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ABSTRACT
In the paper, we propose and test an unsupervised approach for im-
age ranking. Prior solutions are based on image content and the
similarity graph connecting images. We generalize this idea by di-
rectly estimating the likelihood of each photo in a feature space. We
hypothesize the photos at the peaks of this distribution are the most
likely photos for any given category and therefore these images are
the most representative. Our approach is unsupervised and allows
for various feature modalities. We demonstrate the effectiveness
of our approach using both visual-content-based and tag-based fea-
tures. The experimental evaluation shows that the presented model
outperforms baseline approaches. Moreover, the performance of
our method will only get better with time as more images move on-
line and it is thus possible to build more detailed models based on
the approach presented here.

Categories and Subject Descriptors:
H.4 [Information Systems Applications]: Miscellaneous
General Terms: Algorithms

1. INTRODUCTION
With the growth of user-generated content on the web, we have

datasets of unprecedented size. Helping users find images in these
large databases is an important problem. However, without external
sources of information, such as links, ranking images via a search
engine is hard.

Given a query term, we want to find the most relevant images in
a large web-scale collection. The user enters a query term, much
as is done in a text search. We return the images that we judge are
most relevant. We solve this problem by using only the information
in the picture and any supplied metadata such as tags. For now
we only consider a single query term, but our approach is easily
extended to more than one term.
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Figure 1: Modern image collections are diverse. These images
show the range of images in FlickrTMlabeled butterfly.

Our approach is based on a simple hypothesis. There are billions
of photographs on the web (see Figure 1).1 We assume that the
most common images are the most relevant images for the query
term. Because many people captured very similar images, we be-
lieve these are the most interesting and relevant shots. For instance,
if there are many images of the Golden Gate Bridge from a similar
angle and under similar lighting conditions, we assume that these
pictures capture a very relevant shot. In other words, many people
agree that this is an interesting shot by virtue of the fact that many
photographers have put the same or similar photos into an online
collection. In essence, people are voting on their favorite images of
the query term by their pictures (i.e. camera clicks).

In our approach the most representative images are not only based
on the image content but also based on other sources of information
such as tags, date and time, location. For instance, if most people
tag a shot of the Colosseum with Italy and Rome, then we use this
common metadata agreement to improve our relevance calculation.

In order to determine the most likely image given a query term,
we learn a simple, probabilistic model using an unsupervised ap-
proach. We call our approach unsupervised because we do not
consider external factors such as web links, search click-through
results or other sources of user feedback. This model is then used
to find the images whose content and metadata give us the highest
probabilities.

1Images shown in this paper were published using the Cre-
ative Common License and their attribution is available at
http://research.yahoo.com/files/2009-004_hoerster.pdf.
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In contrast to previous work, we do not consider only certain
classes of images such as landmarks [17] or objects [1, 2]; we de-
scribe a general framework for all kinds of images such as objects,
places, events, etc. However, we exclude searches for images of a
particular person and for current events. We believe faces should be
solved differently, i.e. it may require face-recognition techniques,
because human perception is sensitive to faces. Current events are
not amenable to our approach because there is so little content —
the one best shot might be iconic because it was captured by only
one photographer.

In this paper, we demonstrate the effectiveness of our approach
by using two types of features for describing our images in the
database: visual features based on the image content; and seman-
tic features based on user-defined tags. In general, our model can
be used with any combination of features, perhaps from multiple
modalities.

Both image and text (or tag) data are noisy signals. Image fea-
tures are often designed to be invariant to common image changes,
but they will never be perfect. Therefore, we must accommodate
a wide range of image modifications. Similarly, user-supplied tags
associated with images are both good and bad. Users specify a tag
for a photo for many different reasons, thus giving us important, but
noisy, semantic information. The tags are good because they give
us information about semantic content that is hard for machines to
infer, but tags are noisy because their use is so capricious. A per-
son going to Tokyo might label all the photos from his trip with the
word Tokyo, even though some of the pictures show people eating,
or the inside of a meeting room. For this one person, these pic-
tures all represent the concept Tokyo. We extract good information
from these noisy signals by building statistical models from a large
number of images.

1.1 Contributions
Our work describes improvements to three areas of the science

of multimedia ranking: models, image features and text features.

• We propose a general model based on image probability and
show that it is an appropriate way to find highly relevant im-
ages. Moreover, our approach is based on feature densities
and thus it easily scales to databases with millions of im-
ages, especially compared to previous techniques that com-
pute pair-wise similarity.

• Our proposed model allows a wide range of features to de-
scribe the images. We demonstrate the effectiveness of our
model using two kinds of features, visual and textual features
based on tags. In contrast to most previous works where only
visual features are used, we get better image ranking when
adding textual features (tags) to our model.

• We use visual and textual features based on deep networks.
The visual features allow us to better describe highly vari-
able image categories compared to previous works based on
SIFT features, which mainly concentrate on landmark im-
ages. Also, our features are fast to compute due to their
feed-forward architecture and thus they are appropriate for
describing very large image collections.

The paper is organized as follows. We describe our probabilistic
model in Section 3 and the features used in our approach in Section
4. Section 5 gives implementation details. Our results are in Sec-
tion 6. But first we wish to describe previous work and show how
it fits into a more general framework.

2. RELATED WORK
There are a number of previous papers that address the issue of

finding iconic or most representative images from a collection of
photos. One approach builds a graph connecting similar images and
then uses either eigenvector similarity [14] or spectral clustering [4]
to find the images that are at the “center” of the graph. Similarity
in these approaches is computed on an item-by-item basis using
feature detectors such as SIFT.

Another technique builds clusters of images and then use ei-
ther intra-cluster similarity [17] or cluster centroids [1, 2] to find
the most representative images. Berg’s [2] work in particular ex-
tends the clustering idea by finding images that have a clear fore-
ground object and thus are more likely to represent “good” im-
ages. Works by Hsu describe pseudo-relevance feedback to im-
prove search ranking using both cluster-based similarity [11] and
graph-based similarity [12]. Our work takes a more direct approach
for ranking.

A number of works have studied the scene-summarization prob-
lem [26, 19, 29]. These works aim to find canonical images of (un-
changing) landmarks by matching features between images. The
University of Washington work [26], in particular, aims to discover
the different viewpoints by clustering the images and choosing the
best image in viewpoint space. Similarly to the work described
here, they build a probabilistic model of image distributions in all
possible dimensions.

We believe the unsupervised approach described in this paper is
a unifying metaphor for choosing most relevant images, and the
earlier (excellent) works are different approximations for the over-
arching model we present here. Both tightly coupled graphs of
photos and image-cluster centroids are found near the peaks in a
probability distribution. Moreover, the previous works mostly de-
termine their ranking based only on the image content and rarely
take other modalities into account. We demonstrate our approach
can be used with different kinds of features, visual features as well
as semantic features derived from tags.

There are also supervised approaches that aim to train a classifier
for ranking images. Such approaches need clean, labeled training
data and output the images with the highest classification score, i.e.
the ones furthest from the SVM margin [6, 25, 27]. Other systems
use feedback from users’ searches and then learn the results that
are most likely to be selected [15]. Our approach uses none of
this information — just the frequency of each type of image. In a
real system, one might initially use an unsupervised approach and
then augment it with supervised data, i.e. click data, as it becomes
available.

Our approach is similar to an idea proposed by Hua [13]. We
generalize her approach, apply it to multimedia, and show how it
works with real queries.

3. MODEL
We hypothesize that the most representative images are the most

likely images related to the query term. In order to determine the
most likely images related to a query term, we build a model for this
term. In our model, people are essentially voting on their favorite
images of Paris or purple kittens by the number of images they
upload and tag by those names, thus our approach can only work
when we have a large collection of images, all independently taken
my many different people.

To build the model, we start with a broad and all-inclusive set of
images that satisfies the query. In our implementation, we derive
this set of images automatically based on the tags associated with
the images. We simply use all images that have been tagged by
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their authors with the query term. We can enhance this approach
by using query-expansion techniqes. Note, our image set is derived
automatically, i.e. the image set contains a significant number of
noisy images not necessarily showing the desired image content
due to the subjectivity and ambuguity of tags. Besides these images
that are related to the query term, we have no additional data about
the query or which images are preferred.

Next, we assume that we find the most representative images by
looking for the peaks in a simple, probabilistic model of the image
set’s distribution. Thus, the model for images tagged with the query
term t is given by

P (Ij |t) = P (f1
j , f2

j , f3
j , ..., fn

j |t), (1)

where f i
j is the i-th feature that describes the content or something

about how the image Ij was collected. The simplicity of this equa-
tion belies the art involved in our approach.

In order to represent our image, we need to choose a set of fea-
tures, denoted by f1, ..., fn, that accurately reflect the available
images. Here we could use any type of feature, based on one
modality or based on several metadata cues as well as the image
content. Having defined our feature set, we need to build the model
that captures the distribution of the images related to the query term
in this feature space. Therefore, we learn the probabilities of our
model by estimating a non-parameteric density for all the different
modalities we measure from the (noisy) image set.

Having computed our model, we define the rank R of an im-
age Ij to be inversely proportional to the probability of the current
image Ij given the model for the query term t:

R ∝ 1/P (Ij |t). (2)

We can apply the model to all images in our database or we can
compute the rank only for a pre-filtered set of images likely show-
ing the desired content. In our system, we use the latter approach
and we only consider images for ranking that have the query term
associated as a tag. This is reasonable because in a large-scale im-
age collection because we are interested in obtaining high preci-
sion, i.e. the retrieved images should show highliy relevant con-
tent, whereas high recall, i.e. finding all relevant images, is not
important due to the large number of available images.

There is a dichotomy between the approach in this paper, based
on likelihood, and an approach based on classification, which is
often based on a calculation of the posterior probability. The two
expressions are related through Bayes rule. The posterior is equal
to

P (wi|x) = P (x|wi)P (wi)/P (x), (3)

where wi is one of the class labels, x is a (vector) representation
of the image, and P (·) is the probability of the class or an image
occurring with this feature value. The likelihood is written as

P (x|wi) = P (wi|x)P (x)/P (wi). (4)

These two quantities have peaks in different locations.
We illustrate the difference with a simple three-class example.

Figure 2 shows the total probability for the sum of three Gaussian
distributions, one for each class of data, separated by 120 degrees.
An ‘x’ marks the center of each distribution. The right side of Fig-
ure 2 shows the posterior probability distribution for class w1. The
overall shape is triangular, correctly indicating that in the region
between the two lines objects are most likely to come from class
w1. We again used an ‘x’ to mark the peak of the w1 likelihood
function. But an ‘*’ marks the point where the posterior probabil-
ity grows to 0.99. The posterior is maximum well to the right of
the likelihood peak. If you want to be sure that you have not made

Figure 2: The difference between likelihood and posterior. The
left figure shows the overall probability distribution of the data.
The right figure shows the posterior probability distribution for
class w1. The posterior increases to the right. The maximum of
the likelihood is marked with a + while a conservative estimate
for the maximum of the posterior is marked with a ‘*’.

an error, then one should choose a point at (∞, 0) because a point
far to the right is most likely to be class w1.

The difference between the posterior and the likelihood can be
seen in how the two expressions use the data distribution P (x). The
likelihood calculation uses the overall distribution in the numerator
of the equation, causing the maximum to be reached where there
is a lot of data. Conversely, the posterior calculation puts the data
distribution in the denominator. Thus, when there is little data,
P (x) is small, and the posterior is forced high. A decision based on
the posterior is safe, but it won’t necessarily be a common image.

3.1 Approximation
Even on the web, getting enough data to train a full model as

proposed in Eq. 1 is prohibitive. Thus, we might assume that each
feature is statistically independent of the others so we can write the
image probability as

P (Ij |t) =
Y

i

P (f i
j |t). (5)

Note, we often have multi-dimensional features and we treat each
dimension as an independent feature so we only need to compute
one-dimensional density estimates.

If we have enough data and find correlations between two or
more features (or feature dimensions), we get better accuracy by
building joint probability models of these features/dimensions. Such
a division of the entire model into smaller submodels and assum-
ing independency between those models is less restrictive than as-
suming independence between each and every metadata dimension
but less expensive than computing a joint distribution for all of the
cues. We cannot hope to have enough data to model the full dis-
tribution, but can take into account feature inter-dependencies to
jointly model related variables. Finally, the choice of features is ar-
bitrary and one can balance the information in different dimensions
by learning or setting a weight per dimension. The most general
form of the probability model is

P (Ij |t) ∝
Y

i

[P (F i
j |t)]αi , (6)

where P (F i
j ) is a full model of the probability of feature set i and

αi is a weighting factor. We set the αis to 1 in our implementation.
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4. FEATURES
To demonstrate the utility of the our above presented approach,

we consider two kinds of features: one based on the pixels in the
image (see Section 4.1); and the other based on the tags supplied
by the user to describe the content or other properties of the image
(see Section 4.2.) There are interesting peaks in other metadata
modalities such as location and time [28], but including those into
the model is the subject of future work.

Both types of features are based on feed-forward networks, whose
parameters are trained off-line from hundreds of thousands of web
images. We believe that it is important to learn the parameters for
feature computation from data, not only the model representing the
images itself. Images from the web are diverse and seldom contain
only a single object; thus, object detectors trained on clean, labeled
databases are not an option. Our chosen features are not the only
answer, but they share a common framework by approximating the
data in a low-dimensional space with minimum reconstruction er-
ror. Most importantly, the dimensionality of the feature describing
an image is fixed, so that the 42nd dimension always represents,
for example, a particular kind of texture in the upper-left corner of
the image. Once the parameters of the networks are trained and
fixed, the feature computation for novel images is inexpensive. It
is important to compute the features representing the different im-
age modalities efficiently by using a bottom-up system because we
cannot wait seconds to process an image. Lastly it should be noted
that our features use a non-linear representation because linear pro-
jections can’t efficiently encode images; linear systems can capture
only 2nd order statistics.

In the sub-sections that follow we describe the image features
(Section 4.1), the text features (Section 4.2) and then show how we
reliably estimate the density function of the images in the (poten-
tially joint) feature space.

4.1 Pixel Features
In order to learn locally, shift-invariant, sparse representations,

we combine two recently proposed algorithms [23, 16]. As stated
above, there are alternative features that could we used as well, such
as GIST [21] or SIFT [20] features in combination with a bag-of-
words model. However, features based on a feed-forward network
are computationally cheap and we believe that they are appropriate
for modeling various kinds of highly variable image categories.

First, we describe the baseline sparse-coding algorithm. Second,
we propose a simple extension to learn representations that are not
only sparse but also locally shift invariant. Spatial invariance is
desirable because we are not interested in the exact location of ob-
jects. And finally, we explain how we produce feature hierarchies
by stacking these models. We use these features because they per-
form well in an image classification task (see Section 5.2).

Olshausen and Field [22] proposed a sparse coding model. Given
a vectorized input image patch I ∈ RM , we seek the code Z ∈ RN

(with possibly N > M ) that can reconstruct the input, the code is
sparse and minimizes the following objective function:

L(I, Z; Wd) = ‖I −WdZ‖2 + λ
X

k

|Zk|, (7)

where Wd ∈ RM×N is a matrix that we learn, and λ ∈ R+

is a hyperparameter controlling the sparsity of the representation.
We learn the matrix Wd with an on-line block-coordinate gradient-
descent algorithm. Given a training-image patch: (1) we minimize
the loss in Eq. 7 w.r.t. Z to produce the optimal sparse code; and
(2) we update the parameters Wd by one step of gradient descent
using the optimal sparse code, and we normalize the columns of
Wd to 1. The re-normalization is necessary since the loss is triv-
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Figure 3: One stage of the image-coding/decoding pipeline. The
feature we use to represent the image is shown in the middle
of the pipeline. The transformation parameters that represent
the location of the maximum in each window, are passed from
coder to decoder because they represent spatial data we want
the representation to ignore.

ially decreased by multiplying and dividing Wd and Z by the same
factor. When we apply this algorithm to natural images, it learns
features that resemble Gabor wavelets. The main problem with this
code is the expense of using it. Computing the sparse code cor-
responding to an input image patch requires solving a convex but
non-quadratic optimization problem. Although many optimization
algorithms have been proposed in the literature [18, 3], the itera-
tive procedures are prohibitively expensive when encoding whole
images in large-scale web applications.

Therefore, we use a feed-forward approximation [16]. We train
a feed-forward regressor to directly map input patches to sparse
codes. We consider the class of D tanh(WeI) functions where
tanh is the hyperbolic tangent non-linearity, D is a diagonal ma-
trix of coefficients, and We is a N ×M matrix. Training consists
of minimizing the squared reconstruction error between the output
of this function and the optimal sparse codes w.r.t the parameters
We and D. We perform the optimization after optimizing Wd, or
jointly by adding this extra error term to the loss of Eq. 7:

L(I, Z; Wd, D, We) =

‖I −WdZ‖2 + λ
X

k

|Zk| + ‖Z −D tanh(WeI)‖2. (8)

Since the joint optimization is faster (because the inference step
enjoys the initialization provided by the feed-forward regressor),
we choose the latter optimization strategy. The training algorithm
is the same one, alternating a minimization over Z and a parameter
update step over (Wd, We, D). Note that the rows of matrix We

can be interpreted as trainable filters that are applied to the input.
In order to make the codes not only sparse but also translation in-

variant over small spatial neighborhoods, we extend this algorithm
by applying a trick [23]. The idea is to use the filters convolution-
ally over the input image patch (which is not vectorized and whose
spatial resolution is larger than the support of the filters) and to take
the maximum across non-overlapping windows. Clearly, the result-
ing code becomes invariant to translations within the corresponding
window. The reconstruction is similar to before, and is done con-
volutionally as well. First, the code units are placed in the feature
maps at the locations where the maxima where found, and then the
resulting feature maps are convolved with the reconstruction filters,
and finally summed up to produce the reconstruction of the input.
Figure 3 shows the coder and decoder.

The learning algorithm remains unchanged when we add a spa-
tially invariant aspect to the sparse code because both algorithms
reconstruct the input while satisfying a sparsity constraint. In par-
ticular, these algorithms do not make any specific assumption on
the input. Therefore, it can be replicated to build a feature hierar-
chy, analogous to the training scheme employed in deep learning
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methods [8]. The algorithm is first trained using image patches.
Once we learn the filter banks, we use the feed-forward mapping
function to directly predict approximatly sparse and locally shift-
invariant codes to train another layer. We repeat the same greedy
process for as many layers as desired. The resulting features are
sparse, locally shift-invariant and they are produced by a simple
feed-forward pass through several stages of convolution and max-
pooling.

4.2 Semantic Features
To transform tags associated with an image to semantic features,

we use a bag-of-words (BOW) description in combination with a
deep network. Our deep network uses multiple, non-linear, hidden
layers and was introduced by Hinton et al. [10] for modeling im-
age patches. Such a deep network consists of multiple, non-linear,
latent feature layers, each capturing the strong correlations of the
feature activations in the level below. Salakhutdinov [24] proposed
a modified version of this model for text documents. This deep
network computes a low-dimensional representation, from which
the text documents represented by their BOW models can be re-
constructed with low error. We apply this model here to the BOW
description of the imagesÕ tags. The learning procedure for such
a deep model consists of two stages. In the first stage, the pre-
training, we compute an initialization based on restricted Boltz-
mann machines (RBM). The second stage refines the representation
by using backpropagation. RBMs provide a simple way to learn a
single layer of hidden features without supervision. They consist
of a layer of visible units that are connected to hidden units using
symmetrically weighted connections. Note that a RBM does not
have any visible-visible or hidden-hidden connections. We apply
one step contrastive divergence [9] to learn the variables of a RBM,
i.e. its weights and biases.

To extend this and construct a deep network, Hinton [10] pro-
poses to learn additional layers of features by treating the hidden
states of the lower-level RBM as the visible data for training a
higher-level RBM, that learns the next layer of features. By re-
peating this greedy layer-by-layer training several times, we learn
a deep model that is able to capture higher-order correlations be-
tween the input units. Note that the learning algorithm for pixels
representation presented above uses a similar approach for learning
a feature hierarchy. Here the outcome of a lower layer is also used
as the input to learn another feature layer.

After pretraining for all layers, we further refine the parameters
of the deep model. This is done by unrolling the layers to create
an autoencoder [10]. Using the pretrained biases and weights as
initializations, the backpropagation algorithm is used to fine-tune
the parameters for optimal reconstruction of the input data, i.e. in
our case the BOW descriptions based on the image tags.

The input vector from tags to such a deep network is a word-
count vector. We first divide each entry of the respective vector by
the total number of tags associated with the current image. This cre-
ates a discrete probability distribution over the finite tag vocabulary
for each image. To model the probability distributions in the input
layer, we use a softmax at the visible units in the first level RBM
while its hidden units and also all other units in the deep network
are binary. However the output units at the top level of the network
are linear. We use the multi-class crossentropy error function to
refine the weights and biases in the backpropagation algorithm.

Once the deep network is trained, we derive a low-dimensional
representation of an image in the semantic space by applying the
learned model to its BOW description and using its top-level unit
values as its low-dimensional description. Note, the mapping from
the word count vector, i.e. the basic tag description, to a high-level
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Figure 4: Three examples of density estimation: one too smooth
(blue); one too detailed (green); and one which maximizes the
likelihood of the test data (red).

semantic feature only consists of a single matrix multiplication and
single squashing function per network unit.

4.3 Density Estimation
Having computed the features for each of the images in our col-

lection, we perform non-parametric density estimation in order to
derive the probabilities P (f i

j |t). We compute a one-dimensional
probability density for each feature dimension using Parzen’s win-
dows [5]. For each feature (pixel or semantic), we use a Gaussian
kernel and perform 10-fold cross validation to find the best kernel
width. The goal of this step is to build a model of the data that accu-
rately reflects the underlying probability distribution. We find the
kernel variance that defines a likelihood model that best predicts
the held-out test data. Figure 4 gives an example of this calcula-
tion. The distributions are often bimodal or skewed. The product
of these distributions is a simple model of image likelihood as a
function of the image features.

5. IMPLEMENTATION
5.1 Dataset

We consider the following 20 query terms for our evaluation:
baby, beetle, butterfly, carnival, chair, Christmas, CN Tower, coast,
Colosseum, flower, forest, Golden Gate Bridge, highway, horse,
mountain, sailboat, sheep, Statue of Liberty, sunset, wedding. This
list includes objects, landmarks, scenes, events and places.

We downloaded nearly 4.8 million public, geotagged Flickr im-
ages, all with at least one of the tags listed above. The number of
images per category ranged from 3,700 to 683,000 images.

5.2 Pixel Feature Implementation
In this paper, we report the results of experiments using three

layers of convolution and max-pooling to analyze each image. The
input image is converted to YUV and down-sampled so that the
longest side is 158 pixels long. The Y channel is high-pass filtered
to remove changes in illumination. After downsampling, filtering
and zero padding all image are 140×140 pixels. The filter banks of
the first two stages have kernels of size 9×9, and the max-pooling is
performed over 4×4 and 5×5 non-overlapping windows at the first
and second stage, respectively. The third-stage filters have the same
size support as one of the second stage feature maps, and therefore,
no pooling is performed there. The number of feature maps is equal
to 128 at the first stage, 512 at the second stage and 1024 at the third
stage. The final feature vector is 1024-dimensional.
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We trained our feature extractor with the unsupervised algorithm
on natural image patches randomly selected from images down-
loaded from Flickr, and then validated the parameters of our ex-
tractor by testing its performance using the Caltech-256 object-
classification task [7]. This allowed us to fine-tune the architecture
of our network and the number of layers and nodes. Note that the
Caltech-256 data gave us a separate validation set. However, it is
important to build our feature extractor using Flickr images since its
style is much less constrained than the Caltech-256 set and Flickr
represents a larger dataset.

The validation of the parameters proceeded as follows after build-
ing the feature extractor as described above: we compute the fea-
tures for each image of the Caltech-256 dataset; then we train a
linear SVM classifier with 30 training samples per class. The aver-
age recognition accuracy was equal to 26% which is considered to
be a good result — the state-of-the-art is in the mid-thirties [7].

5.3 Semantic Feature Implementation
To train our tag model, we sample a number of images from

each class in our dataset (see Section 6) and use this set to learn
the parameters of the deep network that can be used to compute
features for each image independent of the current query term.

The first step is to choose a vocabulary. This is done by first list-
ing all tags associated with at least one training image. Next we
filter this list to keep only those tags that are used by a certain num-
ber of authors/owners — ten in our implementation. Additionally,
we remove all tags containing numbers. To map singular and plural
forms of objects into one single word we use a very simple scheme
which pools words which are equal up to the letter ‘s’ at the end of
the word. A more sophisticated approach to building the vocabu-
lary may be useful to consider for future work, as we also do not
consider any type of translation of the words.

Our final vocabulary consisted of 3674 words. Having chosen
the vocabulary we can represent each image by a word-count vec-
tor. The resulting representation is in most cases very sparse as
users typically only use up to 5 words/expressions to tag an image.

The trained deep network consisted of three hidden layers with a
3674-1000-400-100 structure. Thus, we obtain a 100-dimensional
semantic representation for each image. We used 84,000 images
from all categories for learning the deep network, 25 iterations for
pre-training each layer and 50 iterations to optimize the autoen-
coder.

5.4 Densities
For training the feature densities we randomly select 10,000 im-

ages per query term; we use less when fewer images are availabe in
our collection. We only consider one (randomly chosen) image per
owner per tag, as we do not want the densities biased towards the
images of one photographer. This can easily happen as there are
photographers who upload thousands of images all associated with
one tag and all very similar but not really relevant for the tag.

In order to represent the estimated non-parametric densities, we
evaluate them at 5,000 equally distributed points between the mini-
mum and maximum feature value and store the found values. Nor-
malizing their sum to 1 gives us discrete probabilities for each of
those points. Thus, when performing ranking we map each feature
to its nearest value in this dimension (a form of quantization) and
derive directly the probability associated, this ensures fast compu-
tation of image ranks and relatively low computational effort.

We also implemented a cleaning algorithm to reduce the effects
of common background images in our density calculation. This
process removes images that are not surrounded by other images
of the same class, i.e. with the same tag. For each class, we
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Figure 5: Mean scores for the top-15 images over all categories
for our baseline method (random), a text-based search engine,
and 4 different variants of the unsupervised ranking algorithm.

perform a nearest-neighbor calculation using 10,000 in-class and
10,000 background images. We keep an image if more than 50%
of its neighbors are in the same class. Note, the number of training
images for some query terms is less than 10,000 before filtering,
thus making it harder in those cases to reach the required 50%.

In this work, we do not address image diversity. But given a
probabilistic model such as described here, one has the right rep-
resentation so images can be chosen from all over the range of
data, perhaps emphasizing the peaks. In Figure 8, we see images
from different regions of feature space. When selecting the top
ranked images for the query beetle according to the model, we find
high-probability images in different areas representing the different
meanings of the word, i.e. showing either the insect or the car.

6. RESULTS
To test our proposed ranking approach, we calculated likelihood

models for each of 20 query terms. We then calculated the prob-
ability of each of our 4.8 million images using models built from
pixel features only as well as models built using both image and
semantic data, i.e. pixel and tag features. We compared the ranking
performance of those models, with and without training data clean-
ing (see Section 5.4), to two different baseline measures: a random
set of images from the respective category and images that were
ranked highly by the Flickr search API (which uses text matching).

We evaluated the performance of our approach in a user study
by: displaying the top 15 images, but only one image per author,
for each of the 20 test queries; and asking six test users to judge
the result images. In the test, subjects assign one point to an image
they consider relevant to their query, give each somewhat relevant
image 0.5 points, and give each irrelevant image 0 points. For each
query, we report the mean score per image over all test users.

Figure 5 compares the mean scores over all queries of the dif-
ferent approaches. Using visual features alone gives better perfor-
mance than a random set of images. Adding tags to the model
improves the relevance scores, as did cleaning the models training
data to remove images that were common to many query terms.
Summarizing, when using both, visual and semantic, features, our
proposed model outperforms the baseline approaches.

Table 1 summarizes the results as a function of the query. Images
of objects with a low visual diversity, such as Colosseum and Statue
of Liberty are easy. Classes such as wedding or highway are more
difficult, even though we did well, because of the wide range of
images. Many wedding pictures, for example, consist of groups
of happy people. They were probably taken at weddings, but it is
hard for humans to judge their relevance. Moreover, the quality of
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Random Text Search Unsupervised
baby 0.52 0.23 0.76

beetle 0.60 0.83 0.83
butterfly 0.75 0.78 0.88
carnival 0.28 0.43 0.81

chair 0.41 0.39 0.79
Christmas 0.21 0.26 0.67
CN Tower 0.46 0.65 0.98

coast 0.27 0.40 0.76
Colosseum 0.77 0.99 0.93

flower 0.77 0.82 0.71
forest 0.12 0.68 0.79

Golden Gate Bridge 0.56 0.95 0.64
highway 0.10 0.33 0.37

horse 0.29 0.86 0.72
mountain 0.27 0.61 0.68

sailboat 0.72 0.59 0.77
sheep 0.51 0.62 0.79

Statue of Liberty 0.42 0.56 0.99
sunset 0.76 0.63 0.62

wedding 0.58 0.41 0.58

Table 1: Detailed relevance scores for the different categories.
The winning score for each category is shown in bold.

results for some queries such as sunset, flower or butterfly was good
even for the random approach indicating that majority of the images
tagged with this words were showing the desired content. Other
query terms, e.g. Christmas or forest, are hard because they are
less distinct; nevertheless, our approach gives good performance.

To illustrate results of our algorithm, we applied the learned
models to a different set of recently uploaded images for each query
from a set of Flickr images that are licensed under the Creative
Commons License (and thus we can republish). We show the re-
sulting top-16 images for the queries chair, baby, beetle and Christ-
mas in Figures 6 to 9.

7. CONCLUSIONS
We demonstrate an unsupervised approach to determine image

relevance. This approach works well, not only for images of land-
marks, but also objects, scenes and events. We described features
based on convolutional neural networks (for pixels) and related text
features based on a deep network. We show how we use a proba-
bilistic model of image distributions to find the most common im-
ages, even when we approximate the distribution with a product
of independent dimensions. The experimental evaluation showed
that our approach outperformed the baselines and users judged the
results as most relevant when we used both visual and tag data to
build our models.

This algorithm is important because it forms the first step in a
general machine-learned ranking algorithm. We may use this algo-
rithm before we have human relevance judgements, or for queries
that are too rare for detailed human data. Most importantly, we be-
lieve the need and the accuracy of this approach will only improve
as more images find their way online and it is thus possible to build
more detailed models.
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Figure 7: Sample results for the baby query for visual and tag
model trained using cleaned data. Our approach works well at
finding large round (baby) faces.

Figure 8: Sample results for the beetle query for visual and tag
model trained using cleaned data. The unsupervised approach
discovers both meanings of the word beetle.

Figure 9: Sample results for the Christmas query for visual and
tag model trained using cleaned data. The unsupervised ap-
proach produces good and varied results for events.
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