Multicore Parallel Min-Cost Flow Algorithm for CAD
Applications

Yinghai Lu!, Hai Zhou?!, Li Shang?, Xuan Zeng'*
!State Key Lab of ASIC & System, Microelectronics Dept., Fudan University, China
2EECS, Northwestern University, U.S.A., 3ECEE, University of Colorado, Boulder, U.S.A.

Abstract—Computational complexity has been the primary challenge
of many VLSI CAD applications. The emerging multicore and many-
core microprocessors have the potential to offer scalable performance
improvement. How to explore the multicore resources to speed up
CAD applications is thus a natural question but also a huge challenge
for CAD researchers. Indeed, decades of work on general-purpose
compilation approaches that automatically extracts parallelism from a
sequential program has shown limited success. Past work has shown that
programming model and algorithm design methods have a great influence
on usable parallelism. In this paper, we propose a methodology to explore
concurrency via nondeterministic transactional algorithm design, and
to program them on multicore processors for CAD applications. We
apply the proposed methodology to the min-cost flow problem which has
been identified as the key problem in many design optimizations, from
wire-length optimization in detailed placement to timing-constrained
voltage assignment. A concurrent algorithm and its implementation on
multicore processors for min-cost flow have been developed based on the
methodology. Experiments on voltage island generation in floorplanning
demonstrated its efficiency and scalable speedup over different number
of cores.

Categories and Subject Descriptors:

J.6 [Computer-Aided Engineering]: Computer-Aided Design

D.1.3 [Programming Techniques]: Concurrent Programming — Paral-
lel programming

General Terms: Algorithms, Performance

Keywords: Min-cost flow, Multicore, Parallel programming

I. INTRODUCTION

VLSI computer-aided design (CAD) software for multi-billion
transistor IC design has become increasingly complex and requires
more and more computation resources. This challenge can potentially
be mitigated by emerging multicore and manycore systems. Since
2004, multicore microprocessor has become the main engine of
mainstream servers and personal computers [6], [7]. Nowadays, it is
rare to see uni-core processors even in laptop computers, and servers
often come with eight cores on one or two CPUs. Therefore, it is
natural to hope that manycores available in modern computers may be
effectively utilized to speed up CAD programs. However, numerous
unsuccessful past attempts have shown that, programming model has
great influence on usable parallelism; without exploring concurrency
in algorithm design, it is impossible to achieve reasonable speedup
in multicore or manycore systems.

Recently, multicore parallel CAD has drawn significant attention
in the design automation field [2], [S], [21], [30]. Various existing
techniques to explore program concurrency have been borrowed for
parallel CAD programming.

Automated parallelization is a compilation approach that extracts
parallelism from a sequential program. It has been extensively investi-

*Corresponding author. E-mail: xzeng@fudan.edu.cn

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

DAC 2009, July 26 - 31, 2009, San Francisco, California, USA
Copyright 2009 ACM ACM 978-1-60558-497-3 -6/08/0006 ...$5.00.

gated for many years, but has shown limited success [26]. The general
consensus in the community is that a program’s automatically-
exploitable concurrency is generally fixed by the programming or the
programmer’s way of thinking. Conventional sequential programming
heavily limits a program’s usable concurrency.

Message passing approaches such as MPI [24] explicitly imple-
ment a computation by multiple processes that work in separate
memory spaces and synchronize via passing messages. It is easy to
understand. However, the programming model is at a low abstraction
level, closer to the physical platform. Similar to assembly language
programming, it requires the programmer to think in physical details
and the (even more difficult) concurrent execution of processes.
Furthermore, such a program needs to be redesigned for different
generations of many-core processors.

Threading (or multithreading) implements a computation using
multiple threads that share a common memory space and can be
executed concurrently. Thread synchronizations are most commonly
achieved by locking. However, coarse-grain locking does not perform
well, while fine-grain locking is error-prone. Common problems in
fine-grain locking include deadlock and the inability to compose
program fragments that are correct in isolation [9]. In addition, it
is not known how a programmer can come up with a multithreaded
program with correctness guarantee.

Transactional memory is a shared memory model proposed by
Herlihy et al. [10]. Instead of locking a set of memory elements before
accessing them, a program using transactional memory marks some
blocks of instructions transactions. A transaction is a state change
that happens atomically. A runtime implementation of transactional
memory, either via software or hardware, may speculatively execute
many transactions in different threads. If there is no conflict among
these transactions, concurrency is effectively explored. Otherwise,
only one of the conflicting transactions is permitted to take effect
and the others are aborted.

In this paper, we identify the nondeterministic transactional pro-
gramming model (as in UNITY [3] and TLA+ [16]) as the most
effective algorithm design approach for exploring concurrency. There
is a systematic algorithm design methodology for such a model that
is natural for problem solving and constructs an algorithm together
with its correctness proof. More importantly, the correctness of the
algorithm allows nondeterminacy in execution order of the com-
mands. Two such commands can be executed concurrently if there
is no conflict. We believe that the nondeterministic atomic command
model is perhaps the closest to concurrency while still manageable
in our brain. We also advocate a design principle to create many
small local commands for concurrency exploration. Philosophically,
program parallelization is a trade-off between communication and
load balancing. Optimizing both is often possible, if we create many
short actions with nondeterministic order. Starting with such an
algorithm, we also develop an approach to programming it in such
a way that we only need to program and compile it once to run on
machines with different cores. We believe such a feature is important
to achieve scalable performance speedup on multicore architectures
which will double the core number in each generation.

To test and demonstrate such a multicore CAD programming
method, we select the min-cost network flow problem and develop
a multicore parallel program for it. There are tens of different CAD

problems that can be formulated as min-cost flow problem or solved
via min-cost flow as the key subroutine. These include voltage
assignment [20], gate sizing [28], clock skew optimization [18],
retiming [29], floorplan area minimization [19], placement wire
minimization [27], etc. In general, many CAD problems need to
minimize a weighted summation of element costs under the timing
constraint in terms of the longest path delay or the maximal delay-to-
register ratio on the cycles. Such a problem is very close in structure
to the dual problem of the min-cost flow, as will be explained in
Section II. There was theoretical study of parallel algorithms for
min-cost flow problem [22]. However, practical multicore parallel
program is still needed.

One of the most recent applications of the min-cost flow technique
to CAD is the voltage assignment in voltage island floorplanning [20],
[17], [12]. Different supply voltages need to be assigned to different
blocks to minimize the total power consumption under the constraint
that the longest delay is upper bounded. Such a problem can be
formulated as the dual problem of the convex-cost network flow,
which is then translated into a min-cost flow problem [20]. We apply
our multicore parallel program to the voltage island floorplanning
problem and demonstrate the effectiveness and scalability of our
approach.

The contributions of the paper include a nondeterministic transac-
tional algorithm design method for exploring concurrency, a system-
atic approach to program such an algorithm for multicore platforms,
their application in developing an efficient multicore program for the
min-cost flow problem, and the application of the program to speed
up voltage island floorplanning. Furthermore, such an approach is
applicable to other algorithmic problems in CAD.

The rest of the paper is organized as follows. In Section II, the
voltage island assignment problem is formulated as the dual of
min-cost flow problem. A nondeterministic transactional algorithm
for min-cost flow problem is developed in Section III, and the
general methodology for mapping such a transactional algorithm to
parallel program on a multicore platform is described in IV. Speedup
improvement techniques for solving the voltage assignment problem
on multicore is introduced in V. The effectiveness of the proposed
methodology is demonstrated through experiments in Section VI.
Finally, the paper is concluded in Section VII.

II. PROBLEM FORMULATION

Many CAD problems, especially timing-constrained design opti-
mization problems, center around minimizing implementation cost
under various timing constraints. When signal arrival time in the
design is considered, and the implementation cost of an element is
a function of its delay, such a problem can usually be formulated as
the following mathematical program.

Min Z cost;;(d(i, 7))
(i,4)EE
st V(i,7) € E:p(i) +d(i, j) < p(j) M

where the decision variables are p (arrival time) and d (element
delay). The function cost;;(d) computes the element cost to achieve
a delay of d. It is a non-increasing function, and is usually convex,
meaning that speeding up an element is more difficult at higher speed
zone.

Recently, voltage island generation has become an important CAD
problem because of the thermal issues in modern VLSI designs [20].
Multiple different supply voltages will be applied to different blocks
to minimize the power consumption while satisfying the timing
constraints. It is also desirable that blocks with the same supply
voltages be placed together in order to minimize the power/ground
network. The central problem in voltage island generation is the
timing-constrained voltage assignment problem which can be

formulated as follows.

Min Z power;;(v(i, 7))
(i,)€E
st V(i,j) € B:p(i) +dij(v(i,) <p() @)
VieV:0<pi)<¢ 3)
Y(i,7) € E :v(i,j) € Voltage 4)

where v is the supply voltage, and both the delay d and the power
consumption power are its functions. When v is treated as (inverse)
function of d, power can be represented as a function of d; the
above formulation becomes very close to our general formulation.
The only exceptions are the bound constraints on the arrival time p
and the discrete voltage requirements in the last two formulas. The
bound constraints can be subsumed into the difference inequalities
with an introduced ground node. The idea is to treat the lower bound
as p(O) +0 < p(z) and the upper bound as p(i) — ¢ < p(O), where
p(O) for the ground node O is always 0. The discrete requirement
will be first relaxed to get a continuous solution, which will then be
rounded by a heuristic.

The continuous timing-constrained voltage assignment problem
and the general formulation as discussed above can be translated into
the following formulation, which is the dual of the min-cost network

flow problem.
> i, 5)d(i, 5)

(i,4)€B
st V(i,j) € E:p(i) +d(i,j) —w(i,j) <p(j) ()

Its dual, the min-cost flow problem, is given as follows.

Mazx

Min Y w(i,f)f(i.4)
(i,7)€EE

st Y(i,§) € E:0< f(i,5) < eli,)) ©)
Viev: Y [l =Y fGk O

(i,j)€EE

The Karush-Kuhn-Tucker condition [25] for both the primal and
dual problems is the same and given as follows.

(7,k)EE

PO 2 V(,5) € E:0< f(i,5) < (4,) ®

PL 2 WjeV: Y fai)= > Gk ©)
(i,J)EE (G,k)EE

P2 = V(ij) € E:(f(i,j) <c(i,j) = p(i) —w(i,j) < p(7))

A(f(i,5) > 0 = p(i) —w(i, j) = p(5)) 10

They are necessary and sufficient conditions for both the primal and
the dual problems. Any correct algorithm need to satisfy them as its
post-conditions, which must be true at the end of the algorithm.

IT1I. NONDETERMINISTIC TRANSACTIONAL ALGORITHM DESIGN
FOR CONCURRENCY

We propose to use a nondeterministic transactional program-
ming method to explore concurrency in algorithm design. Such a
method can be traced back to Dijkstra’s guarded commands [4],
which had been later developed into UNITY [3]. In UNITY, every
algorithm is composed of an initialization followed by a loop of
guarded commands. No order is imposed on the commands. When
the condition (i.e., guard) is valid for a command, it can be selected
for execution. The correctness of the algorithm does not depend on
the execution order of the commands, but depends on the atomic
execution of each command. Lamport further demonstrated in his
TLA [16] that such a model can be used to naturally specify any
system including reactive systems.

We believe nondeterministic transactional programming is suitable
for multicore algorithm design, based on the following reasons.

First, thinking and reasoning about arbitrary asynchronous concur-
rent actions are difficult for human brains, since the possibilities
are exponential. Fortunately, reasoning on isolated actions without
restricting their ordering is within our capabilities, thanks to the
concept of invariant and mathematical induction. Second, there is
a systematic algorithm design method for this model that employs
assertional proof techniques [23], [15] to guarantee correctness, as
the fruit of many years’ research on programming theory. Finally,
high performance can be achieved by concurrently executing many
actions, as long as conflicts are rare, which is common in practice and
has been confirmed by transactional memory research [10]. Therefore,
one principle we use to explore concurrency in algorithm design is
to produce as many small actions as possible.

We will now develop an algorithm for the min-cost flow prob-
lem using the nondeterministic transactional programming method
to explore concurrency. The post-condition of the algorithm is
PO A P1 A P2 as defined in the previous section. An important
design decision in the method is to select a predicate within the
post-condition as the invariant and use the remaining as the loop
goal. Here we simply select PO as the invariant which can be easily
satisfied by an initialization f := 0.

When P1 is not true, there must be at least two nodes whose in-
flows are not equal to their out-flows. The node excess is defined

as
XG)= D G- Y fGR).
(i,j)€E (4,k)EE

A node with positive excess is defined to be active. Under a given
f, the residual edges F(f) are defined as the edges where an extra
flow can be added. Decreasing a flow on an edge is equal to adding
the flow on the reverse direction. Formally,

E(f) = {(i,)|G,4) € EA f(i,j) < (i, §)}
U{(4,9)|(4,5) € EA f(i,5) > 0}.

The residual capacity c¢ (4, j) of an residual edge (7, j) is defined as
c(i,j) — f(4,4) if itis in E (i.e., forward edge) or f(j,4) if it is not
(i.e., backward edge). For an active node ¢, we want to push flows
from ¢ over residual edges to its neighbors. But such an operation
may introduce a residual edge in the reverse direction. We define the
reduced cost of an edge (i,7) as

.o A P . .
w (4, 7) = w(i, j) — p(i) + p(j).
With the definitions, the post-condition P2 can be simplified as
P2=V(i,j) € E(f) : w’(i,j) > 0.

To satisfy P1 while not to violate P2, we only push flow over (i,)
with w?(4,7) < 0, which is called an admissible edge, giving the
first guarded command in the algorithm (Figure 1). When there is no
admissible edge from an active i, we will relabel it by increasing p(7)
by €/2, giving the second command. When P2 is not true, there will
be a residual edge (4, 5) with w” (i, j) < —e. We can simply remove
such an edge by filling its capacity, giving the third command.

Now a tricky problem is how to decide the potential changing step €
in the second command. A larger step will render more valid residual
edges for pushing flows out of ¢, but may give more residual edges
violating P2. As a trade-off, we can gradually reduce € until € <
1/|V|, giving the fourth command. In summary, the whole algorithm
is given in Figure 1, where

P2(e) £Y(i,j) € E(f) : p(i) — w(i, j) < p(j) + .

It is actually Goldberg’s min-cost flow algorithm, and its correctness
and complexity are given in the following theorem. Such an algorithm
exposes much concurrency since it has 2|E| 4+ |[V| + 1 actions.

Theorem 1: Goldberg’s algorithm in Figure 1 is correct
under nondeterministic atomic execution of the guarded
commands. The number of iterations is upper bounded by

O(IV | Ellog([V | max ;. jye [w(i, j)]).

f7p76 = 0707max(i,j)€E |’U}(Z,j)‘
do {PO}
3(¢,5) € E(f) : X (i) > 0A —e < wP(i,5) <0
— push(i, j)
FeV:X(E)>0AV(i,7) € BE(f):wP(i,j) >0
— p(i) == p(i) +¢/2
3(i,5) € B(f) : w(i, j) < —e
PI1AP2(e)Ne>1/|V| —e:=¢/2
od {POAPLAP2(e) Ne< 1/|V|}

Fig. 1. Nondeterministic transactional algorithm for min-cost flow.

IV. MULTICORE PROGRAMMING OF NONDETERMINISTIC
TRANSACTIONAL ALGORITHM

Even though a nondeterministic transactional algorithm can be
naturally designed and formally proved correct, as demonstrated
in the previous section, no current existing programming platform
supports it. In this section, we will leverage existing mechanism and
develop a systematic approach for mapping such an algorithm to
a multithreading program for multicore platforms. An outstanding
feature of the approach is that the program only needs to be developed
once and can then take advantage of different number of cores in a
platform.

A. General Methodology

It is tempting to create a thread for each guarded command
in the transactional algorithm; the many number of threads will
be automatically scheduled by the OS to available cores, and the
atomicity can be enforced with simple locking or transactional
memory. However, since the OS has no knowledge of the operations
in the threads, it might preempt a thread doing useful thing by a
busy-waiting one. Even worse, a thread could be preempted in the
middle of a (atomic) transaction, increasing the chance of conflict or
abortion, not to mention the overhead of scheduling and managing the
threads. Another plausible approach is to have one thread take care
of a group of guarded commands. For example, four threads may be
created for the four groups of commands in Goldberg’s algorithm in
Figure 1. However, due to instance-dependent dynamics of execution,
the number of iterations for each command is unknown and could
change dramatically, making load balance hard to achieve, if not
impossible. The same is true for static task partitioning based on
data (for example, on V or E in Figure 1).

After careful examination of many plausible ideas, we propose the
following general method to implement a nondeterministic transac-
tional algorithm on a multicore platform: Each core will have all
the code and be able to execute every guarded command; which
command is executed will depend on which data are available and
controlled by each core. The data (or their tokens) will be moved
dynamically among the cores. Because of the universality of the
cores, no data need to be moved if not for the purpose of load
balancing. Data affinity is thus preserved.

We leverage the mechanism of multithreading to create a thread for
each core. Such a thread is created at the beginning of the program
and will last till the end of the program. It is ideal for each thread
to keep running on a core during the program execution. From now
on, core and thread will be used interchangeably. In order to manage
the control of data (or tasks) among the threads, a queue will be
maintained as a globally shared data structure. Each thread will fetch
control tokens from the queue when it finishes its current work, and
will release tokens to the queue based on its schedule. Dynamic
load balancing is thus attainable through self-discipline. Since the
execution of a command will change the state thus may render more
valid guards, all threads need to be synchronized in order to detect
that all guards are false thus the program can be terminated.

Applying the general method, we can map Goldberg’s algorithm
in Figure 1 into a multithreaded program with the identical thread
program in Figure 2. We maintain a global queue @ to hold the

nodes whose excess flow or reduced cost condition will enable the
corresponding push/relabel commands. A thread repeatedly tries to
fetch a bunch of nodes into its local input buffer g;,. Then, it exams
the nodes in ¢;,, and their associated edges one by one to see whether
they enable the first three groups of commands in Figure 1. If a
guarded command is enabled, the thread carries out the corresponding
action such as push, relabel or fill on the node or edge. The actions,
as are parenthesized in Figure 2, should be executed as an atomic
transaction, in order to guarantee the correctness of the program. The
atomicity can be achieved by using conventional mutual exclusion
or modern transactional memory [10]. An action such as push will
probably introduce more valid guarded commands because pushing
a flow toward a node may make it active. The newly active nodes
are stored in the local output buffer go.: and are later on flushed to
Q.
If a thread fails to fetch any active nodes from), which means that
Q is currently empty, it becomes idle. Then it tries to synchronize
with other threads in order to know their status. The detail of global
synchronization (Sync on idle in Figure 2) will be discussed in the
next subsection. When all the threads are idle, the fourth guarded
command is enabled, and ¢ is reduced. With reduced e, the first three
group of guarded commands may becomes valid again. To enable
their examination, all nodes will be activated and added to). Each
thread will repeat the process until ¢ < 1/|V/|. Then all threads
terminate and the program completes.

while € > 1/|V]
if get some active nodes V,
for: eV,
for (i, j) € B(f)
G (0" (i, 5) < —€) £(i,5) = £(i,5) + 1 (5,5)
elseif (w”(4,j) < 0) push(s,j)}
end for
if (X(2) > 0) {relabel(i)}
end for
elseif Sync on idle
€:=¢/2
activate V'
end while

Fig. 2. The program for each core/thread.

Our implementation of transactional algorithm on multicore ma-
chine overcomes many disadvantages of other possible approaches
discussed above. Firstly, with long-living threads, the overhead of
thread creation and termination is largely reduced. Second, since each
thread is bound with a core, it is much less likely to be preempted
during execution, reducing overhead and half-complete transactions.
Furthermore, instead of being idle, each thread (core) is constantly
making progress or checking for new valid guarded commands.
All threads terminate almost simultaneously when there are no
valid guarded commands. The flexibility of task-based programming
facilitates load balance tuning of our program using the technique
introduced later.

B. Global Synchronization

According to previous discussions, the fourth command in Figure 1
become valid only when all the other three guarded commands are
not enabled. However, a thread cannot check the validation of the
fourth command by simply checking the status of global queue
to see whether it is empty, because some other threads may still
be processing and their operations may re-enable some guarded
commands. In the context of Goldberg’s algorithm, a push operation
will add flow to the target node and may make it active. So besides the
status of global queue, we need to introduce a global synchronization
mechanism that tells each thread the status of all other threads. In out
implementation, a modified version of termination detection barrier
(TDBarrier) in [11] is used to do the job.

A TDBarrier contains a counter, implemented by an atomic integer
register, and listens to the status of each thread. Before all the threads
are launched, a TDBarrier is created and the counter is initialized to
be zero. Each time a thread sets itself as idle, it decreases the counter
by one; and each time it sets itself as active, it increases the counter
by one. When a thread asks TDBarrier about the global thread status,
the TDBarrier returns true if the counter equals to zero, indicating
that all the threads are idle. Otherwise, the TDBarrier returns false,
informing the querying thread that there are still other active threads
and it should keep on checking the global queue for potential newly-
added active nodes.

Note that the TDBarrier only does half of the job since each thread
has to register its status to the TDBarrier at a proper phase of its
own computation. To achieve correct synchronization, each thread
registers itself as active before fetching the active nodes from (), and
as idle if the fetching fails.

Theorem 2 ([11]): The global synchronization mechanism with
termination detection barrier described above guarantees correct
synchronization of the threads in Figure 2.

C. Load Balancing

We have introduced a local input buffer ¢;, and a local output
buffer go.+ to hold active nodes (valid commands) in order to reduce
the access to global Q. Moreover, the local buffers can be dynamically
adjusted to balance the workload among different threads [1]. Due
to the heterogeneity of the flow network, it is not unusual that other
threads have exhausted all the active nodes in () and are waiting
for one busy thread to flush its output buffer to the global queue
so that they can fetch again. In this case, it makes sense for the
busy thread to shrink its g+ and flushes new active nodes to global
queue. Conversely, if other threads are all busy and there are plenty
of active nodes in @, the size of gou: should grow back in order
to reduce the frequency of accessing (). The local input buffers are
adjusted accordingly. Let by be the original buffer size for thread k,
L be the size of global queue, nactive and Niotqr be the number of
active and total threads, the dynamic load balance adjustment works
as follows:

if Nactive < Ntotar X 0.75

b = by /2
else if Nactive T L/bk Z Ntotal
bk = bk X 2

The above adjustment is carried out by each thread after processing
every 100 valid guarded commands.

V. PERFORMANCE IMPROVEMENTS

We have implemented the multicore min-cost flow solver using the
techniques described in the last section, and tested it on the general
graph benches [14]. The speedup in terms of the number of cores
is satisfactory. However, when our algorithm is applied to solving
the voltage island assignment problem, the speedup is not so good,
especially in the 4-core (4C) case. Detailed examination shows that
this speedup problem is due to the existence of the ground node,
which is introduced to enforce bound constraints (Inequality 3) on
the nodes. Figure 3(a) shows the extreme imbalance between the
ground node and other nodes in terms of their connecting edges and
the number of operations executed on them. Because of the high
connectivity and large operation numbers of the ground node, it is
highly possible that multiple cores compete for the the ground node at
the same time to execute their own commands, which causes heavy
contention and slows down our multicore program. Increasing the
number of working cores makes the contention problem even worse.

Knowing the cause, we propose a two-fold ground network solution
to address the heavy contention problem of our multicore min-
cost flow solver on the voltage island assignment problem. First,
as described in Section II, the function of the ground node is to

Single ground node
10° Single Gound Node aG\:;u;(gd’;Z(sW:T
#edges = 1200 ! :

10‘%
0 500 1000 1500 2000 2500 3000 4 500 1000 1500 2000 2500
node index node index

Ground Network

#relabels

500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500
node index

node index

(a) Single ground
Performance profiling of case n300.

(b) Ground network
Fig. 3.

assert a bound on the arrival time of each block. However, it is not
necessary to add such constraint to every node since a bound on the
primary inputs/outputs plus the constraint in Inequality 2 guarantees
that every internal block satisfies the timing constraint. So we can
prune redundant edges between the ground node and the internal
nodes, which reduces the number of edges and operations on the
ground node.

To further balance the constraint graph, we apply a node splitting
technique. The idea is to apportion the connections of IO nodes to
the original single ground node to a group of ground nodes. The
single ground node is first split into several ground nodes, with the
connections of primary IO nodes evenly assigned to them. Then a
new ground node is used to bridge all the split nodes to form a
ground network with infinite capacity and zero cost. This process
is demonstrated in Figure 4. Every ground node in the constructed
ground network has only a few edges. When the number of primary
nodes is large, we extend this idea and build a tree-structured ground
network.

Single Ground

o[/] O o[/] o

O:Pl @: PO @: ground node

Fig. 4. Node splitting. Edge parameter: [lower cap., upper cap., cost].

Ground Network

[0M®].
Mo .

[OMO

After applying redundant edge pruning and node splitting, the
structure and operation statistics on the constraint graph is shown in
Figure 3(b). The reduction in the number of nodes is due to redundant
edge pruning. When converting the convex cost flow problem into the
min-cost problem, we introduce one edge for each piecewise linear
part of the cost function and attach an auxiliary node with it. When
the number of edges is reduced, so is the number of nodes. The
circled part in Figure 3(b) corresponds to the ground network. As we
can see, the number of edges and relabel operations on these ground
nodes are well balanced with the other nodes in the graph. Using the
proposed techniques, the heavy contention problem is solved with
the balanced constraint flow graph and the multicore min-cost flow
solver regains its performance on the voltage assignment problems
as shown in Section VI.

VI. EXPERIMENT RESULTS

We have implemented the multicore min-cost flow solver in C++
programming language with Intel Threading Building Blocks [13].
All the experiments are carried out on a Linux server with two dual-
core 3.0GHz CPUs and 2GB RAM, which supports up to 4-core
parallelism. The multicore program is compiled once and runs with
a user-specified number of cores.

First, we demonstrate the effectiveness of performance improve-
ment techniques described in Section V. Using the 4-core (4C) min-
cost flow solver, we compare the average speedup and contention

of the program in solving voltage assignment problems with single
ground node and the proposed ground network technique. The test
cases are GSRC benchmarks with additional delay-power information
provide by the authors of [20] and there are four legal working
voltages for each block. Because of nondeterminacy in runtime, the
program is run for 10 times on every test case and the results are
reported in Table I. The speedup rate is computed against the single-
core program. The number of contentions is defined as the average
number of data conflicts seen in a core when it commits guarded
commands. Table I shows, especially for the large benchmarks,
significant reduction in contention and increased speedup of the
proposed multicore solver when the single ground node is replaced
by the ground network.

TABLE I
EFFECTIVENESS OF THE GROUND NETWORK

Cases Single Ground Ground Network
#Contentions | 4C Speedup | #Contentions [4C Speedup

nl0 0.00 1.25 0.00 0.93
n30 58.50 1.03 4.50 1.25
n50 196.75 1.25 5.00 1.42
n100 908.75 1.31 51.75 1.46
n200 6111.00 1.07 94.75 2.26
n300 8809.00 1.02 116.50 1.90

In the second experiment, we modified the MSV-driven floorplan-
ner developed in [20] by replacing the voltage assignment module
with the proposed multicore solver. Using the same set of GSRC
benchmarks, we compare the modified floorplanner with the original
floorplanner. The original voltage assignment module is implemented
using CS2 [8], a well-developed sequential min-cost flow solver.
Performance comparison between the modified floorplanner and the
original one (denoted as [20]) is given in Table II. All the results
denoted as Ours are averaged over the 1-core (1C), 2-core (2C) and
4-core (4C) versions of our floorplanner. It can be seen that our results
are very close to those in [20] on all design parameters. Especially,
the power cost (P), which is the objective of the voltage assignment
problem, gives almost the same results as in [20]. The tiny differences
of the power cost in cases n50 to n300 are caused by the difference
of total number of level shifters inserted by the two floorplanners,
which consume a small amount of power themselves. With the same
number of level shifters inserted, as in the cases of n10 and n30, the
power cost is the same, witnessing the correctness of our multicore
solver.

The running time comparisons are shown in Table III. The speedup
of our program is computed against [20]. For smaller benchmark
cases such as nl0 to n50, the speedup is small, which is not
unexpected due to the implementation overhead such as thread
scheduling and maintenance of the global queue. The multi-core
programs begin to gain significant speedup against original CS2 on
the larger cases such as n100 to n300. Up to 2X speedup of our 4C
program against [20] is achieved. We also notice the speed leap from
2C to 4C program, which shows the power of multicore programming
when the number of cores increases and the parallel overhead evens
out.

TABLE III
COMPARISON OF RUNTIME AND SPEEDUP WITH PREVIOUS WORK

Run Time Speedup Rate

Cases
[20]] 1C [2C [4C IC] 2C T 4C
nl0 2.28 2.82 2.44 2.57 0.81 0.93 T 0.89
n30 18.90 19.06 15.42 15.27 0.99 1.23 1.24
n50 55.42 70.55 55.76 49.93 0.78 | 0.99 1.11
n100 223.14 230.12 172.48 150.40 0.96 1.29 1.48
n200 960.31 976.86 657.21 470.01 0.98 1.46 | 2.04
n300 2032.86 | 2281.80 1625.99 1087.52 | 0.89 1.25 1.87

In the last experiment, we further inspect the scalability of our
multicore min-cost flow solver on even larger cases, which are
constructed by combining and duplicating the smaller ones. We fix
the position of the blocks and run voltage assignment once instead of
running the whole floorplanning because it is too time consuming to
be finished by the original single-threaded program. More specifically,

TABLE II
COMPARISON OF PERFORMANCE WITH PREVIOUS WORK

Max Power Power Cost Power Saving Power Network LS Dead Space Wire
Cases (MaxP) with LS (P) (%) Resource Number (%) Length
[20] T Ours [20]] Ours [20] T Ours [20] T Ours [20] T Ours [20] T Ours
nl0 216841 167012 167012 T 2298 | 22.98 1643 1734 9 9 6.01 6.9 6818 6866
n30 205650 142717 142717 30.6 30.6 2323 2582 37 37 13.4 13.48 32102 29636
n50 195146 145911 143562 | 2523 | 26.43 | 2297 2784 48 43 16.59 16.42 67611 68003
n100 180028 126209 126442 | 29.89 | 29.77 | 2257 2669 106 104 14.62 | 1511 126918 127447
n200 177647 133081 134091 25.09 | 2452 | 2543 2680 165 169 16.59 16.86 | 228890 | 231119
n300 273527 171134 | 170232 | 37.43 | 37.76 | 2971 3096 146 145 24.67 | 23.85 | 254085 | 264317
Average - 147677 147342 28 28 2339 2590 85 84 15.31 15.43 119404 | 121231
Difference - 1 0.99 1.00 1.01 1 1.11 1 0.99 1 1.01 1 1.02
TABLE IV
SPEEDUP RATES OF MULTICORE PROGRAMS ON LARGER CASES
Cases Constraint Graph IC Time (s) Speedup Rate of 2C Speedup Rate of 4C
#Nodes | #Arcs AVG. [MIN. T MAX. | AVG. | MIN. | MAX.
n200 1344 2329 0.25 1.61 1.40 1.81 2.26 1.99 2.96
n300 2209 3834 0.48 1.44 1.17 1.84 1.90 1.31 2.44
n600 4414 7662 1.15 1.46 1.26 1.60 2.24 1.87 2.64
n800 5376 9322 2.08 1.73 1.52 1.99 2.78 2.32 3.31
n900 6619 11490 1.99 1.44 1.15 1.97 2.15 1.65 2.51
n1000 6720 11653 2.45 1.76 1.51 2.02 2.92 2.36 3.30
n1200 8824 15318 3.00 1.53 1.27 1.95 2.54 2.17 341
n1400 9410 16319 4.20 1.83 1.67 2.03 3.16 2.86 3.44
n1600 10752 18646 4.17 1.57 1.47 1.69 2.72 2.30 3.05
Average - - - 1.59 1.38 1.88 2.52 2.09 3.01
the original voltage assignment program from [20] cannot deal with [5] W. Dong, P. Li, and X. Ye. Wavepipe: Parallel transient simulation of

cases larger than n600 due to the overflow problem. Thus, we use our
single-core program (1C) as the baseline of comparison. Experiments
are repeated for 10 times for each case and the average, minimum
and maximum speedup rates of the 2C and 4C programs against the
1C are reported in Table IV. An average speedup rate of 2.52 and
a maximum of 3.01 are achieved, showing smooth scalability of our
multicore min-cost flow solver when handling large problems.

VII. CONCLUSION AND FUTURE WORK

It is desperately needed for computationally intensive CAD al-
gorithms to speed up with the increasing number of cores in each
generation of microprocessors, since their operating frequencies are
largely flattened. We proposed in this paper to use nondetermin-
istic transactional programming method to explore concurrency in
algorithm design, and developed an approach to program such an
algorithm on multicore platforms. By applying the method to the min-
cost flow problem, one of the most important problems in CAD with
tens of applications, we developed a multicore parallel program for
the problem. The efficiency and the smooth scalability of the program
with increasing number of cores are demonstrated in the important
voltage assignment and island floorplanning problem. The design
process also convinced us that such a method can be deployed to other
problems. We are currently developing other multicore algorithms for
CAD applications.

ACKNOWLEDGMENT

This research is supported partially by NSFC research project
60676018 and 60806013, China National Basic Research Program under
the grant 2005CB321701, China National Major Science and Technology
special project 20082X01035-001-06 during the 11th five-year plan
period, the doctoral program foundation of Ministry of Education of
China under 200802460068, the International Science and Technology
Cooperation program foundation of Shanghai under 08510700100, the
program for Outstanding Academic Leader of Shanghai, NSF under CNS-
0613967, and SRC under 2007-HJ-1593.

REFERENCES

[1] R. J. Anderson and J. C. Setubal. On the parallel implementation of
goldberg’s maximum flow algorithm. In SPAA, 1992.

[2] B. Catanzaro, K. Keutzer, and B. Y. Su. Parallelizing CAD: A timely
research agenda for EDA. In DAC, 2008.

[3] K. M. Chandy and J. Misra. Parallel Program Design: A Foundation.
Addison-Wesley Publishing Company, 1988.

[4] E. W. Dijkstra. Guarded commands, nondeterminacy, and the formal
derivation of programs. Commun. ACM, 8:453-457, 1975.

[6]
[7]

[8]
[9]

[10]
(11]
[12]
[13]
[14]

[15]
[16]

(17]

[18]
[19]
[20]
(21]
[22]
(23]
[24]

[25]
[26]

[27]
(28]
[29]
[30]

analog and digital circuits on multi-core shared-memory machines. In
DAC, 2008.

I. F. et al. Design of the Power6™microprocessor. In ISSCC, 2007.
U. G. et al. An 8-core 64-thread 64b power-efficient SPARC SoC. In
ISSCC, 2007.

A. V. Goldberg. An efficient implementation of a scaling minimum-cost
flow algorithm. Journal of Algorithms, 22:1-29, 1997.

M. Herlihy. The multicore revolution. In FSTTCS 2007: Foundations
of Software Technology and Theoretical Computer Science, 27th Inter-
national Conference, pages 1-8, 2007.

M. Herlihy and J. E. B. Moss. Transactional memory: Architectural
support for lock-free data structures. In ISCA, pages 289-300, 1993.
M. Herlihy and N. Shavit. The Art of Multiprocessor Programming.
Morgan Kaufmann, 2008.

H.Wu, D. Wong, and I.-M. Liu. Timing-constrained and voltage-island-
aware voltage assignment. In DAC, 2006.

Intel. Threading building blocks. http://www.threadingbuildingblocks
.org/.

D. Klingman, A. Napier, and J. Stutz. Netgen: A program for generating
large scale capacitated assignment, transportation, and minimum cost
flow network problems. Management Science, 20(5):814-821, 1974.

L. Lamport. Proving the correctness of multiprocess programs. [IEEE
Transactions on Software Engineering, SE-3(2):125-143, Mar. 1977.
L. Lamport. Specifying Systems: The TLA+ Language and Tools
for Hardware and Software Engineers. Addison-Wesley Publishing
Company, 2002.

W.-P. Lee, H.-Y. Liu, and Y.-W. Chang. An ILP algorithm for post-
floorplanning voltage-island generation considering power network plan-
ning. In /ICCAD, 2007.

C. Lin and H. Zhou. Clock skew scheduling with delay padding for
prescribed skew domains. In ASPDAC, 2007.

C. Lin, H. Zhou, and C. Chu. A revisit to floorplan optimization by
lagrangian relaxation. In /CCAD, 2006.

Q.Maand E. E. Y. Young. Network flow-based power optimization under
timing constraints in MSV-driven floorplanning. In /CCAD, 2008.

T. Mattson and M. Wrinn. Parallel programming: Can we please get it
right this time? In DAC, 2008.

J. B. Orlin and C. Stein. Parallel algorithms for the assignment and
minimum-cost flow problems.

S. Owicki and D. Gries. Verifying properties of parallel programs: An
axiomatic approach. Commun. ACM, 19:279-285, May 1976.

P. S. Pacheco. Parallel Programming with MPI. Morgan Kaufmann,
1997.

R. L. Rardin. Optimization in Operations Research. Prentice Hall, 1998.
J. P. Shen and M. H. Lipasti. Modern Processor Design: Fundamentals
of Superscalar Processors. McGraw-Hill Professional, 2005.

X.-P. Tang, R.-Q. Tian, and D. F. Wong. Minimizing wire length in
floorplanning. IEEE Trans. on CAD, 25(9):1744-1753, 2006.

J. Wang, D. Das, and H. Zhou. Gate sizing by lagrangian relaxation
revisited. In /ICCAD, 2007.

J. Wang and H. Zhou. An efficient incremental algorithm for min-area
retiming. In DAC, 2008.

X.-J. Ye, W. Dong, P. Li, and S. Nassif. MAPS: multi-algorithm parallel
circuit simulation. In /CCAD, 2008.

