit since
the identity can be represented by the same circuit line as the
input itself.

2. Node v contains at least one edge (low(v) or high(v), re-
spectively) leading to a terminal
In this case substitutions as depicted in Table 1 are applied,
since they often need a smaller number of gates (or quantum
cost) and additionally preserve the values of all input signals.

3. The successors of node v (i.e. low(v) and high(v)) are still
needed since they represent either shared nodes or the iden-
tity of an input variable
In this case the substitution depicted in the first row of Ta-
ble 1 is applied, since this preserves the values of all input
signals.

If none of these cases hold, then the general case substitution
from Figure 4 is applied.

EXAMPLE 5. Consider the BDD shown in Figure 3(a) repre-
senting the functions f1 = x1 N\ x2 and fo = x1 V 2. First, the
synthesis approach traverses node f'. But since f' represents the
identity of x2 no gates are added. Instead, the third line of the cir-
cuit in Figure 3(b) is used for storing both, the value of the primary
input w2 and the value of f'. Afterwards, for node f the substi-
tution shown in the fourth row of Table 1 is applied. This not only
reduces the number of gates (in comparison to the substitution of
Figure 4), but also preserves the value of f' which is still needed
by node fa. In doing so, the remaining node f2 can be substituted
which completes the circuit (see Figure 3(b)).

As aresult, circuits are synthesized which realize the given func-
tion f. Since, each node of the BDD is only substituted by a cas-
cade of gates, the proposed method has a linear worst case run-time
and linear memory complexity with respect to the number of nodes
in the BDD. Furthermore, as discussed in the next section, theoret-
ical results on upper bounds known for BDDs can be transferred to
reversible circuits using the proposed approach.

4. THEORETICAL ANALYSIS

In previous work, lower and upper bounds for synthesis of re-
versible functions containing n variables have been determined.
In [22], it has been shown that there exists a reversible function, that
requires at least (2" /1n 3) + o(2") gates (lower bound). Further-
more, the authors proved that every reversible function can be real-
ized with no more than n2" gates (upper bound). For a restricted
gate library leading to smaller quantum cost and thus only consist-
ing of NOT, CNOT and two-controlled Toffoli gates (the same as
applied for the substitutions in Figure 4 and Table 1), functions can
be synthesized with at most n NOT gates, n> CNOT gates, and
9n2"™ + o(n2") two-controlled Toffoli gates (according to [9]). A
tighter upper bound of n NOT gates, 2n° + o(n2™) CNOT gates,
and 3n2"™ 4 o(n2™) two-controlled Toffoli gates has been proved

in [14]. In [26] it has been shown, that linear reversible functions
are synthesizeable with CNOT gates only. Moreover, their algo-
rithm never needs more than ©(n?/logn) CNOT gates for any
linear function f with n variables.

Using the synthesis approach proposed in Section 3, reversible
networks for a function f with a size dependent on the number of
nodes in the BDD can be constructed. More precisely, let f be
a function with n primary inputs which is represented by a BDD
containing k nodes. Then, the resulting Toffoli circuit consists of
at most

e k+mn circuit lines (since besides the input lines for each node
at most one additional line is added) and

e 3 - k gates (since for each node cascades of at most 3 gates
are added according to Figure 4 and Table 1, respectively).

Asymptotically, the resulting reversible circuits are bounded by
the size of the BDD. Since for BDDs many theoretical results exist
(see e.g. [16, 17]), using the proposed synthesis approach, these re-
sults can be transferred to reversible logic as well. In the following,
we sketch some possible results obtained by this observation.

e A BDD representing a single-output function has 2" nodes
in the worst case. Thus, each function can be realized in
reversible logic with at most 3 - 2" gates (thereby at most
2 - 2" CNOTs and 2 - 2" Toffoli gates are needed according
to the first row of Table 1).

e A BDD representing a symmetric function has n? nodes in
the worst case. Thus, each symmetric function can be re-
alized in reversible logic with at most 3 - n? gates (thereby
at most 2 - n?> CNOTs and 2 - n? Toffoli gates are needed
according to the first row of Table 1).

e A BDD representing specific symmetric functions, like AND,
OR, or EXOR has a linear size. Thus, there exist a reversible
circuit realizing these functions in linear size as well.

e A BDD representing an n-bit adder has linear size. Thus,
there exist a reversible circuit realizing addition in linear size
as well.

Further results (e.g. tighter upper bounds for general function as
well as for respective function classes) are also known (see e.g. [16,
17]). Moreover, in a similar way bounds for elementary quantum
circuits can be obtained. However, a detailed analysis of the theo-
retical results that can be obtained by the BDD-based synthesis is
left for future work.

5. EXPERIMENTAL RESULTS

We implemented the proposed synthesis approach in C++ on top
of the BDD package CUDD [25]. BDDs are constructed with com-
plement edges and optimized using sifting [27, 24]. Both, Tof-
foli gate circuits and elementary quantum gate circuits have been
synthesized. In this section we document experimental results ob-
tained by our approach and compare them to the results generated
by (1) the public available RMRLS approach (described in [13])
using version 0.2 in the default settings and (2) the RMS approach
(based on the concepts of [14]) in its most recent version including
improved handling of don’t care conditions at the output.

As benchmarks we used functions provided in RevLib [28] (in-
cluding most of the functions which have been previously used to
evaluate existing reversible synthesis approaches) as well as from
the LGSynth package (a benchmark suite for evaluating irreversible
synthesis). Since previous approaches (i.e. RMRLS and RMS) re-
quire reversible functions as input, non-reversible functions are em-
bedded into reversible ones (based on the concepts of [22]). For
BDD-based synthesis, the original function description has been



Table 3: Experimental results

FUNCTION PREVIOUS APPROACHES BDD-BASED SYNTHESIS

RMRLS [13] RMS [14] AQc| AQc
NAME | PI/PO L.||GC| QC| TIME” GC| Qc| TIME| L.| GC| Qc|QCpg| TIME|(RMRLS)|(RMS)
REVLIB FUNCTIONS
4mod5_8 4/1 S| 9] 25 0.86 S5 9] <0.01 7 8 24 18]<0.01 -7 9
decod24_10 2/4 4] 11| 55| 497.51 7 19| <0.01 6 11 27 23|<0.01 -32 4
mini-alu_84 42 S| 21 173] 495.61| 36| 248] <0.01 10] 20 60 43]<0.01 -130)  -205
alu_9 5/1 S5 9] 49| 12248 9 25 0.01 7 9 29 22| 0.01 -27 -3
rd53_68 5/3 T - —[>500.00]| 221] 2646 0.14] 13| 34 98 75]<0.01 - -2571
hwb5_13 5/5 S| - —[>500.00{] 42| 214 0.01] 28| 88| 276 205| 0.01 - -9
sym6_63 6/1 T\ 36| T77] 48547 15| 119 0.13] 14| 29 93 69]<0.01 -708 -50
mod5adder_66 6/6 6] 37] 529 494.46| 35| 151 0.06[ 32| 96| 292 213]<0.01 -316 62
hwb6_14 6/6 6| - —[>500.00{] 100| 740 0.04] 46| 159| 507| 375/<0.01 -1 -365
rd73_69 713 9| - —|>500.001| 1344 20779 193] 13| 73| 217 162(<0.01 —| -20617
hwb7_15 71 T - —[>500.00]| 375] 3378 0.18] 73] 281| 909| 653]<0.01 —-| -2725
ham7_29 17 T\ - —[>500.00{ 26 90 0.09{ 21| 61| 141| 107[<0.01 - 17
rd84_70 8/4 |[11]] — —[>500.00]| 124] 8738 9.92]| 34| 104 304| 229|<0.01 -| -8509
hwb8_64 8/8 8| - —[>500.00{ 229| 3846 0.90| 112| 449] 1461| 1047| 0.01 -1 -2799
sym9_71 9/1 {10} - —[>500.00{] 27| 201 3.98| 27| 62| 206 153]<0.01 - -48
hwb9_65 9/9 9| - —|>500.00{/2021 {23311 1.45] 170 699| 2275| 1620| 0.02 -] -21691
cyclel0_2_61 12/12 [12]] 26{1435] 491.87| 41| 1837| 26.17| 39| 78] 202| 164| 0.09 -1271| -1673
plus63mod4096_79 | 12/12 ||12| - —|{>500.00]| 24| 4873 17.74| 23] 49 89 79| 0.08 —-| -4794
plus127mod8192_78| 13/13 ||13]| - —[>500.00{] 25| 9131| 57.16|| 25| 54 98 86| 0.21 - -9045
plus63mod8192_80 | 13/13 ||13]| - —[>500.00{] 28| 9183| 57.19]] 25| 53 97 871 0.20 —-| -9096
ham15_30 15/15 ||15]] - —[>500.00 - —[>500.00]] 45| 153] 309] 246| 1.25 - -
LGSYNTH FUNCTIONS
xor5 5/1 6| 27| 387| 484.11 8 68 0.01 6 8 8 8]<0.01 -379 -60
9sym 9/1 {10} - —[>500.00{] 27| 201 4.00] 27] 62| 206| 153]<0.01 - -48
cordic 2312 || ~|| ~| o~ ~ ~ ~ ~| 52| 101| 325 247| 0.02 - -
bw 528 [~ ~| ~ ~ 87] 307] 943] 693]<0.01 - -
apex2 3973 || ~|| ~| ~ ~ ~ ~ ~| 498[1746| 5922| 4435| 0.24 - -
pdc 16/40 || ~|| ~| ~ ~ ~ ~ ~| 619]2080| 6500| 4781| 0.14 - -
seq 41735 || ~|| ~| ~ ~ ~ ~ ~[1617{5990(19362|14259| 1.14 - -
spla 16/46 || ~|| ~| ~ ~ ~ ~ ~| 489]1709| 5925| 4372| 0.10 - -
exSp 8/63 || ~| ~| ~ ~ ~ ~ ~|| 206| 647 1843| 13838] 0.02 - -
e64 65/65 || ~|| ~| ~ ~ ~ ~ ~| 195] 387 907| 713] 0.04 - -
cps 241109 || ~|| ~|  ~ ~ ~ ~ ~| 930{2676| 8136| 6301 0.10 - -
apex> 117/88 || ~|| ~| ~ ~ ~ ~ ~|[1147]3308|11292| 8387| 0.14 B -
i5 133/66 || ~|| ~| ~ ~ ~ ~ ~|| 345] 530] 1738 1382 0.09 - -
i8 133/81 || ~|| ~| ~ ~ ~ ~ ~| 955[3550|11478| 8212| 0.25 B -
i6 138/67 || ~|| ~| ~ ~ ~ ~ ~|| 280| 734| 2234| 1557 0.06 - -
exdp 128128 || ~|| ~| ~ ~ ~ ~ ~| 510[1277| 4009| 3093| 0.03 B -
frg2 143/139 || ~|| ~| ~ ~ ~ ~ ~|1411]4472|14944|11323| 0.69 - -
i4 192/6 || ~|| ~| ~ ~ ~ ~ ~| 729]2115] 6827| 5158| 0.43 B -
i7 199/67 || ~|| ~| ~ ~ ~ ~ ~ || 403] 941] 2953| 1996] 0.90 - -

used which automatically leads to an embedding. All experiments
have been carried out on an AMD Athlon 3500+ with 1 GB of
memory. The timeout was set to 500 CPU seconds.

The results are summarized in Table 3. The first columns give
the name as well as the number of the primary inputs (PI) and
primary outputs (PO) of the original function. In the following
columns, the number of lines (L.), the gate count (GC), the quan-
tum cost (QC), and the synthesis time (TIME) for the respective ap-
proaches (i.e. RMRLS, RMS, and the BDD-BASED SYNTHESIS)
are reported®. Note that for the BDD-based synthesis two values
for quantum cost are given: QC for the cost of the resulting Toffoli
gate circuits and QCgq if elementary gate circuits are synthesized
directly. Furthermore, a ‘~’ denotes, that an embedding needed
by the previous synthesis approaches could not be created within

>TIME for BDD-BASED SYNTHESIS includes both, the time to
build the BDD as well as to derive the circuit from it.

the given timeout. Finally, the last two columns (A QC) give the
absolute difference of the quantum cost for the resultig circuits ob-
tained by the BDD-based elementary quantum circuit synthesis and
the RMRLS or RMS approach, respectively.

As a first result, one can conclude, that for large functions to be
synthesized it is not always feasible to create a reversible embed-
ding needed by the previous approaches. Moreover, even if this
is feasible, both RMRLS and RMS need a significant amount of
run-time to synthesize a circuit from the embedding. As a con-
sequence, for most of the LGSynth benchmarks no result can be
generated within the given timeout. In contrast, our BDD approach
is able to synthesize circuits for all given functions within a few
CPU seconds.

Furthermore, although the BDD-based synthesis often leads to
larger circuits with respect to gate count and number of lines, the
resulting quantum cost are significantly lower in most of the cases
(except for 4mod5_8, decod24_10, mod5adder_66, and ham7_29).



As an example, for plus63mod4096_79 the BDD-BASED SYN-
THESIS synthesizes a circuit with twice the number of lines but
with two orders of magnitude fewer quantum cost in comparison
to RMS. In the best cases (e.g. hwb9_65) a reduction of several
thousands in quantum cost is achieved. Note that quantum cost are
more important than gate count since they consider gates with more
control lines to be more costly. Furthermore, the total number of
circuit lines that have been added by the BDD-BASED SYNTHESIS
is moderate considering the obtained quantum cost reductions (in
particular since all additional lines have constant inputs).

6. CONCLUSIONS AND FUTURE WORK

In this paper, we introduced a synthesis approach which can cope
with large functions. The basic idea is to create a Binary Decision
Diagram for the function to be synthesized and afterwards substi-
tuting each node by a cascade of Toffoli or elementary quantum
gates, respectively. Since BDDs may include shared nodes causing
fan-outs (which are not allowed in reversible logic), also substitu-
tions including an additional circuit line are proposed.

While previous approaches are only able to handle functions
with up to 30 variables at high run-time, our BDD-based approach
can synthesize circuits for functions with more than hundred vari-
ables in just a few CPU seconds. Furthermore, in most of the cases
reductions in the resulting quantum cost have been observed.

In future work, we will focus on the optimization of the resulting
circuits. In particular, the number of additional lines should be
reduced. Existing approaches (e.g. [12, 29, 30, 31]) provide a good
starting point, but mainly focus on reducing quantum cost. Another
idea is to adjust the cost function of exact BDD implementations
with respect to quantum cost and to synthesize the circuits from
the resulting BDDs. Finally, a detailed analysis of the theoretical
results that can be obtained by the proposed approach is left for
future work.
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