
FPGA-Targeted High-Level Binding Algorithm for Power
and Area Reduction with Glitch-Estimation

ABSTRACT
Glitches (i.e. spurious signal transitions) and multiplexers
are major sources of dynamic power consumption in mod-
ern FPGAs. In this paper we present an FPGA-targeted,
glitch-aware, high-level binding algorithm for power, area,
and multiplexer reduction. Our binding algorithm employs
a glitch-aware dynamic power estimation technique derived
from the FPGA technology mapper in [5]. High-level bind-
ing results are converted to VHDL, and synthesized with Al-
tera’s Quartus II software, targeting the Cyclone II FPGA
architecture. Power characteristics are evaluated with the
Altera PowerPlay Power Analyzer. The binding results of
our algorithm are compared to LOPASS, a state-of-the-art
low-power high-level synthesis algorithm for FPGAs. Exper-
imental results show that our algorithm, on average, reduces
toggle rate by 22% and area by 9%, resulting in a decrease
in dynamic power consumption of 19%. To the best of our
knowledge this is the first high-level binding algorithm tar-
geting FPGAs that considers glitch power.

Categories and Subject Descriptors
B.6.3 [Hardware]: Design Aids—optimization

General Terms
Algorithms, Design, Measurement, Performance

Keywords
FPGA, high-level synthesis, glitch power, power reduction

1. INTRODUCTION
FPGAs hold significant promise as a fast-to-market re-

placement for ASICs in many applications. As the price
of single-purpose chip development skyrockets in each suc-
cessive technology iteration, the relative price of the FPGA
architecture becomes more and more attractive. This, cou-
pled with the many other advantages of FPGAs, such as
rapid prototyping and field reprogrammability, makes them

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC ’09 San Francisco, California USA
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

a more and more viable alternative in many current ASIC
applications. Unfortunately, the advantages of FPGAs are
offset in many cases by high power consumption and large
area. In fact, it has been shown that FPGAs can be up to
40 times larger and consume up to 12 times more dynamic
power than the equivalent ASIC implementation [12].

In FPGAs there are two sources of power consumption:
static power and dynamic power. Static power is power con-
sumed when the circuit is either active or idle. Unless power
gating and other transistor-level techniques are built in the
chip, static power cannot be easily reduced. Dynamic power
on the other hand, is power consumed when a signal transi-
tion occurs at gate outputs, and, being a characteristic of the
design implemented on the FPGA, is more easily mitigated.
Signal transitions make up the switching activity (SA) of a
circuit, and can be classified into two types: functional tran-
sitions, and glitches. Functional transitions are the signal
transitions necessary to perform the required logic function,
while glitches are spurious transitions: unnecessary signal
transitions that occur due to unbalanced path delays at the
inputs of a gate.

Dynamic power consumption can be estimated as Pd =
0.5 × SA × C × V 2

dd × f , where SA is the switching activ-
ity of the circuit, C is the effective capacitance, Vdd is the
supply voltage, and f is the operating frequency. Reduc-
ing any of these factors will reduce the dynamic power of a
circuit. In Altera’s Stratix II FPGAs in the 90nm process
technology, dynamic power is the dominant type of power
consumed. Further, it has been shown that glitches can
account for 60% of the dynamic power consumed, and in
some data-flow intensive designs glitches can account for 4-
5 times more transitions than functional transitions [17]. In
this work, we focus on reducing SA (through a glitch-aware
SA estimator) and C (by reducing multiplexer area), for
power minimization.

High-level synthesis–the mapping of a behavioral descrip-
tion of a circuit to RTL–is a well studied topic consisting
of three steps: scheduling, allocation, and binding (or mod-
ule selection). Scheduling determines when an operation will
take place; allocation determines how many of each resource
is needed; and binding binds operations, or variables to the
resources.

In this paper we present an FPGA-targeted, glitch-aware,
high-level binding algorithm for power, area, and multi-
plexer reduction. Our binding algorithm is unique in that
it can connect to the gate-level implementation and employ
a glitch-aware dynamic power estimation to guide the syn-
thesis process. The dynamic power estimation is accom-

plished using a low-power FPGA technology mapper, [5],
which makes use of a switching activity estimation model
considering glitches that has been shown to be effective at
capturing glitch power. The Altera Cyclone II FPGA is used
as a testbed FPGA architecture in our experiments (due to
its support of a large number of I/O pins that can accommo-
date large benchmarks), and our binding results are verified
using Altera’s gate-level power estimator, Quartus II Power-
Play Analyzer. To the best of our knowledge this is the first
FPGA-targeted high-level binding algorithm that considers
glitch power.

The rest of this paper is organized as follows: In Section 2
we discuss related work. In Section 3 we present the problem
formulation. In Section 4 we describe the technique used for
switching activity estimation considering glitches. In Sec-
tion 5 we describe the binding algorithm, herein referred to
as HLPower, in detail. In Section 6 we present experimental
results. In Section 7 the paper is concluded.

2. RELATED WORK
Much effort has gone into evaluating and reducing dy-

namic power in FPGAs. Recent work has included im-
proved SA estimation tools and architectural changes to
reduce glitches [14]. Additionally, binding for ASICs is a
well-studied topic. [16] proved that the problem of resource
binding for multiplexer reduction is NP-complete. Work in
the area of low-power binding has included bipartite graph
formulation for multiplexer reduction [10], low-power regis-
ter binding through a network-flow formulation [1], simul-
taneous register and resource binding and scheduling algo-
rithms [8], generalized low-power binding formulated as an
ILP problem with heuristic speed-ups [9], early evaluation
of DFGs for low-power binding [13], among many others. [9]
provides a good overview of the previous work in low-power
binding.

Despite this previous work, low-power high-level synthe-
sis and binding for FPGAs is a relatively new area of re-
search. In [19], the switching activity characteristics of the
functional units were pre-characterized and used during low-
power synthesis targeting FPGAs. In [4] a low-power, si-
multaneous resource allocation and binding algorithm for
FPGAs was presented, and included a high-level power esti-
mator. In [3], the authors presented a simulated annealing-
based algorithm which carried out high-level synthesis sub-
tasks simultaneously, targeting FPGAs for low-power called
LOPASS. Their binding algorithm was initially using min-
imum weight bipartite matching, and then was enhanced
using a network flow approach presented in [2] that binds
all the resources simultaneously. We compare our own al-
gorithm to LOPASS and show that an iterative approach
enables greater power savings.

HLPower, the FPGA targeted, low-power binding algo-
rithm we present here, sets itself apart from previous work
in that it considers glitches in its power estimation, in addi-
tion to targeting area and multiplexer reduction. This allows
HLPower to target a major contribution to dynamic power
during high-level synthesis that has not been considered be-
fore. We think the main reason this has been missing is
because of the difficulty of estimating glitches during high-
level synthesis. We present a unique way to address this
problem in this paper.

3. PROBLEM FORMATION
The input to our binding algorithm is a scheduled CDFG,

a resource constraint, and a resource library. The problem to
be solved involves the allocation and assignment of registers
to variables, and functional units to operations. Efficient
sharing of functional units by operations, and registers by
variables, in order to reduce power and multiplexer usage,
are the challenges of binding. The binding problem can be
formulated as follows:

Given: A scheduled CDFG, a resource constraint, and a
resource library.

Tasks: Allocate and bind registers to variables, and allo-
cate and bind functional units to operations.

Objectives: Produce a valid binding solution while meet-
ing the resource constraint and optimizing the solution for
power and area on the targeted FPGA.

4. SWITCHING ACTIVITY ESTIMATION
As dynamic power estimation is a central driver of our

binding algorithm, the way this is accomplished is described
in this section. Dynamic power is estimated in the form of
a switching activity model based on probabilistic techniques
developed originally in [15], extended in [6], and further de-
veloped to target FPGA mapping and include glitches in
[5].

In [15] the ideas of transition density (also referred to as
toggle rate or switching activity) and signal probability are
initially developed. The transition density of a logic signal is
defined as the average number of transitions per unit time,
while the signal probability is defined as the fraction of the
time that the logic signal is in the 1 state (i.e. the average
value of the logic signal over all time). An efficient tech-
nique is presented that allows for the calculation of the total
circuit switching activity by means of propagation of tran-
sition densities and signal probabilities from input nodes to
output nodes. For a node y with independent fanin nodes
x1, x2, . . . , xn, and given the transition density (switching
activity) s(xi) of each fanin node xi, the transition density
of node y, s(y) can be computed using the Boolean difference
(∂y/∂x) of y with respect to xi:

s(y) =

nX
i=1

P (
∂y

∂xi
)s(xi) (1)

where P (∂y/∂xi) is the signal probability of the Boolean
difference.

This technique was extended in [6] to take into account si-
multaneous switching, something that the technique in [15]
lacked. Let y be a Boolean expression, y(t) be its value at
time t, P (y) be the signal probability of y, and s(y) now be
the normalized switching activity of y. s(y) is the prob-
ability of y having different values at time t and t + T ,
where T is a unit time period, and is thus given by s(y) =

P (y(t)y(t + T)) + P (y(t)y(t + T)). Additionally, note that

P (y(t)y(t + T)) = P (y(t)y(t+T)). Thus, P (y(t)y(t + T)) =

P (y(t)y(t+T)) = 1/2s(y). Since P (y(t)) = P (y(t)y(t+T))+

P (y(t)y(t + T)), we find

s(y) = 2(P (y(t))− P (y(t)y(t + T))) (2)

And, as noted in [5], the term P (y(t)y(t + T)) can be calcu-
lated from the probabilities and switching activities of fanin
nodes of y using the procedure in [6].

Finally, the technique for switching activity estimation
was applied to FPGA technology mapping in [5]. The algo-
rithm in [5] reads in a netlist, and uses a cut-enumeration
technique [7] to select K-input cuts that will be mapped to
the FPGA (K-input look-up tables). Primary inputs are as-
sumed to have signal probabilities and switching activities
of 0.5. For each node, the signal probability of all of the
K-input feasible cuts of that node are computed using the
weighted averaging algorithm from [11]. When calculating
the switching activities for each cut, the widely accepted
unit delay model is assumed for the FPGA look-up tables.
This means that signal transitions are assumed to happen
only at discrete time units: 1, 2, . . . , D(C), where D(C) is
the depth of the cut. The transition that takes place at
time D(C) is considered the functional transition, while the
transitions that occur at the other time steps are considered
glitches. Switching activities are then calculated and propa-
gated through the cut according to Equation 2. For a given
cut, the effective switching activity is a summation of the
switching activities at each time step. An example of how
this is accomplished can be found in [5].

The best cuts, those with the lowest switching activi-
ties, are then chosen for implementation of the node in the
FPGA. Summing up the switching activities, sai, for all
of the selected cuts, 1, 2, . . . n, provides the total estimated
switching activity, SA, for the netlist:

SA =

nX
i=1

sai (3)

The total estimated switching activity, SA, is used in the
binding algorithm. This technique for switching activity es-
timation has the advantages over previous techniques of be-
ing mapping-aware and considering glitches.

5. BINDING ALGORITHM
The HLPower binding algorithm proceeds in two major

parts. First, registers are allocated and bound, and second,
functional units are allocated and bound. In this paper we
focus on the functional unit binding. The functional unit
binding proceeds in an iterative fashion until the resource
constraint is met, driven by the estimated dynamic power us-
age, and multiplexer sizes, of various operation-to-functional
unit bindings, as will be explained below. Algorithm 1 pro-
vides a summary of the HLPower binding algorithm.

5.1 Register Binding
Register binding is accomplished in a manner similar to

that described in [10], where variables are bound by solving
a weighted bipartite graph. An allocated set of registers is
determined by counting the number of variables present in
the control step with the largest number of variables with
overlapping lifetimes. This set of registers is allocated, and
a cluster of mutually unsharable variables (meaning the life-
times of these variables are overlapping) is bound at a time,
by way of a weighted bipartite graph, sorted in ascending
order according to their birth times.

5.2 Functional Unit Binding

5.2.1 Algorithm Overview
Functional unit binding iteratively constructs weighted bi-

partite graphs, finds a maximum matching, and combines

Algorithm 1 HLPower Binding Algorithm

1: Input: Scheduled CDFG, library, resource constraint
2: Output: Scheduled and bound CDFG
3:
4: precalc SA values for all FU & MUX combinations
5:
6: bind registers according to [10]
7: traverse CDFG, select nodes for set U
8: put remaining nodes in set V
9: while resource constraint is not met do

10: initialize bipartite graph G = (U, V, E)
11: for all edges in E do
12: calculate input MUX sizes (if nodes were combined)
13: look up SA value for particular FU & MUXs
14: calculate edge weight
15: end for
16: solve G for maximum weight
17: combine matched nodes & allocate functional units
18: end while

4+

6+

8+

5×

7×

3 ×

2 +

1 +
U

V

8+

7×
3,5

2,6 +

1,4

U

V

Iter 1

Iter 2

Final Binding

3,5,7

× ×
×

1,4,8

+ +

2,6

+ ++

+ +

× ×

Nodes:

+Operations: ×
Nodes:

+Operations: ×1 + 2 + 3 ×

6 + 7 × 8 +

4 + 5 ×

cstep1

cstep2

cstep3

CDFG Selected for U

Figure 1: An example of the functional unit binding.

nodes that are matched. Before the first iteration of the
functional unit binding, the scheduled CDFG is traversed,
and for each operation type, the control step with the largest
number of operations of that type is found. This gives a
lower bound on the possible resource constraint. These oper-
ations are selected to make up one set of vertices (or nodes),
U , in the bipartite graph. The second set of vertices, V ,
includes all of the other nodes. See Figure 1.

During functional unit binding, the nodes of the graph
are each considered an allocated functional unit. Initially,
as none of the operations have been bound to functional
units, every operation is considered to be bound to its own
functional unit, and each is represented by an individual
node of the graph. On subsequent iterations, each node
(functional unit) of the graph may contain more than one
operation. Edges (making up the set E) are created between
compatible nodes in the graph. Two nodes are compatible
if they meet the following two criteria:

1. They perform the same type of operation, e.g. are
both multiplications.

2. They do not contain any operations that have overlap-
ping lifetimes in the schedule.

Each edge of the graph represents a possible binding of
two sets of operations to the same functional unit. Edge
weights are then assigned as described in the next section.
This formulation is similar to binding that works with a
compatibility graph, but not all nodes will be bound in a
single iteration.

Figure 1 illustrates the bipartite graph formulation. In
iteration one, add operations 1 and 2, and mult operation
3 are selected for set U , because they come from the con-
trol steps of maximum density for their respective types in
the scheduled CDFG. (Note that, alternatively, any of the
mult operations could have been chosen, or add operations 6
and 8 could have been chosen.) Solid edges represent those
selected in the maximum weighted matching. Nodes are
combined, and in iteration two nodes are further combined.
In iteration three there is no longer any compatibility be-
tween the nodes, and the algorithm is completed. The final
allocation is 2 adders and 1 multiplier.

Theorem 1. A weighted bipartite graph G = (U, V, E),
representing the operations of a scheduled CDFG (as previ-
ously described), if iteratively generated, solved, and match-
ing nodes are combined, guarantees that the minimum pos-
sible resource constraints can be met.

Proof. Suppose on the contrary that the minimum re-
source constraint cannot be met. This would mean that
there exists a node in the set V that is incompatible with
all nodes in the set U . Since this incompatibility could not
be due to compatibility criterion 1 given above—the non-
existence of a compatible operation type (if, for example,
there was only one operation of a particular type in a CDFG,
then it would already lie in set U)—it must be due to cri-
terion 2—operations that have overlapping lifetimes. That
would imply that there were more operations in the incom-
patible operation’s control step than were in the control step
chosen initially for set U . This could not be the case due to
the selection criteria for set U .

Theorem 1 guarantees that, in the bipartite graph formu-
lation, the minimum resource constraint for the given sched-
uled CDFG can be met. The worst case runtime complexity
of the algorithm is O(|N |2 ∗ (|E| + |N |log|N |)), where |N |
is the total number of nodes in the CDFG. This is because
the number of bipartite graphs solved is, in the worst case,
linear with the number of nodes in the CDFG.

5.2.2 Edge Weight Calculation
For each of the edges in the graph, edge weights are cal-

culated as follows:

1. The sizes of the input multiplexers to the functional
unit to which the operations connected by the edge
would be bound (if the matching included the given
edge) are found. This is possible because the registers
have already been assigned, enabling the calculation
of the exact multiplexer sizes. This virtual binding
creates a partial datapath.

2. A gate-level netlist of the partial datapath (including
the functional unit and multiplexers) is generated in
.blif format [18]. This is accomplished by creating
a new .blif file with proper input and output ports,
importing existing instantiations of the multiplexers
and functional units, and making the necessary con-
nections. See Figure 2.

Nodes:

+Operations: ×
Nodes:

+Operations: ×

If combined × × × ×
×

i j
ei,j

× ×

mult

mux2 mux3

reg1

...

.search mux2.blif

.search mux3.blif

.search mult.blif

.model mult_2_3 ...

.inputs A0 A1 A2 ...

.outputs S0 S1 ...

.subckt mux2 A=A0 ...
.
.
.

.

.

.

To .blif(2)

(1)

(3)

Figure 2: Gate-level partial data-path netlist gener-
ation. Based on the register binding, and operations
assigned to the edge nodes (1), it is determined that
a 2-input and a 3-input MUX are needed (2). The
.blif netlist is then generated (3).

3. The switching activity is estimated for the gate-level
netlist (.blif), based on the technique described in Sec-
tion 4. This produces an estimate of the dynamic
power, including glitch power, which will be used to
estimate part of the cost of this particular binding of
operations to functional unit.

4. The weight on the edge is computed according to the
formula:

w(ei,j) = α× 1

SA
+(1−α)× 1

(muxDiff + 1)× β
(4)

where SA is the total estimated switching activity as
defined in Equation 3, α is a weighting coefficient, β is
a value used to adjust the size of the muxDiff factor
relative to SA, and muxDiff is defined as the abso-
lute difference in the sizes of the two multiplexers that
input to the functional unit.

Equation 4 uses the weighting coefficient α to balance the
contribution to the weight of two important factors: the
total estimated switching activity, or SA, and the difference
in size between the two multiplexers, or muxDiff .

SA provides a low-level consideration of the circuit. It ex-
plicitly estimates dynamic power usage (including glitches)
at the gate-level, taking into account the multiplexers in the
partial data-path. It also implicitly considers area through
the number of look-up tables required to implement the par-
tial data-path, because a larger area correlates with a higher
SA. muxDiff , on the other hand, provides a high-level con-
sideration of the circuit. It explicitly considers multiplexer
balancing, which would have a direct impact on glitch re-
duction, even if the SA estimation is not 100% accurate.
This combination of high-level multiplexer balancing, and
low-level SA estimation, work together to select the best
matches for power and area reduction in each iteration of
the binding algorithm. In our experiments we weight these
two factors equally.

As dynamic calculation of the switching activities for each
edge during the binding iterations can be time consuming, in
our experiments we precalculate the switching activities for
all combinations of multiplexers and functional units. This
is done by generating the gate-level netlists for the partial
data-path of each combination of functional unit and mul-
tiplexers, and running the SA estimation on each. The cal-
culated SA values are then stored in a text file. A hash

Table 1: Benchmark Profiles.
Bench- No. of No. of No. of No. of Total No.
marks PIs POs Adds Mults of Edges

chem 20 10 171 176 731
dir 8 8 84 64 314

honda 9 2 45 52 214
mcm 8 8 64 30 252
pr 8 8 26 16 134

steam 5 5 105 115 472
wang 8 8 26 22 134

table is then generated when HLPower is initially run by
reading in the precalculated values from the text file. This
allows fast look-up of the estimated SA value for a partic-
ular combination of input multiplexer sizes, and functional
unit. Experimental results show that this method provided
us with the same results as running the algorithm with dy-
namic SA estimation, but with a much shorter run time.

The iterative approach to functional unit binding allows
the multiplexer size to be better controlled than is possible
with single iteration approaches, such as with a network flow
algorithm. By iteratively building up the numbers of opera-
tions assigned to allocated functional units, the multiplexer
sizes, balance among multiplexers, and the contributions of
the multiplexers to dynamic power (including glitch power)
consumption can be carefully controlled and evaluated.

6. EXPERIMENTAL RESULTS

6.1 Experimental Setup
Our experiments are carried out on a 2.8 GHz Intel Pen-

tium 4 Linux machine, with 2GB of memory. A number of
data-intensive benchmarks are used. The benchmark CD-
FGs include several different DCT algorithms including pr,
wang, and dir, and several DSP programs including chem,
steam, mcm and honda. The benchmarks are profiled in
Table 1. Each node in the benchmarks is either an addi-
tion/subtraction or a multiplication.

We compare our binding algorithm, HLPower, to a state-
of-the-art low-power high-level synthesis algorithm for FP-
GAs, LOPASS [3], which can perform simultaneous schedul-
ing, allocation, and binding. We use a resource library
containing single-cycle resources, including a multiplier, an
adder, a register, and multiplexers. The benchmarks are first
run through LOPASS, and a binding solution is obtained.
Then they are run through HLPower with the same schedule,
register allocation, and resource constraints, to obtain the
HLPower binding solution. Table 2 summarizes the sched-
uled benchmark characteristics used for both the LOPASS
and the HLPower solutions.

The binding solutions, in CDFG format, are then con-
verted to RTL design in VHDL with a CDFG to VHDL
tool. To verify our results using a commercial tool, the de-
signs are put into Quartus II for RTL synthesis, placement
and routing, timing analysis, simulation, and power analysis.
This is done by first building a project on each benchmark’s
VHDL, setting the device family to Cyclone II, and selecting
the same device for each benchmark. We use the Quartus II
vector waveform file (.vwf) editor to generate 1000 random
input vectors for each benchmark. We also set the simulator
settings glitch filtering to never, max balancing dsp blocks to
0, wysiwyg remap to on, optimization technique to speed, and
synthesis effort to fast. These settings help to ensure that

Table 2: Resource Constraints, Scheduling Length,
and Number of Registers used for both LOPASS and
HLPower binding. Identical schedules and register
bindings were used by both LOPASS and HLPower.

Benchmarks Add Mult Cycle Reg HLPower
Runtime (s)

chem 9 7 39 70 812
dir 3 2 41 25 56

honda 4 4 18 13 14
mcm 4 2 27 54 16
pr 2 2 16 32 2

steam 7 6 28 39 189
wang 2 2 18 39 2

0

1

2

3

4

5

6

2 3 4 5 6 8 10 11
MUX Size

LOPASS

HLPower

Figure 3: Number of Multiplexers of each size for
benchmark pr.

the benchmarks for both LOPASS and HLPower are syn-
thesized in the same way without Quartus II optimizations
that would invalidate the power results produced by both al-
gorithms. The same .vwf file is used for both LOPASS and
HLPower. Then we run the command quartus sh –flow com-
pile (which runs the synthesis, placement and routing, and
timing analysis), quartus sim (which makes use of the .vwf
file, and generates a switching activity file, .saf), and quar-
tus pow (which makes use of the .saf file). The command
quartus pow runs PowerPlay Power Analyzer, and reports
the dynamic power consumption.

6.2 FPGA Area and Power Reduction Results
Table 3 summarizes the synthesis and power analysis re-

sults for both LOPASS and HLPower, for each of the bench-
marks. There was an average reduction in dynamic power
of 19.3%, and area (in the form of LUTs) of 9.1%. These
reductions came at the expense of 0.6% of the clock period,
on average.

Table 3 columns 5, 6, 10, and 11 show the multiplexer
reduction results. In the table, Largest MUX is the largest
multiplexer needed to implement the binding solution, while
MUX length is a measure of the total number of multiplex-
ers implemented, and is calculated by adding up the total
number of multiplexer inputs (sizes).

HLPower reduced the largest multiplexer size by an aver-
age of 2.6, and the length an average of 6.1%, over LOPASS.
Figure 3 shows the number of each size of multiplexer for pr.
In this example we can see that HLPower not only creates
fewer multiplexers, and multiplexers of smaller sizes (reduc-
ing area and power), but the multiplexers are more balanced,
with fewer single multiplexers of a particular size. This bal-
ance of multiplexers contributes to a power reduction by
balancing paths, reducing interconnect, and eliminating ex-
tra glitch transitions.

Table 3: Power, Clock Period, Number of LUTs, and Multiplexer Results for LOPASS and HLPower Bindings.
LOPASS/HLPower Change

Bench- Dynamic Clk Per. Largest MUX Dynamic Clk Per. LUTs Lrgst MUX
marks Power (mW) (ns) LUTs MUX Length Pow.(%) (%) (%) MUX Len.(%)

chem 1602.3/1468.6 26.0/27.5 9,806/9,613 26/23 672/637 -8.35 5.67 -1.97 -6 -5.2
dir 709.1/405.8 23.8/24.2 4,527/3,453 18/15 167/157 -42.78 2.04 -23.72 -3 -6.0

honda 658.7/534.1 23.5/23.2 3,352/3,057 15/13 165/162 -18.92 -1.40 -8.80 -2 -1.8
mcm 351.3/208.7 24.1/24.2 3,274/2,548 17/14 159/153 -40.60 0.38 -22.17 -3 -3.8
pr 232.7/192.9 20.9/21.7 1,714/1,732 11/8 70/57 -17.09 3.60 1.05 -3 -18.6

steam 729.6/690.6 24.4/23.6 5,121/4,469 19/22 429/321 -5.35 -3.32 -12.73 3 -25.2
wang 161.5/158.5 20.5/19.9 1,697/1,775 12/8 69/76 -1.85 -2.88 4.60 -4 10.1

Average -19.28 0.58 -9.11 -2.6 -7.2

0

100

200

300

400

wang pr dir honda mcm steam chem

A
ve

ra
ge

 T
og

gl
e

R
at

e
(m

ill
io

ns
 /

se
c)

LOPASS

HLPower

Average decrease: 21.9%

Figure 4: Average Toggle Rate.

Evidence for the decrease in glitches is given in Figure 4.
Average toggle rate is a number reported by Quartus II that
provides a measure of the total switching activity of the cir-
cuit. HLPower reduces the toggle rate for each benchmark,
averaging 21.9% overall. The combination of area savings
through multiplexer reduction, and reduced glitching (as ev-
idenced by the significant decrease in toggle rate), produces
an aggregate reduction in dynamic power, for a negligible
change in clock period.

7. CONCLUSIONS AND FUTURE WORK
In this paper we have presented a new high-level binding

algorithm for power and area reduction, targeting FPGAs.
The binding algorithm, HLPower, is based on weighted bi-
partite matching, and makes use of glitch power-aware, dy-
namic power estimation. Experimental results show that
HLPower successfully reduces the switching activity and area
of a design, producing a significant savings in dynamic power
consumption. Future work will include integrating HLPower
into a complete high-level synthesis algorithm that includes
scheduling and module selection, in addition to binding.

8. REFERENCES
[1] J.-M. Chang and M. Pedram. Register allocation and

binding for low power. DAC, 1995.

[2] D. Chen and J. Cong. Register binding and port
assignment for multiplexer optimization. ASP-DAC,
2004.

[3] D. Chen, J. Cong, and Y. Fan. Low-power high-level
synthesis for FPGA architectures. In ISLPED, 2003.

[4] D. Chen, J. Cong, Y. Fan, and Z. Zhang. High-level
power estimation and low-power design space
exploration for FPGAs. In ASP-DAC, 2007.

[5] L. Cheng, D. Chen, and M. D. F. Wong. GlitchMap:
an FPGA technology mapper for low power
considering glitches. In DAC, 2007.

[6] T.-L. Chou and K. Roy. Estimation of activity for
static and domino CMOS circuits considering signal
correlations and simultaneous switching. IEEE
Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 15(10):1257–1265, Oct 1996.

[7] J. Cong, C. Wu, and Y. Ding. Cut ranking and
pruning: enabling a general and efficient FPGA
mapping solution. In FPGA, 1999.

[8] A. Dasgupta and R. Karri. Simultaneous scheduling
and binding for power minimization during
microarchitecture synthesis. In ISLPED, 1995.

[9] A. Davoodi and A. Srivastava. Effective techniques for
the generalized low-power binding problem. ACM
Trans. Des. Autom. Electron. Syst., 11(1):52–69, 2006.

[10] C.-Y. Huang, Y.-S. Chen, Y.-L. Lin, and Y.-C. Hsu.
Data path allocation based on bipartite weighted
matching. DAC, 1990.

[11] B. Krishnamurthy and I. Tollis. Improved techniques
for estimating signal probabilities. IEEE Transactions
on Computers, 38(7):1041–1045, Jul 1989.

[12] I. Kuon and J. Rose. Measuring the gap between
FPGAs and ASICs. In FPGA, 2006.

[13] E. Kursun, A. Srivastava, S. O. Memik, and
M. Sarrafzadeh. Early evaluation techniques for low
power binding. In ISLPED, 2002.

[14] J. Lamoureux, G. G. Lemieux, and S. J. E. Wilton.
GlitchLess: an active glitch minimization technique
for FPGAs. In FPGA, 2007.

[15] F. Najm. Transition density: a new measure of
activity in digital circuits. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and
Systems, 12(2):310–323, Feb 1993.

[16] B. Pangrle. On the complexity of connectivity binding.
IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 10(11):1460–1465,
Nov 1991.

[17] A. Raghunathan, S. Dey, and N. Jha. Register transfer
level power optimization with emphasis on glitch
analysis and reduction. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and
Systems, 18(8):1114–1131, Aug 1999.

[18] E. Sentovich, et al. SIS: A system for sequential circuit
synthesis. Technical report, UCB/ERL Memorandum
M89/49, Department of EECS, University of
California, Berkeley, Nov 1992.

[19] F. Wolff, M. Knieser, D. Weyer, and C. Papachristou.
High-level low power FPGA design methodology.
NAECON, 2000.

