
Provably Good and Practically Efficient Algorithms for CMP
Dummy Fill

Chunyang Feng1, Hai Zhou1,2, Changhao Yan1, Jun Tao1, Xuan Zeng1∗

1State Key Lab of ASIC & System, Microelectronics Dept., Fudan University, China
2EECS, Northwestern University, U.S.A.

Abstract—To reduce chip-scale topography variation in Chemical Me-
chanical Polishing (CMP) process, dummy fill is widely used to improve
the layout density uniformity. Previous researches formulated the dummy
fill problem as a standard Linear Program (LP). However, solving the
huge linear program formed by real-life designs is very expensive and has
become the hurdle in deploying the technology. Even though there exist
efficient heuristics, their performance cannot be guaranteed. In this paper,
we develop a dummy fill algorithm that is both efficient and with provably
good performance. It is based on a fully polynomial time approximation
scheme by Fleischer [4] for covering LP problems. Furthermore, based
on the approximation algorithm, we also propose a new greedy iterative
algorithm to achieve high quality solutions more efficiently than previous
Monte-Carlo based heuristic methods. Experimental results demonstrate
the effectiveness and efficiency of our algorithms.

Categories and Subject Descriptors:
J.6 [Computer-Aided Engineering]: Computer-Aided Design
General Terms: Design, Algorithms
Keywords: Design for Manufacturability, Dummy Fill Problem,
Covering Linear Programming

I. INTRODUCTION

Chemical Mechanical Polishing (CMP) is widely used as the
primary planarizing technique in the fabrication of integrated circuits.
Despite being a predominant planarizing technique, CMP is known to
suffer from undesired pattern dependent problems. Previous studies
show that post-CMP topography is strongly dependent on the underly-
ing feature density [11]. To achieve layout density uniformity, dummy
fill is a highly recommended technique by foundries to increase the
density of sparse regions.

In general, layout density control consists of two phases: density
analysis and fill synthesis. Density analysis determines the area
available for filling, while fill synthesis computes the amount of
dummy fills for each density tile of the layout [3]. In this paper,
we address the main problem of the dummy fill synthesis.

The existing work in the area of fill synthesis can be classified into
two categories [10]: linear-programming (LP) based approaches and
Monte-Carlo (or greedy) based heuristic approaches. Two objectives,
the Min-Var objective and Min-Fill objective are proposed. The Min-
Var objective seeks the most uniform density distribution possible,
and the Min-Fill objective seeks to minimize the dummy feature

∗Corresponding author. E-mail: xzeng@fudan.edu.cn

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
DAC 2009, July 26 - 31, 2009, San Francisco, California, USA
Copyright 2009 ACM ACM 978-1-60558-497-3 -6/08/0006 ...$5.00.

insertion cost while satisfies a density uniformity constraint [8].
Kahng et al. [7] proposed the first LP formulation for the Min-
Var objective. Tian et al. [13] gave the first LP formulation for the
Min-Fill objective. Although LP solvers produce optimal solution for
these formulations, the runtime is too expensive, in the order of n3,
where n is the number of variables in the LP. As stated in [8], in the
fixed-dissection paradigm, if the window size w = 200µm, and each
window is divided into r = 4 steps, then for the problem with a chip
of 20mm on each side, there would be 160000 variables. This renders
the LP-based method infeasible. This problem will get even worse
with the density window size getting smaller. Recent experiments
found that a window of about 50µm to 60µm is necessary to obtain
the pattern density for copper CMP process [9]. Therefore, solving
the linear program has become the computational bottleneck in the
fill synthesis problem.

To alleviate this difficulty, several Monte-Carlo or greedy based
heuristic approaches were proposed [1], [2], [14]. These methods
select a tile according to certain criteria in each iteration, and fill it
with a predetermined amount of dummy fills. These methods have
been shown to take less runtime. However, due to their heuristic
nature, their performance cannot be guaranteed or even bounded.
Moreover, there is no clear guidance for the determination of the
predefined filled amount during each iteration. If a large amount of fill
is added into a tile during each iteration as in the greedy method [2],
an excessive amount of total fill could be inserted in the fill. If only
a single filling geometry is added per iteration as in the Monte Carlo
approach [1], the runtime might become too long.

To address these issues in the existing approaches, the present work
• proposes, for the first time, a covering linear program (CLP) for-

mulation for the Min-Fill objective of the dummy fill problem,
and presents a Fully Polynomial Time Approximation Scheme
(FPTAS) for the Min-Fill CLP problem based on the work of
Fleischer [4]. Experimental results show that the new FPTAS
algorithm is highly practical.

• develops a new greedy iterative method based on the concept
of the new FPTAS algorithm for solving the Min-Fill problem,
which improves the existing heuristic methods both in perfor-
mance and runtime.

The rest of this paper is organized as follows. In Section II, we
describe the Min-Fill LP formulation of the dummy fill problem.
In Section III, we first give the formal formulation of the Min-
Fill CLP problem, and then present the provably good and efficient
approximation algorithm. In Section IV, we propose a new greedy
iterative method based on the approximation algorithm. The experi-
mental results are presented in Section V, and Section VI concludes
the paper.

II. PROBLEM FORMULATION

According to several widely accepted chip-scale CMP models [11],
[6], the post-CMP topography is proportional to the feature density

within a given window. Thus, to improve the CMP quality, dummy fill
is adopted to reduce the layout density variation. However, dummy
fill also introduces undesirable side effects. Therefore, it is desirable
to uniform the layout density and at the same time minimize the total
insertion amount of dummy fill.

Fig. 1. The layout is discretized into nr
w
× nr

w
tiles (r = 5), and each w×w

window contains r2 tiles.

As in [3], [13], the Min-Fill objective of dummy fill problem can
be described as: Given a design rule-correct layout in an n × n
layout region, along with a window size w < n, and upper (U)
and lower (L) bounds on the feature density in any window, add
dummy fill features to create a filled layout such that the insertion
cost is minimized while the density of any window remains in the
give range (L,U).

Due to the uncountable number of windows in the layout, to make
the filling problem tractable, the standard practice is to consider
only a finite set of overlapping w × w windows of a fixed r-
dissection [3], where r determines the window shift step w/r, as
illustrated in Fig. 1. The n × n layout is partitioned into tiles
Tij , i, j = 0, 1, · · · , (nr/w)− 1, with tile size w/r, such that each
window Wij centered at Tij , i, j = 0, 1, · · · , (nr/w)− 1, consists
of r2 tiles. Note that windows are “wrapped around” the layout, that
is, a window that overlaps with the upper edge of the layout also
contains tiles on the bottom of the layout. This is used to model the
wafer with consecutive chips.

The density of the window Wij in the “fixed-dissection” can be
calculated using the following equation

ρw(i, j) =

i+r/2X
k=i−r/2

j+r/2X
l=j−r/2

[d(k, l)× f(k − i, l − j)], (1)

where f() is the CMP filter function and d(i, j) is the feature density
in tile Tij . The shape of the filter function depends on the used CMP
models. In [7], the square function is used, which means the window
density is simply equal to the average of tile densities in the window,
while a low-pass filter function is incorporated in [13].

Note that Eq. (1) does not consider the multi-layer cumulative
effect of topography thickness [13]. Even though only the single-
layer dummy fill problem is discussed in this paper, our formulations
and algorithms can be easily extended to multi-layer case.

By now, if we arrange both the tile density d and the window den-
sity ρw in vector forms, then the Min-Fill LP formulation proposed
in [13] is given as follows:

minimize cTx

subject to l ≤ ρw ≤ u
0 ≤ x ≤ slack

(2)

In the above formulation, x is a vector of size (nr
w

)2 representing
the dummy fill amounts in tiles. The term c is referred to as the

insertion cost factor. If all the elements in c are equal, then the
objective becomes to minimize the total amount of dummy fills.
Terms l and u are also both vectors with size of (nr

w
)2. All the

elements of l equals to L, and all the elements of u equals to U ,
representing the window density constraints. The window density ρw
can be expressed as a system of linear equations based on Eq. (1)

ρw = Ad = A(x+ x0), (3)

where x0 is the original tile density before filling. A is the window
matrix, giving the mapping from the tile density to the window
density.

The term slack is the density upper bound of dummy fills for each
tile, which is determined in the density analysis phase. For example, a
coupling-constrained density analysis algorithm was proposed in [15]
which identifies feasible locations and amounts of dummy fills such
that the fill-induced coupling capacitance is bounded. Based on [15],
slack can be easily derived and the final dummy fill solution is
guaranteed to satisfy both the density rules and coupling constraints.

The Min-Fill LP in Eq. (2) imposes density constraints only on
windows in the “fixed-dissection”. Therefore, density constraints can
still be violated by other windows within the layout. Fortunately, for
the window density calculated using the square filter function, the dis-
crepancy is exactly characterized in the following two theorems [8].

Theorem 1: Suppose all w×w windows in the “fixed-dissection”
of the layout have area density at least L and at most U . Then any
w × w window has density at least L − 1

r
+ 1

4r2
and at most U +

1
r
− 1

4r2
, and these bounds are tight.

Theorem 2: Suppose all w
r
× w

r
tiles in the “fixed-dissection” of

the layout have area density at least L and at most U . Then the exact
lower bound on the area density of any w × w window equals

(r − 1)2

r2
L+

4(r − 1)

r2
max{L− 0.5, 0}+

4

r2
max{L− 0.75, 0}

and the exact upper bound equals

(r + 1)2

r2
U − 4(r − 1)

r2
max{U − 0.5, 0} − 4

r2
max{U − 0.25, 0}

Although Eq. (2) can be solved exactly by standard LP solvers,
these solvers are often too time-consuming for large problems. The
number of variables and the number of constraints in Eq. (2) are
both O((nr

w
)2). As discussed in previous section, the window size

of 50µm − 100µm is often used to calculate the window density.
If the shift step r = 4 or 5, even for a medium-sized chip with
n = 1mm, the total number of variables will be O(104), making
the standard LP method too expensive to finish in reasonable time.

III. FAST APPROXIMATION SCHEME

A. The Min-Fill CLP Formulation

If we change the Min-Fill LP in Eq. (2) slightly by moving the
upper bound u on the window density to the tile density, we will get
the following formulation:

minimize P (x) = cTx

subject to Ax ≥ b
x ≤ s
x ≥ 0

(4)

where b = max {l −Ax0, 0}. It is the density lower bound of
dummy fills for each window. The dummy density upper bound for
each tile is redefined as

s = min {u− x0, slack}. (5)

The formulation in Eq. (4) is a standard covering linear program
(CLP) due to the nonnegative nature of matrix A and vectors b, c and
s (assuming the original layout density does not exceed U).

The reason that we can simply apply density upper bound on tiles
instead of windows is that the Min-Fill CLP formulation can still
guarantee similar density bounds on any w×w windows in the layout
as the Min-Fill LP formulation. According to Theorem 1 and 2, the
lower and upper density bounds of any w×w window in the layout
of the Min-Fill LP formulation is L − 1

r
+ 1

4r2
and U + 1

r
− 1

4r2
,

while the Min-Fill CLP formulation can ensure that the density of
any w×w window in the layout can be bounded between L− 1

r
+ 1

4r2

and (r+1)2

r2
U − 4(r−1)

r2
max{U − 0.5, 0} − 4

r2
max{U − 0.25, 0}.

B. Provably Good Algorithm for Dummy Fill

The advantage of formulating the Min-Fill problem as a CLP prob-
lem is to leverage the efficient Fully Polynomial Time Approximation
Scheme (FPTAS) for such a problem. Comparing with standard LP
solvers, the scheme is much more efficient and produces better results
if given longer running time. Our algorithm is mainly based on
Fleischer [4]; the pseudo-code is given in Alg. 1.

Algorithm 1 FPTAS for Dummy Fill
Input: window matrix A, density bound b, cost factor c, tile bound
s, precision ε
Output: filling density x

1: Initialize x = δ/C
find window p with min relative density ρ(p)/b(p)

2: while P (x) < θ do
3: α = (1 + ε)ρ(p)/b(p)
4: while ρ(p)/b(p) < α and P (x) < θ do
5: if tile j ∈ window p and x(j) < αs(j) then
6: put j in set Q(p)
7: end if
8: compute min weighted density price η among Q(p)
9: for j ∈ Q(p) do

10: x(j) = x(j)(1 + εη/price(j, p))
11: end for
12: find window p with min relative density ρ(p)/b(p)
13: end while
14: if P (x/α) < P (x∗/α∗) then
15: x∗ = x, α∗ = α
16: end if
17: end while

return x∗/α∗

The general idea of the algorithm is very simple. It will iteratively
find a window whose density is relatively low, and increase the
window density by increasing the tile densities in the window.
Increasing the density of a tile may also cause other window density
to increase, giving an unexpected side-effect. A key feature of the
approach is to compensate such a wrong decision not by removing
the fill, but by scaling down its impact. In other words, the x value
will keep increasing, but at the end of day, only x/α will be used as
the solution, for a scaling factor of α.

In more detail, the relative density of a window i is given by
ρ(i)/b(i), where ρ = Ax. The minimal relative density among all
the windows will be iteratively increased. The increases are grouped
into phases, each of which will ensure that the minimal relative
density is at least α, and α will be increased by at least a factor
of 1 + ε from phase to phase. This is given by the outer loop of
Alg. 1. The inner loop will boost the minimal relative density by

increasing x in the window p of the minimal relative density. Since
each tile j has a density upper bound s(j), we will only increase
x(j) satisfying x(j)/α < s(j). All such tiles are collected in Q.
The price of increasing unit density of window p by tile j is given
by price(j, p) = c(j)/A(p, j). Obviously, we should increase more
on tiles with lower prices. However, since we have upper bounds on
tiles, the price should be weighted by αs(j)−x(j)

εx(j)
. Denoting by η the

minimal weighted price among all tile in Q(p), each x(j) in Q(p)
will be increased by a factor of εη/price(j, p). With such an update
rule, tiles with lower prices will be rewarded with larger factors,
benefiting P (x)/α.

The iterations will continue till P (x)/α is within ε-optimal or,
equivalently, P (x) ≥ θ with a properly chosen θ. It should be noticed
that during iterations x/α is always a feasible solution. Therefore,
the best solution will be kept for the final answer.

C. Algorithm Analysis

We are going to show that the algorithm described in the previous
subsection approximates the optimal solution within a constant factor.
Due to space limitation, we will only be able to give a qualitative
analysis of the algorithm.

The approximation algorithm simultaneously solves the Min-Fill
CLP and its dual LP. The dual solution is used in proving the
approximation guarantee of the algorithm. The dual of the Min-Fill
CLP is:

maximize D(y, z) = bT y − sT z

subject to Ay − z ≤ c
y ≥ 0
z ≥ 0

(6)

where y, z are both variables of the dual problem.
According to the duality theory, the strong duality holds for

linear programs. Our approximation algorithm obtains exactly fea-
sible solutions x and y, z to both primal and dual problems with
P (x)/D(y, z) ≤ 1 + ε. This means that we will get both feasible
solutions and the solution is ε-optimal from the exact solution.

The algorithm maintains dual variables (y, z) during α-phases. The
increase of P (x) each time by the increase of the primal variable
x is balanced in D(y, z) by the increase of the dual variable y.
However, if the variable x(j) has already reached its upper bound,
the dual variable z(j) will be increased by a proper amount, so that
the increases of both dual variables y(j) and z(j) cancel each other
and make D(y, z) unchanged. This update procedure guarantees that
the ratio of P (x) and D(y, z) is within a 1 + ε factor, so that the
ε-optimality of the algorithm can be proved via LP duality theory.
The whole update procedure of the dual variables is shown as follows

y(p) = y(p) + η
for j /∈ Q(p) do

z(j) = z(j) + ηA(p, j)
end for

(7)

The above segment of instructions could be put between line (12)
and line (13) of Alg. 1. Since they are not necessary in finding the
optimal solution to the Min-Fill problem, they are omitted in the
implementation.

If Q(p) = ∅ during the iteration, the algorithm will get stuck.
However, it also means that the primal problem is infeasible. That
is because if the problem is feasible, then As ≥ b. Thus in each
iteration the following inequality will hold

b(p)α >
Pm
j=1A(p, j)x(j) ≥

P
j /∈Q(p)A(p, j)x(j)

≥ α
P
j /∈Q(p) s(j)A(p, j),

(8)

where m is the number of tiles, which equals to (nr
w

)2. Therefore,
we have

b(p) >
X

j /∈Q(p)

A(p, j)s(j),

which implies that the problem is infeasible if Q(p) = ∅.
In practice, if we find Q(p) = ∅ in the execution, we know that

the density lower bound L cannot be achieved even when all the
available area in window p is filled. We can thus fill all the tiles
in window p, and reduce the problem size by resetting all the other
bounds as b(i)−

P
j:A(p,j)>0A(i, j)s(j).

Theorem 3: The FPTAS for Dummy Fill in Alg. 1 finds a (1+ω)-
approximation solution for the Min-Fill CLP in O(ε−2m log(mC))
iterations by choosing

δ = ((C(1 + ε))1−εm)−1/ε

ε < min(0.15, ω/4)

θ = 1

where
C =

||c||∞
minj:c(j)>0 c(j)

and m = (nr
w

)2 is the number of tiles.
The detailed proof of the above theorem can be found in [5], [4].

IV. A NEW GREEDY ITERATIVE APPROACH

In this section, a new greedy iterative method will be developed
based on the approximation algorithm in the previous section. The
new heuristic method builds on the concept of window density
increase of the approximation algorithm. The main difference of
two algorithms is that the greedy method abandons the α-phases
procedure, making it more efficient and simpler to implement. The
greedy iterative method is described in Alg. 2.

Similar to the approximation algorithm, in each iteration, it picks
the most underfilled window, and inserts dummy features into the tiles
in that window. In more detail, the method maintains three sets T , W
and Q(p). A tile will be put in T if and only if either it belongs to a
window which has already achieved the density upper bound U , or
all its available area has been filled. In each iteration, the algorithm
only increases the density of tiles in Q(p), which collects all the
tiles of window p that does not belong to set T . Set W is used to
ensure the method contains no infinite loop. Initially, all windows are
collected in W . If Q(p) = ∅ during the iteration, which means the
density of the window p cannot be improved any more, then window
p will be removed from set W .

If the user decides to apply a pre-defined dummy fill pattern to
the layout, the final CLP solution may need to be rounded so that
an integer number of dummy fills can be filled. The new greedy
method can easily handle this rounding issue by applying randomized
rounding [12] during each iteration, and its final solution is still close
to the optimal. Note that in the implementation of the method, the
rounding step should ensure that at least one single fill pattern be
filled.

Compared with the previous Monte Carlo and Greedy methods [2],
which either insert a single filling geometry or insert the maximal
possible amount during each iteration, the new greedy method uses
the weighed price concept of the approximation algorithm to decide
the actual filled amount in each tile, making it closer to optimal, since
the dynamic information of the layout is considered and used in each
insertion, instead of a static and brute-force insertion.

V. EXPERIMENTAL RESULTS

We have implemented both the fast approximation scheme and the
greedy algorithm in C++. All simulations given in this section were

Algorithm 2 The New Greedy Iterative Method for Dummy Fill
Input: window matrix A, density bounds L and U , cost factor c, tile
bound slack, precision ε
Output: filling amount x

1: Initialize x = 0, T = ∅, put all windows in W
find window p with the minimum density in W

2: while ρw(p) < L do
3: if tile j ∈ window p and tile j /∈ T then
4: put j in set Q(p)
5: end if
6: if Q(p) = ∅ then
7: remove p from W
8: else
9: compute min weighted density price η among Q(p)

10: for j ∈ Q(p) do
11: γ = η/price(j, p)
12: δ = rounding(εγx(j))
13: x(j) = x(j) + δ
14: if x(j) ≥ slack(j) then
15: put the tile j in set T
16: end if
17: end for
18: end if
19: for i ∈ {1, . . . ,m} do
20: if ρw(i) ≥ U then
21: put all the tiles in window i in set T
22: end if
23: end for
24: find the window p with the minimum density in W
25: end while

return x

performed on a Unix workstation with 3.0 GHz processor and 2 GB
memory. For comparison, we use the GNU Linear Programming Kit
as our standard LP solver.

To test the performance of the proposed methods, we use both
randomly generated layout cases and a real design case. For the
randomly generated layout, similar to the procedure described in [14],
we assume the maximal signal metal density is 50% in each tile, and
use a random number uniformly distributed between 0 and 0.5 to
represent the original tile density before filling. Further we assume
that the dummy fills are square blocks separated by required spacing,
and the maximal dummy fill density is also assumed to be 50%. So
the density slack in each tile can be calculated as

slack(i) = 0.5×max(0, 1− x0(i)− slack reduction). (9)

As discussed before, when calculating the slack areas, the foundry
design rules or other considerations such as the coupling capacitance
constrains [15] have to be satisfied. This makes the allowable areas
smaller than the empty areas. We model this by using a parameter
slack reduction that reduces the allowable area density. In the fol-
lowing experiments, slack reduction is a random number between 0
and 0.2.

Throughout the experiments, for minimizing the total amount of
dummy fill, we set each element of the cost factor c to 1. We also
adopt the filter function used in [13] to calculate the density of each
window:

f(x, y) = c0exp(c1(x
2 + y2)c2), (10)

where c0 = 0.1, c1 = −0.1 and c2 = 1.

A. Approximation Precision

In order to test the approximation precision of the approximation
algorithm with respect to the parameter ε, we compare the solution
of our algorithm with the solution of the LP method. In the test
case, we assume the layout size n = 800µm, the window size
w = 100µm, the step number r = 5, and the lower and upper density
bounds are 50% and 80%, respectively. We solve the fractional CLP
problem to get a fair comparison with the optimal LP solution.
Here, two approximation ratios are defined for comparison. The first
approximation ratio is used to compare the total inserted amount of
dummy fill of these two methods, and it is defined as:

fill ratio = abs(CLP fills− LP fills)/LP fills, (11)

where abs() is the absolute value function, and CLP fills and LP fills
represent the obtained total inserted amount of the CLP and LP
approaches, respectively. The second one is used to compare the
window density distribution, and is defined as:

std ratio = abs(CLP std− LP std)/noFill std, (12)

where CLP std, LP std and noFill std represent the standard devi-
ations of the window density distributions of the CLP solution, the
LP solution, and the original layout, respectively.

Fig. 2 shows these approximation ratios with respect to the
parameter ε for the test case. It is clear that the accuracy of the

0.05 0.1 0.15 0.2 0.25 0.3
0

0.01

0.02

0.03

fil
l r

at
io

0.05 0.1 0.15 0.2 0.25 0.3
0

0.05

0.1

0.15

eps

st
d

ra
tio

std ratio

fill ratio

Fig. 2. The approximation ratios for different values of ε.

approximation algorithm is very high. For the total inserted amount,
when ε = 0.3, the fill ratio is only 2.5%. As for the window density
distribution, it is important to note that smaller ε leads to smaller
window density variation, and the solution of our method is very
close to the optimal LP solution when ε is small.

Fig. 3 illustrates the ratio of the primal solution P (x) and the dual
solution D(y, z) of our approximation algorithm for the test case.
The approximation bound 1 + 4ε is also drawn for comparison. It is
important to note that the ratio of the primal and dual solutions is
theoretically guaranteed to be no greater than 1 + 4ε. In practice, it
is much smaller as is shown in Fig. 3. This clearly demonstrates the
effectiveness of our approximation algorithm.

0 0.1 0.2 0.3 0.4 0.51

1.5

2

2.5

3

eps

Th
e

ra
tio

 o
f P

(x
) a

nd
 D

(y
, z

)

P(x)/D(y, z)
1+4eps

Fig. 3. The ratio of the primal and dual solutions.

B. Scalability

The fast speed is the significant advantage of our approximation
method over the standard LP method. In the test cases, we keep
w and r fixed as 100µm and 5, while the layout size n changes
from 600µm to 1.6mm. The CPU time comparison of these two
methods is shown in Fig. 4. The horizontal coordinate is the number
of unknowns, which is equal to (nr

w
)2. The values of ε used in this

experiment are 0.1, 0.2 and 0.3. The scalability of our approximation
algorithm is clearly demonstrated in Fig. 4.

0 1000 2000 3000 4000 5000 6000 70000

1000

2000

3000

4000

5000

6000

7000

8000

Number of unknowns

Ru
nt

im
e

(s
)

LP method
eps = 0.1
eps = 0.2
eps = 0.3

Fig. 4. The runtime comparison of our approximation method with LP
method.

C. Rounding Issue

In this section, we use pre-defined squared dummy patterns to test
the performance of our methods. The size of the dummy blocks used
in this experiment is 0.5µm× 0.5µm.

The first experiment in this section is intended to make a compari-
son between the new FPTAS algorithm and the new greedy algorithm.
We keep w and r fixed as 100µm and 5, while the layout size n
changes from 200µm to 1000µm. Speedup of the greedy method
is computed by comparing to the runtime of the FPTAS algorithm,
which is illustrated in Fig. 5. The values of ε used in this experiment
are 0.1, 0.25 and 0.5. It can be seen that the greedy algorithm is more
efficient than the approximation algorithm in practice, especially with
smaller ε. Furthermore, there are only slight solution degradations in
both total inserted amount and window density distribution for the
greedy method compared to the FPTAS algorithm. The approximation
ratios (fill ratio and std ratio) are no more than 5% for the test cases.

0 500 1000 1500 2000 25000

10

20

30

40

50

Number of unknowns

Sp
ee

du
p

eps = 0.1
eps = 0.25
eps = 0.5

Fig. 5. The speedup of the greedy algorithm compared to the approximation
algorithm.

In the second experiment, a comparison of our greedy algorithm
with our implementation of the Monte-Carlo method [1] is conducted
and reported in Table I. “MaxDens” is the maximum density of all
the windows. “#Dummy” shows the number of inserted dummy fills.
In the Monte-Carlo method, the priority of a tile p is chosen to be
proportional to U−MaxDens(p), where MaxDens(p) is the maximum
density over windows containing the tile p. In each iteration of the

TABLE I
COMPARISON OF OUR GREEDY METHOD WITH MONTE-CARLO APPROACH

Monte-Carlo Greedy
Test case (n/w/r) MaxDens MinDens #Dummy Time(s) MaxDens MinDens #Dummy Time(s)

800/200/4 0.5000 0.4434 951186 44.01 0.4946 0.4720 950365 0.71
1000/100/5 0.5000 0.4437 969389 154.82 0.4954 0.4719 947426 15.32
800/100/5 0.5000 0.4388 594805 79.37 0.4946 0.4701 574469 9.45
600/100/5 0.5000 0.4536 341082 39.77 0.4992 0.4773 337867 5.23
400/50/5 0.5000 0.4399 149358 20.10 0.4952 0.4705 145084 6.38
Average 0.5000 0.4439 601164 67.62 0.4958 0.4724 591040 7.42

Monte-Carlo method, a single filling geometry is inserted into a tile.
The approximation parameter ε used in the greedy method is 0.1.

It should be noted that there are certain differences between the
objectives of our methods and the Monte-Carlo method [1]. In the
Monte-Carlo method, the window density upper bound is the input
of the algorithm, and it tries to maximize the window density lower
bound. Our methods, however, with the given density lower bounds,
try to minimize the total number of dummy fills. In order to make
a fair comparison, we use the medium value of the window density
solution of the Monte-Carlo method as the density lower bound input
to our greedy method.

We can observe that our greedy method performs better than the
Monte-Carlo method under all known metrics. Fig. 6 shows the
window density solutions of our greedy method and the Monte-Carlo
method for one of the test cases. Our method achieved roughly 50%
reduction on the density variation.

0.44 0.46 0.48 0.50

50

100

150

Window density

Nu
m

be
r o

f w
in

do
ws

(a) The solution of the Monte-Carlo
method.

0.44 0.46 0.48 0.50

50

100

150

Window density

Nu
m

be
r o

f w
in

do
ws

(b) The solution of the greedy method.

Fig. 6. Comparison of the window density distributions.

D. Test on Real Layout Design

We also perform experiments on a real design case. The layout
size is 854µm×243µm, and it has 202238 rectangles. We duplicate
the layout 3 times, and assume the window size is 100µm and step
size r = 5. So there are totally 1849 variables. It takes the LP solver
375 seconds to get the optimal solution, while our approximation
algorithm with ε = 0.25 only takes 3 seconds. The standard deviation
of the window density distribution of the original layout is 0.0567.
After filling by our approximation algorithm, it is reduced to 0.0065.

VI. CONCLUSIONS

In this paper, we present the first covering linear program for-
mulation for the dummy fill problem with Min-Fill objective, and
propose a probably good and efficient algorithm based on the recent
fast approximation scheme [4]. The efficiency and the scalability of
the algorithm are clearly demonstrated in the experimental results.
Moreover, based on the approximation algorithm, a new greedy
iterative method is proposed. Simulation results show that our greedy
method outperforms the Monte-Carlo method [1] both in performance
and runtime. We are currently developing multicore parallel dummy
fill algorithms based on the approximation scheme.

ACKNOWLEDGMENTS

This research is supported partially by NSFC research project
60676018 and 60806013, China National Basic Research Program
under the grant 2005CB321701, China National Major Science and
Technology special project 2008ZX01035-001-06 during the 11th
five-year plan period, the doctoral program foundation of Ministry of
Education of China under 200802460068, the International Science
and Technology Cooperation program foundation of Shanghai under
08510700100, the program for Outstanding Academic Leader of
Shanghai, and NSF under CCF-0238484 and CCF-0811270.

REFERENCES

[1] Y. Chen, A. B. Kahng, G. Robins, and A. Zelikovsky. Monte-Carlo
algorithms for layout density control. In Proceedings of ASP-DAC, pages
523–528, 2000.

[2] Y. Chen, A. B. Kahng, G. Robins, and A. Zelikovsky. Practical iterated
fill synthesis for CMP uniformity. In Proceedings of ACM/IEEE Design
Automation Conference, pages 671–674, 2000.

[3] Y. Chen, A. B. Kahng, G. Robins, and A. Zelikovsky. Area fill synthesis
for uniform layout density. IEEE Trans. on CAD, 21(10):1132–1147,
2002.

[4] L. Fleischer. A fast approximation scheme for fractional covering
problems with variable upper bounds. In Proceedings of ACM-SIAM
symposium on Discrete algorithms, pages 1001–1010, 2004.

[5] N. Garg and J. Könemann. Faster and simpler algorithms for multicom-
modity flow and other fractinal packing problems. In Proceedings of
IEEE Symposium on Foundations of Computer Science, pages 300–309,
1998.

[6] T. E. Gbondo-Tugbawa. Chip-Scale Modeling of Pattern Dependencies
in Copper Chemical Mechanical Polishing Processes. PhD thesis,
Massachusetts Institute of Technology, 2002.

[7] A. Kahng, G. Robins, A. Singh, and A. Zelikovsky. Filling algorithms
and analyses for layout density control. IEEE Trans. on CAD, 18(4):445–
462, 1999.

[8] A. B. Kahng and K. Samadi. CMP fill synthesis: A survey of recent
studies. IEEE Trans. on CAD, 27(1):3–19, 2008.

[9] S. Lakshminarayanan, P. J. Wright, and J. Pallinti. Electrical character-
ization of the copper CMP process and derivation of metal layout rules.
IEEE Trans. on Semiconductor Manufacturing, 16(4):668–676, 2003.

[10] M. Mukherjee and K. Chakraborty. A randomized greedy method for
rectangular-pattern fill problems. IEEE Trans. on CAD, 27(8):1376–
1384, 2008.

[11] D. O. Ouma. Modeling of Chemical Mechanical Polishing for Dielectric
Planarization. PhD thesis, Massachusetts Institute of Technology, 1998.

[12] P. Raghavan and C. D. Thompson. Randomized rounding: A technique
for provably good algorithms and algorithmic proofs. Combinatorica,
7(4):365–374, 1978.

[13] R. Tian, D. F. Wong, and R. Boone. Model-based dummy feature place-
ment for oxide chemical mechanical polishing manufacturability. In
Proceedings of ACM/IEEE Design Automation Conference, pages 667–
670, 2000.

[14] X. Wang, C. C. Chiang, J. Kawa, and Q. Su. A min-variance iterative
method for fast smart dummy feature density assignment in chemical-
mechanical polishing. In Proceedings of ISQED, pages 258–263, 2005.

[15] H. Xiang, L. Deng, R. Puri, K.-Y. Chao, and M. D. F. Wong. Fast
dummy-fill density analysis with coupling constraints. IEEE Trans. on
CAD, 27(4):633–642, 2008.

