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ABSTRACT 
With aggressive technology scaling, SRAM design has been 
seriously challenged by the difficulties in analyzing rare failure 
events. In this paper we propose to create statistical performance 
models with accuracy sufficient to facilitate probability extraction 
for SRAM parametric failures. A piecewise modeling technique is 
first proposed to capture the performance metrics over the large 
variation space. A controlled sampling scheme and a nested 
Monte Carlo analysis method are then applied for the failure 
probability extraction at cell-level and array-level respectively. 
Our 65nm SRAM example demonstrates that by combining the 
piecewise model and the fast probability extraction methods, we 
have significantly accelerated the SRAM failure analysis.  

Categories and Subject Descriptors 
B.8.2 [Performance and Reliability]: Performance Analysis and 
Design Aids 

General Terms: Algorithms, Reliability 

Keywords: SRAM, Parametric Failure, Failure Probability 
Estimation, Response Surface Model 
 

1. INTRODUCTION 
As the most commonly used embedded memory of modern on-
chip systems, SRAM plays a crucial role in defining the system 
performance [1]. For maximum storage density, SRAM bit-cells 
have always been designed to use near-minimal devices in a given 
technology node. Such tight layout footprints make SRAM cells 
extremely vulnerable to the performance degradation and failures 
caused by random dopant fluctuation (RDF), which is inversely 
proportional to the layout area [2,3].  
The RDF induced variations are spatially independent in nature. It 
follows that a rare cell-level failure caused by such variations can 
become quite significant for a system with many replicated cells. 
With the aggressive technology scaling, such local random 
variations are becoming more dominant. Therefore SRAM cells 
have to be carefully designed to provide an exceedingly low 
failure rate, such that the functionality is maintained for the 
system which contains thousands, or even millions of such 

identical cells [4]. How to probe such rare failure events has 
become a serious challenge for SRAM design and analysis. 
A widely used approach to study such a probability problem is the 
Monte Carlo method [5], which provides statistical estimations 
based on experiments performed at randomly selected samples in 
the variation space. To estimate the probability of the rare failure 
events in SRAM circuits, however, the Monte Carlo method 
typically requires millions, or even billions of samples to reach 
reasonable accuracy [6,7]. Such prohibitive cost severely limits 
the application of the Monte Carlo method in SRAM analysis. To 
alleviate this problem, several improvements have been proposed 
by integrating some controlling scheme in the sampling process, 
such as Latin hypercube sampling [8] or low-discrepancy 
sampling [7]. These methods claim to offer comparable accuracy 
to Monte Carlo methods while running up to a hundred times 
faster. Nevertheless, as demonstrated later in this paper, such an 
enhancement is still insufficient to enable SRAM failure analysis. 
An alternative avenue to attack the problem is by modeling the 
stability metric as a known distribution and calculating the failure 
probability explicitly. For example, Gaussian distributions, non-
central F distributions, or generalized Pareto distributions are 
among the commonly-used forms for approximating the stability 
metrics [9-12]. The accuracy of these methods, however, heavily 
relies on the validity of their assumptions, which unfortunately, 
are often questionable for nanoscale SRAM circuits. As pointed 
out by [6] and [13], even when the center portion of the stability 
metric distribution closely matches the presumed type, the tail 
part, where the failures usually happen, often deviates from the 
assumed form due to the increased nonlinearity in those regions. 
In this paper we address the problem of SRAM parametric failure 
analysis with two novel techniques. Firstly, a response surface 
modeling (RSM) approach is applied to reduce the cost of 
transistor-level simulations. The critical problem here is how to 
accurately model the performance metric over a large variation 
space. We designed a piecewise approach, which by adaptively 
partitioning the variation space, renders a set of models covering 
the entire space while providing superb accuracy in regions 
critical for failure classification. Secondly, based on the statistical 
performance models, we explicitly identify the failure regions and 
apply a controlled sampling scheme to better probe those areas. 
Our approach effectively reduces the sample size without any 
assumptions on the performance metric distribution. By 
combining the model-based evaluation and the efficient sample-
allocation, we significantly accelerate SRAM failure analysis, as 
compared to the traditional Monte Carlo approach. 
The remainder of the paper is organized as follows. In Section 2, 
we define the SRAM failure analysis problem and review some 
background techniques. Section 3 presents our methods for fast 
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probability extraction, i.e. the piecewise modeling and the 
controlled sampling techniques. We then escalate the problem in 
Section 4 and discuss how to estimate the failure probability for a 
SRAM array. Some results from a 65nm design are then shown in 
the next section, followed by our conclusions in Section 6. 

2. BACKGROUND 

2.1 SRAM Parametric Failure Analysis   
To ensure proper functionality over the process variations, we 
focus on stability margins that are defined for SRAM cells as 
measures of robustness under different operating scenarios. 
Violation of a stability margin specification at certain process 
point is referred to as a parametric failure (or in short, a failure) 
in this paper. It should be noted, however, nothing would preclude 
us from considering other SRAM performance metrics for failure 
analysis by using the proposed techniques. 
Assume that the process variations are described by the vector 

kx ��  of k independent random variables, which include both 
the global process variables and the local process variables from 
all transistors in the SRAM cell. The distribution of x is defined 
by its probability density function (PDF) )(xp . We choose a 
metric )(xS  and a specification SSPEC to test the stability of the 
SRAM cell. SPECSxS �)(  signifies that the cell is stable at the 
process point x, and vice versa. Thereby we define the indicator 
function: 
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where 1)( 
xI  indicates the failure event. One very important 
problem in the SRAM stability analysis is to find the parametric 
yield loss, i.e. the failure probability due to the process variations: 
 � �1)( 
	 xP IP  (2) 

The most commonly used approach for probability estimation is 
the Monte Carlo (MC) method [5]. Traditional Monte Carlo 
approach consists of three steps: (a) a total number of N samples, 

) , ,1( }{ Nix i �
 , are randomly selected in the process variation 
space according to the distribution )(xp ; (b) the interested 
stability metric is tested at all the sample points; (c) the results, 

)( }{ixS  and )( }{ixI , are aggregated for estimation. 

The failure probability can be estimated by averaging the 
indicator function: 
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Due to the randomness in the sampling, the estimated probability 
varies with different set of samples with a variance as [5]: 
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where the operator “ � ” means “estimated by” (since the actual 
probability P is not known a priori).  
As previously discussed, when analyzing the failure events in 
SRAM cells, we expect the probability to be extremely small. In 
such case, a meaningful estimation requires ][ MCP�  to be 
sufficiently smaller than the actual probability. We define the 
confidence ratio to qualify the “accuracy” of the estimation: 
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Clearly, if we want to retain a low RC while P is very small, the 
sample count N has to be extremely large. This point is illustrated 
with a simple example in Fig. 1, where we use the Monte Carlo 
method to study the tail of a standard normal distribution and 
obtain the probability � ��nx �P  (for convenience we often map 
an extremely small probability to a normal distribution and 
represent its location in the unit of �). The plot shows the number 
of samples needed to reach a RC of 0.05. Evidently, the sample 
count increases intractably when the event being analyzed moves 
towards the tail of its distribution.  
For SRAM cell failure analysis, it is very usual to have failure 
probabilities beyond 5� [4,6]. As demonstrated in Fig. 1, the 
excessive samples required by direct Monte Carlo method are 
often beyond practical means. 

 
Figure 1.   Samples needed by Monte Carlo method 

2.2 Importance Sampling 
Intuitively, with random sampling and a limited sample size, it is 
very unlikely that many samples are placed into the region that 
causes rare failures. This, in turn, renders large estimation error 
(confidence ratio) in the direct Monte Carlo method. To alleviate 
this problem, importance sampling (IS) is applied to the SRAM 
applications [6].  

In importance sampling, a biased sample distribution )(xg  is 
introduced to intentionally place more samples into the failure 
region. After the controlled sampling and experiments, the failure 
probability is estimated as [14]: 
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Note that compared to (3), the averaging here is weighted to 
unbias the estimation. The estimation variance can be derived as: 
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where )()()()( }{}{}{}{ iiii xxxx gpIL 	 . If )()( xx pg 
 , Equ. 
(7) converges to Equ. (4). But as )(xg  shifts more emphasis onto 

the failure region, the dispersion in )( }{ixL  decreases, as well as 

the variance ][2
ISP� .  

By placing more samples in the failure region, importance 
sampling is expected to provide a much tighter estimation, 
compared to direct Monte Carlo method with the same number of 
random samples. One key issue, however, is how to design the 
new distribution )(xg . The authors of [6] attempt to first locate 
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the region of failures by uniformly sampling the variation space, 
and then construct )(xg  based on such information. This causes 
two problems, however: (a) searching the process space with 
uniform samples can be very ineffective, especially when the 
failure events are rare or the space dimension is high [14]; (b) 
even the sample number is effectively reduced by importance 
sampling, the simulation cost for evaluating the samples could 
still be very expensive, as demonstrated later in this paper. 

3. FAST ESTIMATION OF SRAM CELL 
FAILURE PROBABILITY 
In view of the challenges in the SRAM stability analysis, we 
propose to build accurate statistical performance models that 
facilitate the probability extraction. A controlled sampling scheme 
is then performed for better failure region coverage and sample 
reduction. This section describes these two techniques. 

3.1 Performance Modeling of Stability Metrics 
There are two motivations for introducing response surface model 
(RSM) into the SRAM stability analysis problem. First, with the 
model it is possible to accurately locate the region of failures and 
apply a precisely-designed controlled sampling scheme. Second, 
the RSM hides the internal workings of the circuit and therefore 
can greatly accelerate the sample evaluation process. 
With the increasing process variations, however, the circuit 
performance exhibits stronger nonlinear effects and is very 
difficult to be accurately captured. Furthermore, particularly in 
the SRAM applications, the cell stability failures have to be 
controlled at an exceedingly low level, which demands the scope 
to be extended further into the tails of the parameter distributions. 
Facing these challenges, we propose to partition the variation 
space and create piecewise response surface models for the 
stability metrics. The authors of [15] developed a systematic 
approach to partition a parameter space and create piecewise 
models. Although initially proposed for analog macromodeling, 
with proper modifications this method is applicable to SRAM 
failure analysis as well.  
In summary, we use the upper and lower bounds of the process 
parameters to define the initial region as a hypercube. This space 
is then adaptively divided into smaller pieces: (a) the inscribed 
ellipsoid of the current polytope (a hypercube in the first step) is 
first found by convex optimization; (b) the local space is sampled 
by a Design-of-Experiment (DoE) approach, and at each sample 
point the SRAM cell is simulated for its stability margin; (c) with 
the samples, a linear local model is created and the modeling error 
is evaluated to decide if further partitioning is necessary; (d) 
partitions with large errors will be further divided and the above 
steps are recursively applied. After the partitioning, the stability 
margin is modeled as a collection of the local models in all final 
partitions. More details of the partitioning formulation can be 
found in [15] and are neglected due to space limitations here.  
Unlike [15], where a simple error-based criterion is applied to 
decide the partitioning direction, here we employ a set of criteria 
to better suit the particular probability extraction problem. 
Specifically, since our eventual goal is to estimate the failure 
probability, the modeling error does not need to be uniformly 
controlled over the entire variation space. For regions where the 
value of the stability metric is close to the predefined 

specification, high accuracy is required because it directly affects 
the correctness of the failure identification. For the remaining 
regions, the model does not need to be as accurate, as long as the 
modeling error does not reverse the specification pass/fail status 
at that process point. 
For this reason, we selectively apply a response-based criterion 
and an error-based criterion in different stages of the partitioning 
process. Both methods are illustrated in Fig. 2. The error criterion 
first finds the direction with the maximum modeling error. A 
hyperplane passing the ellipsoid center is then selected to be 
orthogonal to that direction and is used to divide the current 
partition into two pieces. The purpose of such partitioning is to 
reduce the size the local space and to increase the model 
accuracy. Alternatively, the response criterion constructs the 
contour of the specification, which is a hyperplane since the local 
model is linear. With some guard band added to both sides of the 
contour, the current polytope is divided into three parts. The 
purpose of this is to isolate the region requiring higher accuracy.  

 
Figure 2.   Partitioning criteria 

Before the partitioning, we define a larger error tolerance �H and a 
smaller one �L. Intuitively, the partitioning always starts with the 
error criterion approach, until the higher tolerance �H is met. 
Then, the response-based approach is applied to divide the current 
polytope into three pieces. For the two pieces away from the 
specification, we stop further partitioning. While for the center 
piece, the partitioning carries on using again the error-based 
approach but with the lower tolerance �L as target. By this flow, 
we identify the regions where the stability metric is close to the 
specification, and create local models with higher accuracy in 
those regions. For the rest of the parameter space, the accuracy 
requirement is relaxed to reduce the modeling cost. 

3.2 Model-based Probability Extraction 
After the piecewise modeling, we have the stability metric 
represented as a linear model in each partition. We can then 
estimate the failure probability of the SRAM cell in three steps. 
Firstly, we isolate the critical partitions that contain failure 
regions. This is conveniently done by solving a linear 
programming problem to find the worst-case stability metric value 
within each polytope. Secondly, in each critical partition, we 
construct a new sample distribution to provide better coverage in 
the failure region and estimate the failure probability with 
importance sampling. Finally, we aggregate the results from all 
partitions and gradually append more samples until a target 
estimation confidence is achieved.  
In each critical partition, we construct a new sample distribution 
as illustrated in Fig. 3. In such a partition, the specification 
contour SPECSxS 
)(  defines a hyperplane. Therefore, very 
similar to that in the space partitioning process, we can solve a 

   

 (a) Error-based (b) Response-based 
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convex optimization problem to obtain an ellipsoid �
� � kxdEx ����
 1  

2
 that approximates the shape of the 

failure region [16]. As the sample distribution for the importance 
sampling, we construct a standard multivariate Gaussian 
distribution residing in the space spanned by the ellipsoid axes. If 
observed from the original parameter space, the new distribution 
is centered at the ellipsoid center d, and along each ellipsoid axis 
it presents an independent normal distribution whose standard 
deviation is proportional to the corresponding axis length. The 
PDF of the new sample distribution is given as: 
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where � is a diagonal matrix of the eigenvalues of E.  

 
Figure 3.   Defining biased sample distribution 

We now can apply the importance sampling technique to estimate 
the failure probability. The samples are generated according to the 
new distribution )(xg  and are evaluated by the RSM. From the 
samples, we can estimate the failure probability by Equ. (6), and 
the estimation variance by Equ. (7). When all the partitions are 
processed, we aggregate the results and obtain the overall failure 
probability and estimation variance as: 
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where the bracketed superscripts indicate the corresponding 
model partition.  
In addition, due to the sample superimposability of the Monte 
Carlo method [5], it is unnecessary to apply all the samples at 
once. Instead, a better strategy is to first use a small amount of 
samples and then gradually append more until a predefined 
objective is met. In our implementation, we define a target RC and 
first use a small number of samples in each partition. Next we 
select a partition which potentially provides the maximum 
estimation variance drop. Additional samples are appended to the 
chosen partition to improve the estimation accuracy there. This 
process is repeated until the pre-defined target is reached.  
In summary, the proposed algorithm accelerates the analysis of 
SRAM cell failure events from three aspects: (a) With the RSM, 
we can easily identify the failure region and apply importance 
sampling with a controlled sample distribution. (b) For sample 
evaluation, response surface model is used in place of the 
expensive transistor-level simulation. (c) The samples are added 
in small chunks and the supplement stops as soon as the 
predefined estimation confidence is reached. 

4. ARRAY-LEVEL ESTIMATION 
In addition to the cell-level failure probability described in the 
previous section, it is often of even more interest to know such 

probability at array-level or system-level. This analysis problem 
is not trivial since the failures of individual cells are affected by 
both independent factors (such as local variations) and correlated 
factors (such as global variations). To solve this problem, we 
propose a nested Monte Carlo (NMC) method, where the outer 
level handles the global variations and the inner level handles the 
local variations. 
The process variation information currently provided by IC 
foundries is usually defined in two levels. The global variations, 
defined as vector xG, affect all the cells uniformly, while the local 
variations, defined as vector xL, apply to each cell independently. 
For simplicity we assume that the SRAM array consists of M 
identical bit-cells without any redundancy (the handling of 
redundancy will be discussed at the end of this section). The 
failure event at the array-level, ),,,( ][]1[ MLLGsys xxx �I , is 
defined as the situation that at least one cell fails (variables 
connected to an individual cell are marked with square brackets in 
subscript). Our goal here is to find the failure probability Psys of 
such array failures. 
The nested Monte Carlo method can be described as the following 
steps: (a) We create the piecewise RSM for the stability metric of 
an individual cell with both the global and local variations as 
parameters, i.e. ),( ][iLG xxS . (b) K samples are generated in the xG 
space, according to the global variation distributions. (c) At each 
sample }{i

Gx , we apply the technique described in the previous 

section and estimate the cell failure probability }{i
GG xxcellP



. (d) 

Given point }{i
Gx , the cell failures are only affected by local 

variations and are independent. Therefore, the array-level failure 
probability is obtained as: 
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(e) When all the samples are processed, we estimate the array-
level failure probability and the estimation variance as: 
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The nested Monte Carlo method expedites the analysis of SRAM 
array failures in several ways. Firstly, the RSM is created only 
once with both the global and local variations as parameters, and 
there is no need to create the model over again at different global 
variation points. Secondly, at the inner-level we estimate the cell 
failure probability with the proposed importance sampling 
technique, then the failure probability of the array is analytically 
calculated by Equ. (10). Thirdly, by analyzing the estimator 
variance in (12), we notice that it is minimized when cellP  does 
not fluctuate much at different xG points, i.e. the failure is 
dominated by the local variations. Fortunately, this is what we 
expect from the trends for the latest technology nodes [4]. 
As an alternative approach, we can also estimate the upper bound 
of the array-level failure probability by assuming all cell failures 
are independent, i.e.,   
 � � M

cellsys PP  1 1 ���  (13) 
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Since the local variations are becoming dominant, we expect such 
an upper bound to be fairly close to the actual value such that can 
be used as a fast approximation when accuracy is not very critical. 
For simplicity we did not include redundancy in the above 
description. It should be noted, however, by formulating (10) and 
(13) accordingly, the proposed methods can be easily applied to 
systems with redundancy and/or ECC.  

5. NUMERICAL EXPERIMENTS 
In this section we demonstrate the efficiency of the proposed 
algorithms with a 6T SRAM cell designed in IBM 65nm CMOS 
process. Three stability metrics are selected for experiments: 
static noise margin (SNM) [17], read noise margin (RNM) [17] 
and write margin (WM) [18] (since we do not require any 
assumption on the metric distribution, other definitions can be 
used as well). The proposed methodology is implemented in 
MATLAB, using Spectre as transistor-level simulation engine. 

5.1 Model Creation 
For each stability metric, we apply the piecewise modeling 
methodology to create a response surface model, capturing the 
variation space up to ±6� for the local variations. For comparison, 
we also create a linear model over the entire region. To evaluate 
the model accuracy, we select 10,000 points uniformly distributed 
in the process space and choose those points that are in the tail 
part of the stability metric distribution (close to the specification) 
to compute the modeling error. The average errors and other 
relevant results are summarized in Table 1. 
Evidently, linear template yields significant errors for all three 
metrics, including SNM and RNM which many believe to be 
normally distributed. In contrast, the proposed methodology 
effectively captures the large variation space and provides 
superior accuracy for all three metrics.  

Table 1.   Modeling results 

Stability 
metric 

Model 
template 

Partition 
# 

Total 
simulation # 

Runtime 
(min) 

Avg. err. 
(%) 

SNM 
Piecewise 13 0.6 k 7.0 1.9 

Linear 1 25 0.1 8.1 

RNM 
Piecewise 16 0.8 k 10.0 3.4 

Linear 1 27 0.1 12.1 

WM 
Piecewise 23 0.8 k 11.3 3.4 

Linear 1 19 0.1 8.2 
 

5.2 Cell-level Failure Probability Extraction 
When the piecewise models are available, the RSM-based 
importance sampling technique is applied to estimate the 
probability of the selected stability failure for an individual 
SRAM cell. We set the target confidence ratio RC to 0.1 and run 
the proposed estimation flow (IS+RSM). The estimation results 
are listed in Table 2, which also includes the results from RSM-
based and simulation-based Monte Carlo runs (MC+RSM, 
MC+Sim) with similar estimation confidence. Other methods, 
such as those in [11] or [12], are not included here since the 
estimation accuracy information is not attainable in those 
methods. It should be noted, however, that since the sample sizes 
required by direct Monte Carlo method are in general beyond our 

computational capacity, some data (in shaded cells) are 
extrapolated from actual runs with fewer samples. Data that 
cannot be extrapolated (such as the failure probability from 
simulation-based Monte Carlo analysis) are left blank in the table.  
The results demonstrate that RSM evaluation is over 400 times 
faster than transistor-level simulation in general, while the 
importance sampling technique, as compared to direct Monte 
Carlo analysis, is able to achieve a sample size reduction of over 
2,000 fold. By combining these two features, the proposed 
method accelerates the SRAM failure analysis by 105 to 108 
times, thereby enabling such difficult analyses. 

Table 2.   Cell-level estimation results 

Metric Method Sim./eval. # Runtime Pcell �[Pcell] 

SNM 
IS+RSM 175 k 1.3 min 5.31e-8 5.3e-9 

MC+RSM 1 B 5.1 day ––– 5.4e-9 
MC+Sim 1 B 6.6 yr ––– ––– 

RNM 
IS+RSM 105 k 2.5 min 1.17e-7 1.2e-8 

MC+RSM 0.7 B 4.0 day ––– 1.2e-8 
MC+Sim 0.7 B 4.9 yr ––– ––– 

WM 
IS+RSM 60 k 1.1 min 5.48e-9 4.7e-10 

MC+RSM 40 B 0.8 yr ––– 5.0e-10 
MC+Sim 40 B 386 yr ––– ––– 

 

5.3 Array-level Failure Probability Extraction 
Next we demonstrate the nested Monte Carlo (NMC) method on a 
16 Kb SRAM array. For the inner-level estimation of the cell 
failure probability, we again set the RC as 0.1. At the outer-level, 
we fix the number of the global variation (xG) samples to be 100, 
which renders sufficiently accurate results in our experiments. For 
comparison, we calculate the sample number needed by direct 
Monte Carlo method to achieve similar accuracy and project its 
runtime (based on RSM evaluations). The results are summarized 
in Table 3. Again extrapolated data are in shaded cells. 

Table 3.   Array-level estimation results 

Metric Method xG # RSM 
eval. # Runtime Psys �[Psys] 

SNM 
NMC 100 9.1 M 6.5 min 7.35e-4 8.0e-5 
MC 115 k 1.9 B 9.7 day ––– 8.0e-5 
UpB ––– 175 k 1.3 min 8.70e-4 8.6e-5 

RNM
NMC 100 9.9 M 7.5 min 1.92e-3 1.9e-4 
MC 58 k 0.95 B 5.4 day ––– 1.9e-4 
UpB ––– 105 k 2.5 min 2.18e-3 1.9e-4 

WM 
NMC 100 3.1 M 7.8 min 7.86e-5 8.1e-6 
MC 1.2 M 20 B 0.4 yr ––– 8.1e-6 
UpB ––– 60 k 1.1 min 8.98e-5 7.7e-6 

 
By handling the global variations and the local variations at two 
different levels, the nested Monte Carlo method is able to utilize 
the benefits of the importance sampling technique for estimating 
the cell-level probability. The probability obtained is then 
analytically translated from cell-level to array-level at the global 
variation point. Compared with direct Monte Carlo method, the 
nested approach provides over 1000) speed-up in our experiments 
(both methods use RSM for sample evaluation). 
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Table 3 also lists the results of the upper bound (UpB) estimation. 
As expected, such method overestimates the failure probability by 
certain amount for all three examples. This is once more 
confirmed in Figure 4, where the WM failure probabilities for 
various array sizes are estimated with both the NMC and the UpB 
methods. For this 65nm process, however, the local variations 
dominant the overall effects. Therefore the overestimation by the 
UpB method is in fact only marginal. This suggests the UpB 
method as a candidate where runtime is more critical than 
accuracy (e.g. early-stage design decisions). 

 
Figure 4.   WM failure probabilities for different array sizes 

6. CONCLUSIONS 
With aggressive technology scaling, the design and analysis of 
SRAM circuits have become increasingly challenging. The most 
critical issues stem from the growing process uncertainties and the 
stringent functionality requirements. In view of the challenges, we 
propose a model-based importance sampling approach to facilitate 
the analysis of the rare failure events in SRAM circuits. Our 
proposed methodology extracts the SRAM failure probability at 
both the cell-level and the array-level. At cell-level, a piecewise 
modeling framework is applied to accurately model the cell 
stability metric over the large process variation space. A 
controlled sampling is then performed for better failure region 
coverage and sample reduction. At the array-level, we propose a 
nested Monte Carlo method that handles both the global and the 
local variations, as well as fully incorporates the benefits of the 
above cell-level failure probability extraction method. 
In our experiments for a 65nm SRAM design, the piecewise 
model accurately captures the variation space up to ±6� for the 
local variations. Our proposed methods for failure probability 
estimation also clearly outperform the conventional Monte Carlo 
approach at both the cell-level and the array-level. With the 
piecewise model and the fast probability extraction method, we 
accelerate the SRAM failure analysis by magnitudes and enable 
such difficult analyses. 
As an extension to the proposed modeling and analysis flow, we 
are currently working to include design parameters (transistor 
sizes, array configuration parameters, etc.). The eventual goal is 
to help building up the complete methodology and tool-set to 
support the variation-aware design flow for SRAM systems. 
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